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Abstract

Real world images often have highly imbalanced content
density. Some areas are very uniform, e.g., large patches of
blue sky, while other areas are scattered with many small
objects. Yet, the commonly used successive grid downsam-
pling strategy in convolutional deep networks treats all ar-
eas equally. Hence, small objects are represented in very
few spatial locations, leading to worse results in tasks such
as segmentation. Intuitively, retaining more pixels repre-
senting small objects during downsampling helps to pre-
serve important information. To achieve this, we propose
AutoFocusFormer (AFF), a local-attention transformer im-
age recognition backbone, which performs adaptive down-
sampling by learning to retain the most important pixels for
the task. Since adaptive downsampling generates a set of
pixels irregularly distributed on the image plane, we aban-
don the classic grid structure. Instead, we develop a novel
point-based local attention block, facilitated by a balanced
clustering module and a learnable neighborhood merging
module, which yields representations for our point-based
versions of state-of-the-art segmentation heads. Experi-
ments show that our AutoFocusFormer (AFF) improves sig-
nificantly over baseline models of similar sizes.

1. Introduction

Typical real-world images distribute content unevenly.
Consider the photo of a typical outdoor scene in Fig. 1:
Large swaths of the image contain textureless regions like
the ground, while a few regions contain many small ob-
jects. Despite this, most computer vision neural networks
distribute computation evenly across the image; every pixel,
regardless of texture or importance, is processed with the
same computational cost. Popular convolutional neural net-
works operate on regularly-arranged square patches. Al-
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Figure 1. Comparison between on-grid model Swin [16] and off-
grid model AFF. The red pixels indicate the locations of the re-
maining tokens. AFF downsamples non-uniformly, automatically
focusing on more textured, important image regions, which lead
to better performance on small objects in the scene.

though recent transformer architectures do not strictly de-
pend on a grid structure, many transformer-based meth-
ods adopt grid-based techniques such as stride-16 convolu-
tions [5] and 7× 7 square windows for local attention [16].

Despite its popularity, uniform downsampling is less
effective for tasks that require pixel-level details such as
segmentation. Here, uniform downsampling unfortunately
makes tiny objects even tinier – possibly dropping needed,
pixel-level information. To combat this, many techniques
increase the input resolution [6,31] to obtain better segmen-
tation performance. This intuitively helps, as larger input
will lead to higher resolution after downsampling. How-
ever, increasing input resolution is costly in memory and
computation, as this brute-force bandaid neglects the under-
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Figure 2. The network architecture of AutoFocusFormer. The model consists of four stages, each stage processing a successively down-
sampled set of tokens. Within each stage, tokens first go through balanced clustering, then attend to the tokens in their local neighborhoods
defined by the nearby clusters in the following local-attention blocks, and finally adaptively merge into the set of downsampled output
tokens with weights modulated by the learnable importance scores.

lying issue – namely, uniform downsampling. Some prior
works amend this by irregularly sampling points in the seg-
mentation decoder [13], but by still relying on a uniformly-
downsampled convolutional encoder, these techniques re-
main susceptible to the pitfalls of uniform downsampling.

To address this concern, we need solutions that en-
able computer vision models to allocate computation non-
uniformly across each image. In particular, we need a
downsampling strategy that retains important details, while
more aggressively summarizing texture-less regions such as
sky or road. However, non-uniform downsampling breaks
from the grid structure that existing architectures rely on.
Prior work on adaptive downsampling [8, 14, 27] addresses
this by simply using global attention, but global attention
does not scale to resolutions much higher than that of Ima-
geNet, such as those required for segmentation tasks.

To satisfy this need for adaptive, scalable downsampling
strategies, we propose AutoFocusFormer (AFF). To our
knowledge, AFF is the first end-to-end segmentation net-
work with successive adaptive downsampling stages. To
scale to higher resolutions required in segmentation tasks,
AFF employs local attention blocks. In order to define
local attention neighborhoods among irregularly sampled
tokens, we develop a novel balanced clustering algorithm
which employs space-filling curves to group irregular loca-
tions into neighborhoods. We also propose a novel adaptive
downsampling module that learns the importance of differ-

ent image locations through a differentiable neighborhood
merging process (Fig. 4). Finally, we modify state-of-the-
art segmentation heads so that they can be applied on the
irregular-spaced representations our backbone generates.

Our AutoFocusFormer attains state-of-the-art perfor-
mance with less computational cost across major segmenta-
tion tasks, with especially strong results when using smaller
models. Furthermore, by moving away from the grid struc-
ture, our downsampling strategy can support a larger range
of computational budget by retaining any number of tokens,
rather than operating only at rates of 1/4, 1/16 etc.

