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Abstract

Sign languages are visual languages which convey in-
formation by signers’ handshape, facial expression, body
movement, and so forth. Due to the inherent restric-
tion of combinations of these visual ingredients, there ex-
ist a significant number of visually indistinguishable signs
(VISigns) in sign languages, which limits the recognition
capacity of vision neural networks. To mitigate the problem,
we propose the Natural Language-Assisted Sign Language
Recognition (NLA-SLR) framework, which exploits seman-
tic information contained in glosses (sign labels). First,
for VISigns with similar semantic meanings, we propose
language-aware label smoothing by generating soft labels
for each training sign whose smoothing weights are com-
puted from the normalized semantic similarities among the
glosses to ease training. Second, for VISigns with distinct
semantic meanings, we present an inter-modality mixup
technique which blends vision and gloss features to further
maximize the separability of different signs under the super-
vision of blended labels. Besides, we also introduce a novel
backbone, video-keypoint network, which not only models
both RGB videos and human body keypoints but also de-
rives knowledge from sign videos of different temporal re-
ceptive fields. Empirically, our method achieves state-of-
the-art performance on three widely-adopted benchmarks:
MSASL, WLASL, and NMFs-CSL. Codes are available at
https://github.com/FangyunWei/SLRT.

1. Introduction

Sign languages are the primary languages for communi-
cation among deaf communities. On the one hand, sign lan-
guages have their own linguistic properties as most natural
languages [1,52,64]. On the other hand, sign languages are
visual languages that convey information by the movements
of the hands, body, head, mouth, and eyes, making them
completely separate and distinct from natural languages
[6,69,71]. This work dedicates to sign language recognition
(SLR), which requires models to classify the isolated signs
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Gloss: “Cold”

Gloss: “Winter”

(a) VISigns may have similar semantic meanings.

Gloss: “Afternoon”

Gloss: “Table”

(b) VISigns may have distinct semantic meanings.

Figure 1. Vision neural networks are demonstrated to be less ef-
fective to recognize visually indistinguishable signs (VISigns) [2,
26, 34]. We observe that VISigns may have similar or distinct se-
mantic meanings, inspiring us to leverage this characteristic to fa-
cilitate sign language recognition as illustrated in Figure 2.

from videos into a set of glosses1. Despite its fundamen-
tal capacity of recognizing signs, SLR has a broad range of
applications including sign spotting [36, 42, 58], sign video
retrieval [8, 11], sign language translation [6, 35, 54], and
continuous sign language recognition [1, 6].

Since the lexical items of sign languages are defined
by the handshape, facial expression, and movement, the
combinations of these visual ingredients are restricted in-
herently, yielding plenty of visually indistinguishable signs
termed VISigns. VISigns are those signs with similar hand-
shape and motion but varied semantic meanings. We show
two examples (“Cold” vs. “Winter” and “Table” vs. “Af-
ternoon”) in Figure 1. Unfortunately, it has been demon-
strated that vision neural networks are less effective at

1Gloss is a unique label for a single sign. Each gloss is identified by a
word which is associated with the sign’s semantic meaning.
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Figure 2. We incorporate natural language modeling into sign language recognition to promote recognition capacity. (a) Language-aware
label smoothing generates a soft label for each training video, whose smoothing weights are the normalized semantic similarities of the
ground truth gloss and the remaining glosses within the sign language vocabulary. (b) Inter-modality mixup yields the blended features
(denoted by orange rectangles) with the corresponding mixed labels to maximize the separability of signs in a latent space.

accurately recognizing VISigns [2, 26, 34]. Due to the
intrinsic connections between sign languages and natural
languages, the glosses, i.e., labels of signs, are seman-
tically meaningful in contrast to the one-hot labels used
in traditional classification tasks [27, 51]. Thus, although
it is challenging to classify the VISigns from the vision
perspective, their glosses provide serviceable semantics,
which is, however, less taken into consideration in previ-
ous works [18–20,23,24,26,34,36]. Our work is built upon
the following two findings.