To summarize, our contributions are:

• To our knowledge, we introduce the first end-to-end
segmentation network with successive adaptive down-
sampling stages and with flexible downsampling rates.

• To facilitate a local attention transformer on irregularly
spaced tokens, we propose a novel balanced clustering
algorithm to group tokens into neighborhoods. We also
propose a neighborhood merging module that enables
end-to-end learning of adaptive downsampling.

• We adapt state-of-the-art decoders such as deformable
DETR [49], Mask2Former [2] and HCFormer [34] to
operate on irregularly spaced sets of tokens.

• Results show that our approach achieves state-of-the-
art for both image classification and segmentation with
fewer FLOPs, and improves significantly on the recog-
nition of small objects in instance segmentation tasks.
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2. Related Work
Transformer backbones for Vision. The seminal Vi-
sion Transformer (ViT) [5] demonstrated that simple image
patch encodings combined with self-attention enable im-
pressive modeling capacity on image classification tasks.
However, ViTs lack hierarchical feature maps which are
critical for dense prediction tasks. Various improvements
have since been proposed, e.g., MViT and PVT [7, 37]
propose using feature hierarchies similar to those of stan-
dard convolutional networks. However, they still operate
on global attention, which suffers from quadratic complex-
ity w.r.t. the input size, hence struggling with high resolu-
tion inputs. One solution is to apply attention only on the
low resolution feature maps, as in BoT [33] and LeViT [9].
Other approaches modify the attention operation. Seg-
Former [40] computes attention in earlier layers on a con-
catenation of many tokens. PoolFormer and AFT [43, 45]
replace attention with pooling based operations which re-
duces the quadratic complexity to linear. Swin Transformer
and SASA [16, 26] replace the global attention with local
attention, where attention is computed only in a small local
window, which achieves better efficiency.
Clustering-based Attention. Clustering based sparse at-
tention has been proposed in language and vision [29,35,36,
47]. However, these works do not involve adaptive down-
sampling which is central to our method. Most works at-
tempt to cluster learned features, whereas we cluster based
on token locations. We have also studied clustering of fea-
tures, but found it not to provide significant improvements,
while adding significant complexity to the model. Cluster-
ing ideas have also been applied in decoders [34, 42] which
differs from our work as we apply clustering in the encoder.
Adaptive downsampling. There have been many attempts
to combine adaptive downsampling with vision Transform-
ers, such as AdaViT [20], DynamicViT [27], A-ViT [41],
etc. Dynamic Grained Encoder [32] proposes to learn dif-
ferent grid downsampling rates for different regions. EViT
[14] proposes to merge the “uninformative” patches into
one. PS-ViT [44] proposes to learn offsets to the original
grid patch locations. However, all of these solutions are
still based on global attention. Most of them do not prune
away “uninformative” patches during training, either due to
the need for gradients to flow through those patches [27] or
the need for uniform size across the batch [41]. Hence, they
cannot scale to high-resolution segmentation tasks, but only
focus on speeding up ImageNet classification.

How to make the adaptive downsampling module learn-
able has itself been a significant challenge. Some methods
turn to heuristics such as the attention values [8]; some turn
to policy gradient [22]; some turn to the Gumbel-Softmax
trick [18] to obtain a differentiable binary mask [20, 27].
To directly obtain gradients from the task loss, merging
tokens [14, 30] seems to be a more natural strategy than

deleting tokens. We develop a novel neighborhood merging
module, adaptively choosing the merging locations, provid-
ing gradients directly from the task loss to the “importance
scores” of the tokens. To our best knowledge, our work is
the first end-to-end framework with local attention blocks
that uses adaptive downsampling in multiple stages, and is
scalable to high-resolution segmentation tasks.
Point cloud networks. Prior works that directly operate on
a set of irregular points are mostly designed for 3D point
clouds, such as PointNet++ [25], PointConv [39] and Point
Transformer [46]. They often choose k-nearest-neighbors
or an ϵ-ball to find the neighborhood for each point. We
make limited usage of PointConv in our decoder model to
replace 3× 3 convolution.

3. Method

Our goal is to perform adaptive downsampling instead
of the traditional grid-based downsampling. Specifically,
we want to retain more 2D image locations in “informa-
tive” areas (e.g., areas which depict cluttered small objects),
and more succinctly summarize “unimportant” areas (e.g., a
purely blue sky). Because the chosen locations have uneven
density, our model treats the locations as a set of irregularly-
spaced tokens rather than a rectangular grid.

As we mentioned earlier, global-attention transform-
ers are computationally demanding for segmentation tasks.
Thus, local transformer models are a natural choice for
our goal due to their computation efficiency on larger im-
ages. However, the regular grid local window mechanism
in methods like Swin Transformer [16] is not amenable to
adaptive irregular downsampling, so we propose to cluster
pixels and perform attention on clusters.

Specifically, our backbone model (Fig. 2) starts with a
patch embedding module (2 layers of 3 × 3 convolution
with stride 2), and then continues with several stages. Each
stage consists of: 1) a clustering algorithm (Section 3.1);
2) several local-attention transformer blocks (Section 3.2);
3) the novel adaptive downsampling module (Section 3.3).
Finally, task-specific heads are attached to the backbone for
different tasks such as image classification, semantic and
instance segmentation.

3.1. Clusters and Neighborhoods

A local neighborhood on a 2D grid can be conveniently
defined by slicing out a square window. In contrast, for an
unordered set of points, the conventional approach to iden-
tify neighbors in a 3D point cloud [25, 39] relies on algo-
rithms such as k-nearest-neighbors (kNN), which compute
pairwise distances between points.

A naive kNN algorithm has a quadratic time complex-
ity. Interestingly, many of the algorithms to speed up kNN
(e.g., [11]) involve a first step of k-means clustering on
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Illustration of the balanced clustering algorithm. (1) Group tokens into patches. Use a space-filling curve to order the 
\textit{anchors} ($a_{i-1}, a_{i}, \cdots$). (2) For each token (e.g., token $p$ belonging to $a_i$), calculate the ratio of its 
distance to the ``previous" and the ``next" anchor ($r=d_{i-1} / d_{i+1}$). (3) Local order on tokens in ascending order of 
$r$. (4) Global order on tokens based on anchor order and local token order. Partition the sorted tokens into equal-sized 
clusters.

(a) (b)
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r = di-1 / di+1
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Figure 3. Illustration of the balanced clustering algorithm. (a) To-
kens are quantized to space-filling anchors. A space-filling curve
orders the anchors (ai−1, ai, · · · ). (b) For each token (e.g., token
p quantized to ai), calculate the ratio of its distance to the “previ-
ous” and the “next” anchor (r(p) = di−1(p)/di+1(p)). (c) Order
tokens quantized to the same anchor in ascending order of r. (d)
Sort all tokens based on the anchor order and the local token order.
Partition the sorted tokens into equal-sized clusters.

given points so as to reduce the search space for the neigh-
bors. Inspired by this approach, we also use clusters in
defining local neighborhoods, i.e., we divide the tokens
into clusters, and define neighborhoods as entailing several
nearby clusters. Unfortunately, traditional clustering algo-
rithms such as k-means or locality-sensitive hashing do not
directly fit our purpose. First, they require multiple itera-
tions or rounds of hashing and are thus slow, compared to
a forward pass in a deep net. More importantly, they result
in clusters with different numbers of assigned points. Un-
evenly sized clusters results in tensors padded with zeros,
which leads to wasted memory and time.

Noting that we are only clustering on 2D positions but
not higher dimensions, we propose to address the aforemen-
tioned concerns with a novel balanced clustering method.

3.1.1 Balanced Clustering

Instead of conventional iterative approaches, our method to
obtain a perfectly balanced clustering is to arrange 2D lo-
cations on the image into a 1D array, and then partition the
array into groups of equal size. For this we consider space-
filling curves [24], which arrange 2D locations on a 1D line
while attempting to preserve the 2D distance measure [21].
Hence, points that are close on the line are also reasonably
close in the 2D space. However, due to the conversion from
2D to 1D, it is impossible to completely preserve the 2D
metric, and artifacts occur if we directly utilize space-filling

curves to partition tokens into clusters. To partially alleviate
this concern, we adopt a 2-stage process for the clustering.
The idea is to utilize space-filling curves only at a coarse
level to obtain an ordering for sparsely and regularly sam-
pled 2D image locations. Then, tokens are ordered based
on the 2D distances to these locations.

Concretely, we first divide the image into a coarse reg-
ular grid with the number of square patches being similar
to the intended number of clusters. We refer to the center
of each square patch in the grid as a space-filling anchor.
A space-filling curve establishes an ordering among the an-
chors. Given this ordering, for a token with position p ∈ R2

belonging the anchor ai ∈ R2, we can define its previous
anchor ai−1 and next anchor ai+1. Then, we calculate the
ratio r of distances from token p to the two anchors via

r(p) =
di−1(p)

di+1(p)
=

∥p− ai−1∥2
∥p− ai+1∥2

(1)

for all tokens p. Now, within each square patch, we or-
der the tokens in ascending order of r, so that tokens closer
to the previous anchor are placed earlier. This procedure
hence establishes an ordering of all the tokens. Finally, to
obtain balanced clustering we simply partition the array into
groups of equal size. Fig. 3 illustrates the entire algorithm.