Finding-1: VISigns may have similar semantic meanings
(Figure 1a). Due to the observation that VISigns may have
higher visual similarities, assigning hard labels to them may
hinder the training since it is challenging for vision neu-
ral networks to distinguish each VISign apart. A straight-
forward way to ease the training is to replace the hard la-
bels with soft ones as in well-established label smooth-
ing [15, 56]. However, how to generate proper soft labels
is non-trivial. The vanilla label smoothing [15, 56] assigns
equal smoothing weights to all negative terms, which ig-
nores the semantic information contained in labels. In light
of the finding-1 that VISigns may have similar semantic
meanings and the intrinsic connections between sign lan-
guages and natural languages, we consider the semantic
similarities among the glosses when generating soft labels.
Concretely, for each training video, we adopt an off-the-
shelf word representation framework, i.e., fastText [39], to
pre-compute the semantic similarities of its gloss and the re-
maining glosses within the sign language vocabulary. Then
we can properly generate a soft label for each training sam-
ple whose smoothing weights are the normalized semantic
similarities. In this way, negative terms with similar seman-
tic meanings to the ground truth gloss are assigned higher
values in the soft label. As shown in Figure 2a, we term this
process as language-aware label smoothing, which injects
prior knowledge into the training.

Finding-2: VISigns may have distinct semantic mean-
ings (Figure 1b). Although the VISigns are challenging
to be classified from the vision perspective, the semantic
meanings of their glosses may be distinguishable according
to finding-2. This inspires us to combine the vision fea-

tures and gloss features to drive the model towards max-
imizing signs’ separability in a latent space. Specifically,
given a sign video, we first leverage our proposed backbone
to encode its vision feature and the well-established fast-
Text [39] to extract the feature of each gloss within the sign
language vocabulary. Then we independently integrate the
vision feature and each gloss feature to produce a blended
representation, which is further fed into a classifier to ap-
proximate its mixed label. We refer to this procedure as
inter-modality mixup as shown in Figure 2b. We empir-
ically find that our inter-modality mixup significantly en-
hances the model’s discriminative power.

Our contributions can be summarized as follows:

• We are the first to incorporate natural language mod-
eling into sign language recognition based on the dis-
covery of VISigns. Language-aware label smoothing
and inter-modality mixup are proposed to take full ad-
vantage of the linguistic properties of VISigns and se-
mantic information contained in glosses.

• We take into account the unique characteristic of sign
languages and present a novel backbone named video-
keypoint network (VKNet), which not only models
both RGB videos and human keypoints, but also de-
rives knowledge from sign videos of various temporal
receptive fields.

• Our method, termed natural language-assisted sign
language recognition (NLA-SLR), achieves state-of-
the-art performance on the widely-used SLR datasets
including MSASL [26], WLASL [34], and NMFs-
CSL [20].

2. Related Works

Sign Language Recognition. Sign language recognition
(SLR) is a fundamental task in the field of sign language un-
derstanding. Feature extraction plays a key role in an SLR
model. Most recent SLR works [18–20,23,24,26,34,36,40,
43,69,72] adopt CNN-based architectures, e.g., I3D [4] and
R3D [46], to extract vision features from RGB videos. In
this work, we adopt S3D [59] as the backbone of our VKNet
due to its excellent accuracy-speed trade-off.
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Figure 3. An overview of our NLA-SLR. Given a training video, we temporally crop a 64-frame clip [36] and use HRNet [55] trained on
COCO-WholeBody [25] to estimate its keypoint sequence which is represented by a set of heatmaps, yielding a 64-frame video-keypoint
pair. Then we temporally crop a 32-frame counterpart and feed it along with the 64-frame pair into our proposed VKNet (Figure 4) to
extract the vision feature. The head network (Figure 5) has a two-branch architecture consisting of a language-aware label smoothing
branch and an inter-modality mixup branch. We only retain the VKNet and the classification layer in the head network for inference.

However, RGB-based SLR models may suffer from the
large variation of video backgrounds. As a complement,
some SLR works [7, 18, 19, 23, 24] explore to jointly model
RGB videos and keypoints. For example, SAM-SLR [24]
uses graph convolutional networks (GCNs) to model pre-
extracted keypoints. HMA [19] and SignBERT [18] pro-
pose to decode 3D hand keypoints from RGB videos. A
common deficiency of these works is that they need a ded-
icated network to model keypoints. In this work, we rep-
resent keypoints as a sequence of heatmaps [7, 10] so that
the keypoint encoder of our VKNet can share the identical
architecture with the video encoder.