Because we can find the corresponding space-filling an-
chor for each token in O(1) time by simply quantizing their
coordinates, the overall time complexity of the clustering
is no more than sorting all the token locations in their lo-
cal patches once, which is negligible compared to the net-
work time complexity because feature channels are not in-
volved. Note that the clustering algorithm only needs to
be performed once at the beginning of each stage, and the
cluster information can be used for all attention blocks in
the stage, as well as the downsampling module at the end.

Different from prior balanced clustering work [1], this
algorithm is not iterative and results in perfectly balanced
clusters. It also guarantees that each token belongs to a sin-
gle cluster, different from RoutingTransformer [29], where
some tokens may not belong to any cluster. However,
note that our balanced clustering is only suitable for low-
dimensional points. In early stages of this research, we ex-
plored clustering with embedded features instead of just 2D
locations, but the performance difference was negligible.
Hence, we decided to cluster on the locations only, which
allowed us to utilize the proposed algorithm to generate per-
fectly balanced clusters. Please see the supplementary ma-
terial for experiments validating our clustering approach.

3.1.2 Neighborhoods from clusters

In order to encourage information flow across the whole
image, it is important that attention is not limited to only
locations within the same cluster. E.g., in Swin Transform-
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Illustration of the adaptive downsampling module. First, calculate importance scores $s_i$ for the token 
features $f_i$. Then, select the positions of tokens with highest scores as merging centers (e.g., $p_7$ and 
$p_8$). Finally, merge the neighborhoods, with merging weights modulated by the importance scores $s_i$. 

Figure 4. Illustration of the adaptive downsampling module. First,
importance scores si are calculated from the token features fi.
Then, tokens with the highest scores are selected as merging cen-
ters (e.g., p7 and p8). Finally, neighborhoods are merged with
weights modulated by the importance scores si.

ers [16], shifting windows between consecutive layers al-
lows pixels to attend to different neighbors in different lay-
ers. However, in our case, re-clustering every layer would
add undesired computation. Hence, we opt to use smaller
clusters and allow each token to attend to tokens from R
nearby clusters. To achieve this, we use a neighborhood size
several times larger than the cluster size. This is beneficial
because the neighborhoods are overlapping, guaranteeing
information exchange between the clusters.

3.2. Transformer Attention Blocks

At any stage, let N be the number of tokens, M be the
number of neighbors for each token, H be the number of
heads, and C be the number of feature channels. The local
attention A of one single head with relative position em-
bedding is computed by having each token attend to all the
other tokens in its neighborhood via

A = softmax(QKT + P ), (2)

where Q ∈ RN×C/H ,K ∈ RM×C/H , A ∈ RN×M , P ∈
RN×M are query, key, attention and position embedding
matrices with

Pi,j = w(pi − pj). (3)

Here, pi, pj are the (x, y) coordinates of two neighboring
tokens, and w(·) is a function that returns a scalar posi-
tion embedding for this head. For models with fixed-shape
neighborhoods, the relative position embeddings can be
stored in a matrix and read when needed. But for our model,
the positions of the neighbors are unknown beforehand, and
thus we need to project the difference of the coordinates to a
position embedding via a learnable function. We implement
w as one fully-connected layer.

3.3. Adaptive downsampling

At the end of each but the final stage, we employ a down-
sampling module. The downsampling module includes two
components, a learnable scoring component for choosing
the most important tokens, and the neighborhood merging
step to merge the neighbors around selected tokens.

3.3.1 Learnable Importance Score

We learn to predict a scalar score si for the i-th token to in-
dicate its importance w.r.t. the task loss. A main difficulty in
learning this score is that downsampling limits the number
of selected tokens. If the task loss is only backpropagated to
the selected tokens, tokens that were not selected might not
receive any gradient. In order to backpropagate gradients to
all the tokens, we propose to learn the importance score for
each token in conjunction with the neighborhood merging
process.

To illustrate this, assume we are merging a neighborhood
around a particular token at location pc. Similar to attention
blocks, a neighborhood N (pc) is obtained from its nearest
R clusters and the i-th neighboring token is denoted as a
tuple (pi, fi) with location pi = (xi, yi) and features fi ∈
RC . In the neighborhood, merging is performed using a
modification of a PointConv layer [39] as follows:

fmerged(pc)=vec

 ∑
(pi,fi)∈N (pc)

si︷ ︸︸ ︷
σ(l(fi)) ·W(pi − pc)f

⊤
i

U,

(4)
where fmerged ∈ RC′

is the merged output with C ′ outputs,
vec(·) means vectorization, σ(·) is the sigmoid function,
l(·) is a fully-connected layer predicting the scalar “impor-
tance score”, W(·) is a multi-layer perceptron (MLP) with
output shape Cmid × 1, which creates different weighted
combinations of the input features fi in the neighborhood.
The weights are learned to be a function of the relative coor-
dinates between the location of each neighboring token and
the merging center location pc. Finally, U ∈ RCmidC×C′

is
implemented as a fully-connected layer.

Note, Eq. (4) is similar to PointConv f =
vec(

∑
Wf⊤)U , which was shown to be equivalent to one

continuous convolution layer [39]. We add si = σ(l(fi))
to modulate this function, which allows the model to “turn
off” the unimportant tokens during neighborhood merging,
keeping their features from being utilized in the next stage.
Thus, the score si can be viewed as an indicator, denoting
how important the model thinks a token is. This score can
henceforth be used to select the merging centers.

This formulation allows us to directly learn the score si
from the task loss without resorting to costly techniques
such as a policy gradient used in prior work [22]. Some
previous works use Gumbel Softmax/Sigmoid [20] to ob-
tain a differentiable binary mask, in order to keeping gra-
dients flowing to the “deleted” tokens after downsampling;
since we adopt the merging strategy rather than deletion, we
do not need such a hard binary mask. We provide visualiza-
tions of the neighborhood merging process in Fig. 4.
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3.3.2 Grid priors and Selection of Tokens to Sample

The final score used for selecting tokens as merging centers
is gi+αsi, a weighted sum between the learned score si and
a grid prior gi, with a hyperparameter α. While si is only
based on the feature vector, the grid prior helps the model
to differentiate between similar tokens at different locations,
thus facilitating the model to perform proper, uniform-stride
downsampling in local texture-less regions. Our grid prior
gi mimics the behavior of the traditional grid downsampling
– alternatingly assigning 1 and 0 to the tokens. However,
in stages where the tokens are already irregularly sampled,
adding a regular grid prior is no longer reasonable. Hence,
we advocate for an “adaptive” grid prior that takes the local
density of the sampled tokens into account.

Specifically, the adaptive prior chooses a local grid level
based on the local stride of the sampled tokens. For
each token pi = (xi, yi), we assign its “stride” ti =
2⌈log2 minj ∥pi−pj∥1⌉ to be the distance from the token to its
nearest neighbor, rounded up to the nearest power of 2. For
example, if the token is 3 pixels apart from its nearest neigh-
bor, it is assigned stride ti = 4. Then, we assign gi = 1 if
(xi mod 2ti = 0) ∧ (yi mod 2ti = 0). That is, we want
to downsample the local stride from ti to 2ti. Hence, if
ti = 1, then gi = 1 on alternating pixels, and if ti = 2,
then gi = 1 every 4 pixels. Furthermore, we set the grid
prior to infinity for tokens with (xi mod 2j+1 = 0) ∧ (yi
mod 2j+1 = 0) in the j-th stage. We call these tokens “re-
served”. We reserve these coarse-grid tokens to ensure the
connectivity among remote regions in the image throughout
the forward pass.

In summary, the workflow of adaptive downsampling is
as follows: 1) obtain importance score si = σ(l(fi)) for
each token fi, 2) calculate the grid prior gi for each token,
3) pick the top-x% (e.g., 1/4 or 1/5) tokens with highest gi+
αsi values; 4) perform neighborhood merging around the
location of the top-x% tokens using the formulation given
in Eq. (4) and obtain the merged tokens for the next stage.

4. Implementation Details
4.1. Point-based versions of segmentation heads

Traditional segmentation heads only operate on a set of
rectangular hierarchical feature maps. In our case, the out-
put of the backbone is a set of features on irregularly spaced
tokens. To compare with prior work, we convert two recent
Transformer-based segmentation heads, Mask2Former and
HCFormer, so as to operate on irregularly spaced tokens.

Mask2Former [2] uses the multi-scale deformable atten-
tion from deformable DETR [49] as part of its pixel de-
coder. In the multi-scale deformable attention layer, a token
in one feature map attends to k locations in every hierarchi-
cal level. It learns the offset ∆pi between its own location
pc and the i-th sampling location pi = pc+∆pi by perform-

ing bilinear interpolation on the 2× 2 patch surrounding pi.
We replace the bilinear interpolation with an inverse dis-
tance weighting-based interpolation, with a learnable power
initialized at 6. Specifically, we gather 4 tokens closest in
Euclidean space to pc+∆pi, and use the inverse of their dis-
tances to pc+∆pi raised to the learned power for a weighted
average of their features (weights sum normalized to 1), to
obtain the feature of the sampled neighbor. In addition, we
replace the 3 × 3 convolutions in the pixel decoder by a
PointConv layer. We implement the weight net w(·) in all
the PointConv layers used in our model (including those in
adaptive downsampling) as one fully-connected layer fol-
lowed by one LayerNorm and one GELU activation. The
mid-channel number Cmid is set to 4.

We introduce the other segmentation head HC-
Former [34] in the supplementary material.

4.2. Scale and Rotation Invariance

Our adaptive downsampling mechanism allows us to uti-
lize the same number of features for both small and large
scale objects. However, this creates a difficulty for the posi-
tion embedding to achieve scale invariance, since tokens on
a smaller object are closer together and have smaller relative
distances, resulting in vastly different position embedding
values than tokens on a large object.

To address this concern, we expand the relative position
vector from (∆x,∆y) = (xi − xj , yi − yj) to(
∆x,∆y,

√
∆x2+∆y2,

∆x√
∆x2+∆y2

,
∆y√

∆x2+∆y2

)
.

(5)
Note, the latter three terms are distance, cosine and sine val-
ues of the relative position. Distance is rotation-invariant
and the angle values are scale-invariant. These expanded
terms facilitate learning appropriate scale-invariant and
rotational-invariant embeddings.

4.3. Blank Tokens

During early experiments on ImageNet, we observed ab-
normally large feature norms for tokens in texture-less cor-
ners of the images, usually far away from any object, both
for our model and for Swin [16] Transformers. We suspect
this is because of the strong gradient softmax has when it
cannot separate near-identical (yet irrelevant) features. To
eliminate this artifact, we introduced a learnable blank to-
ken (Kij

blank, V
ij

blank) ∈ RC × RC shared by all neighbor-
hoods in the j-th transformer block in the i-th stage. Thus,
when there is no useful content in the neighborhood, the
softmax operator can learn to simply attend to the blank to-
ken and avoid attempting to distribute attention in texture-
less regions.
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Variant # Blocks Dim Heads
MLP
Ratio

Cluster
Size

Neighborhood
Size

# Params FLOPs

AFF-Mini 2,2,6,2 32,128,256,384 2,4,8,16 2 8 48 6.75M 1.08G
AFF-Tiny 3,4,18,5 64,128,256,512 2,4,8,16 3 8 48 27.02M 4.03G
AFF-Small 3,4,18,2 96,192,384,768 3,6,12,24 3 8 48 42.61M 8.16G

Table 1. Configurations of AFF.

Model Top-1 Acc # Params FLOPs

M
in

i

A-ViT-T+distl. [41] 72.4% 5M 0.8G
Token Pooling DeiT-e318
Sparsity level 5 [19] 76.8% - 1.1G

Swin-Mini‡ 76.9% 6.76M 1.07G
EdgeViT-XS [23] 77.5% 6.7M 1.1G
AFF-Mini 78.2% 6.75M 1.08G
AFF-Mini-1/5 77.5% 6.75M 0.72G

Ti
ny

DynamicViT-DeiT-S/0.7 [27] 79.3% - 2.9G
TokenLearner S/32(22) [30] 79.4% - 3.3G
A-ViT-S+distl. [41] 80.7% 22M 3.6G
AdaViT [20] 81.1% - 3.9G
PS-ViT-B/14 [44] 81.7% 21.3M 5.4G
LightViT-B [10] 82.1% 35.2M 3.9G
PVT v2-B2 [38] 82% 25.4M 4G
Swin-Tiny 81.3% 28M 4.5G
Swin-Tiny‡ 81.9% 27M 4G
ConvNeXt-Tiny [17] 82.1% 28M 4.5G
AFF-Tiny 83% 27M 4G
AFF-Tiny-1/5 82.4% 27M 2.74G

Sm
al

l

Swin-Small 83% 50M 8.7G
Swin-Small‡ 82.9% 42.6M 8.14G
ConvNeXt-Small [17] 83.1% 50M 8.7G
PS-ViT-B/18 [44] 82.3% 21.3M 8.8G
TokenLearner B/32(20) [30] 82.7% - 11.5G
AFF-Small 83.5% 42.6M 8.16G
AFF-Small-1/5 83.4% 42.6M 5.69G

Table 2. ImageNet Top-1 validation accuracy comparison at 224×
224 resolution. “1/5” means the model uses 1/5 downsampling
rate instead of the traditional 1/4 downsampling rate. “-” means
not reported. The Swin backbones‡ are trained using the same
architecture configuration and training settings as our model.

5. Experiments

5.1. Image Classification on ImageNet-1K

We evaluate on image classification using ImageNet-
1K [4], which contains 1.28M training images and 50K val-
idation images from 1000 classes.
Settings. Table 1 contains specifications for the different
model sizes used in our comparisons. Unless stated other-
wise, we use the “1/4” downsampling rate, cluster size 8
and neighborhood size 48 (i.e., we collect neighbors from
the nearest 6 clusters for each token). For ImageNet only,
we switch to global attention in the last stage, because at
an input resolution of 224× 224, the last stage only has 49
tokens left. We set the hyperparameter α = 4 in the merg-
ing center score calculation. We largely follow the training
hyperparameters from Swin Transformers. We train for 300
epochs.
Results. We present results in Table 2, divided into sec-
tions according to model sizes. Compared to Swin [16], we

obtain +1.3%, +1.7% and +0.5% improvement for Mini,
Tiny and Small, respectively. For a fair comparison, we
trained Swin-Tiny and Swin-Small using our own architec-
ture configuration, training settings and patch embedding
layer, and we still obtain +1.1% and +0.6% improvement,
respectively. The difference is not large, which is expected
because adaptive downsampling is mainly geared toward
dense prediction tasks. We did outperform all previous ada-
pative downsampling approaches with global attention such
as AdaViT, DynamicViT and A-ViT.

We further demonstrate our model’s capability to use
flexible downsampling rates by showing the results with a
1/5 downsampling rate. Across all sizes, the 1/5 downsam-
pling rate brings more than 30% drop in FLOP count com-
pared to the 1/4 downsampling counterparts, with minimal
accuracy drop and still beating all Swin baselines.

5.2. Segmentation

Datasets. We evaluate on semantic, instance, and panoptic
segmentation using 3 datasets: ADE-20K [48] is a semantic
segmentation dataset containing 150 categories across 20K
training images and 2K validation images. Cityscapes [3] is
a street-view dataset with high quality annotations, contain-
ing 2975 training images and 500 validation images, with a
total of 19 object classes. COCO 2017 [15] is an instance
segmentation dataset, containing 118K training and 5K val-
idation images.
Settings. We mostly follow the settings of
Mask2Former [2]. Please see the supplementary for
details. Tasks with Swin-Mini backbone are trained under
the same settings as AFF-Mini. Other Swin Transformer
results are taken from [2].
Results. We present the results of semantic segmentation
on ADE20K [48] (Table 3), instance and panoptic segmen-
tation on Cityscapes [3] (Table 4) and instance segmentation
on COCO [15] (in supplementary).

For semantic segmentation on ADE20K (Table 3), we
show mIoU improvement across all three sizes compared
to the Swin baselines: +2.4% for Mini, +1.9% for Mini-
1/5; +2.5% for Tiny, +2.3% for Tiny-1/5; and +0.6% for
Small-1/5. Our 1/5 downsampling-rate models decrease
FLOP count by 20%, while improving over Swin across
model sizes. We furthermore isolate the effect of chang-
ing the Mask2Former head to operate on point clouds (Sec-
tion 4.1). Using Swin-Mini on semantic segmentation, we
find the modified head reduces FLOP count (-9.4%) with
slightly lower performance (-0.4%).
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Backbone Segmentation Head
Crop
Size mIoU FLOPs

Swin-Mini‡ Mask2Former [2] 512 44.5 54G
Swin-Mini‡ Mask2Former* [2] 512 44.1 48.9G
AFF-Mini Mask2Former* [2] 512 46.5 48.3G
AFF-Mini-1/5 Mask2Former* [2] 512 46.0 39.9G
MiT-B2 SegFormer [40] 512 46.5 62.4G
PVT v2-B3 [38] Semantic FPN [12] 512 47.3 62.4G
Swin-Tiny Mask2Former [2] 512 47.7 74G
AFF-Tiny Mask2Former* [2] 512 50.2 64.6G
AFF-Tiny-1/5 Mask2Former* [2] 512 50.0 51.1G
PVT v2-B5 [38] Semantic FPN [12] 512 48.7 91.9G
MiT-B5 SegFormer [40] 640 51 183.3G
Swin-Small Mask2Former [2] 512 51.3 98G
AFF-Small Mask2Former* [2] 512 51.2 87G
AFF-Small-1/5 Mask2Former* [2] 512 51.9 67.2G

Table 3. Semantic segmentation on ADE20K val. “1/5”: back-
bone uses 1/5 downsampling rate instead of 1/4. * : Segmentation
head modified to accept point cloud input. The Swin backbone‡

is trained using the same architecture configuration and training
settings as our model. Seed fixed at 0.

Backbone
Segmentation

Head
Panoptic
PQ (s.s.)

Instance
AP

Backbone
# Params

AFF-Mini Mask2Former* [2] 62.7 40.0 6.75M
Swin-Tiny Mask2Former [2] 63.9 39.7 28M
AFF-Tiny Mask2Former* [2] 65.7 42.7 27M
Swin-Small Mask2Former [2] 64.8 41.8 50M
AFF-Small Mask2Former* [2] 66.9 44.0 42.6M
Swin-Base† Mask2Former [2] 66.1 42 88M
Swin-Large† Mask2Former [2] 66.6 43.7 197M

Table 4. Segmentation on Cityscapes. We set α = 8. * The seg-
mentation head is modified to accept point cloud input. † Back-
bone pre-trained with ImageNet-22K. Seed fixed at 0.

For instance and panoptic segmentation on Cityscapes
(Table 4), both our Tiny and Small models demonstrate a
solid improvement over the baselines with the Swin back-
bone. For Tiny, our model improves the Panoptic PQ metric
by +1.8%, and the Instance AP by +3.0%. For Small, our
model improves the Panoptic PQ metric by +2.1%, and the
Instance AP by +2.2%. Note that the overall performance
of AFF-Tiny is on par with Swin-Base, a model 3.3x
larger; AFF-Small is on par with Swin-Large, a model
4.6x larger, while both baselines are pre-trained with 10
times more data on ImageNet22k [28].

5.3. Ablations

In Table 5, we ablate design choices using AFF-Mini.
For example, replacing our adaptive downsampling with the
downsampling approach in Swin [16] reduces top-1 Ima-
geNet accuracy by 0.5%. Replacing our expanded position
embedding with a baseline position embedding – passing
only (x, y) differences as input to the position embedding
function – reduces top-1 ImageNet accuracy by 0.9%.

In Table 6, we present how the hyperparameter α influ-
ences the Top-1 accuracy on ImageNet and instance seg-
mentation AP on Cityscapes [3]. α is used to balance the
weight between the grid prior gi and the importance score

Variant
Downsampling

rate
ImageNet1K
Top-1 Acc

Full model 1/5 77.5%
Remove grid prior 1/5 76.6%
Remove expanded relative position 1/5 76.6%
Remove blank token 1/5 76.9%
Remove reserved tokens 1/5 77.2%
Full model 1/4 78.2%
Use PatchMerging from Swin [16] 1/4 77.7%

Table 5. Ablation studies based on AFF-Mini.

si. The larger the α is, the more “adaptive” the remaining
tokens are. For ImageNet classification, a larger α results in
minor degradation in performance, while a reasonably large
α results in better performance for instance segmentation.
This is expected, as our adaptive downsampling module al-
locates more tokens to smaller objects and details around
object boundaries. While this might not be needed by the
usually centered objects in ImageNet, it is particularly ben-
eficial for instance segmentation.

α ImageNet-1K Acc
Cityscapes

Instance AP
2 78.4% 37.5
4 78.2% 38.7
6 - 38.7
8 - 40.0

10 - 37.8
12 - 38.1

Table 6. Ablation studies on α using AFF-Mini and
Mask2Former [2] heads. Larger α means larger weight on the
learned importance score si, compared to grid prior gi. For seg-
mentation tasks with α larger than 4, we use the α = 4 ImageNet
pretrained checkpoint and modify α during fine-tuning.

6. Conclusion
In this paper we propose AutoFocusFormer, a novel im-

age recognition backbone that is to our knowledge the first
local attention transformer with successive adapative down-
sampling stages for segmentation tasks. We proposed to
perform local attention on neighborhoods generated from
balanced clusters obtained with a novel approach based on
space-filling curves, as well as a novel learnable adaptive
downsampling algorithm that automatically locates the im-
portant regions of the image. Besides, we adapted state-of-
the-art segmentation heads to be able to utilize a set of irreg-
ular tokens. Experiments show that our algorithm improves
significantly over baselines for all segmentation tasks, while
offering more flexible downsampling rates during training
and inference time. We believe our backbone could inspire
models for other tasks that would want to focus on impor-
tant image locations and benefit from the non-grid structure.
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