To enable mini-batch training, previous works [18, 19,
23, 24, 34, 36] crop fixed-length clips from raw videos as
model inputs. However, the model may overfit to the train-
ing videos of fixed temporal receptive fields. In contrast,
our VKNet is trained on videos with varied temporal recep-
tive fields to improve its generalization capability.
Word Representation Learning. Word2vec [38] and
GloVe [45] are two classical word representation learning
frameworks in the field of NLP. Based on word2vec, fast-
Text [39] improves word representations with several mod-
ifications including the use of sub-word information [3]
and position independent features [41]. Although some
advanced language models, e.g., BERT [29], can also be
used to extract word representations, they are computation-
ally intensive and are not dedicated to word representation
learning. In this paper, we adopt the lightweight but effec-
tive fastText, which is also used in a recent sign language
translation work [65], to pre-compute gloss (word) repre-
sentations.
Vision-Language Models. Recently, a majority of vision-
language models [14,22,47,63] learn visual representations
on large-scale image-text pairs. Among them, CLIP [47] is
the pioneer to jointly optimize an image encoder and a text
encoder through a contrastive loss. Besides, the pre-trained

CLIP can be generalized to various downstream tasks, e.g.,
semantic segmentation [33, 60, 61], object detection [9, 49],
image classification [21, 70], and style transfer [32, 44]. In
this work, we exploit the implicit knowledge included in
glosses (sign labels), which is distinct from previous works
on vision-language modeling.
Multi-label Classification. Real-world objects may have
multiple semantic meanings, which motivates research on
multi-label classification [28, 30, 48, 50, 67] requiring mod-
els to map inputs to multiple possible labels. Although the
VISigns may be associated with the multi-label classifica-
tion problem, most widely-adopted SLR datasets [20,26,34]
are singly labeled. In this work, we deal with the VISigns
by incorporating language information included in glosses.

3. Methodology
An overview of our natural language-assisted sign lan-

guage recognition (NLA-SLR) framework is shown in Fig-
ure 3. Our framework mainly consists of three parts: 1) data
pre-processing which generates video-keypoint pairs as net-
work inputs (Section 3.1); 2) a video-keypoint network
(VKNet) which takes video-keypoint pairs of various tem-
poral receptive fields as inputs for vision feature extraction
(Section 3.2); 3) a head network (Section 3.3) containing a
language-aware label smoothing branch (Section 3.3.1) and
an inter-modality mixup branch (Section 3.3.2). We em-
pirically find that Mixup [66] can be applied on both RGB
videos and keypoint heatmap sequences, which will be de-
scribed in Section 3.4.

3.1. Data Pre-Processing

Sign languages are visual languages which adopt hand-
shape, facial expression, and body movement to convey
information. To more effectively model sign languages,
we propose to model human body keypoints besides RGB
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Figure 4. Our VKNet consists of two sub-networks, VKNet-64
and VKNet-32, which take video-keypoint pairs with different
temporal receptive fields as inputs and output a set of vision fea-
tures via global average pooling (GAP) layers. Within the VKNet,
bidirectional lateral connections [10] are applied to the outputs
of the first four S3D blocks (B1-B4) for video-video, keypoint-
keypoint, and video-keypoint information exchange.

videos to enhance the robustness of visual representations.
Concretely, given a temporally cropped video V ∈

RT×HV ×WV ×3 with T = 64 frames [36] and a spatial res-
olution of HV = WV = 224, we use HRNet [55] trained
on COCO-WholeBody [25] to estimate its 63 keypoints (11
for upper body, 10 for mouth, and 42 for two hands) per
frame. The keypoints of the t-th frame are represented as
a heatmap Kt ∈ RHK×WK×K , where HK = WK = 112
denote the height and width of the heatmap, and K = 63
is the keypoint number. The elements within the heatmap
Kt are generated by a Gaussian function: Kt[i, j, k] =
exp(−[(i − xk

t )
2 + (j − ykt )

2]/2σ2), where (i, j) repre-
sents the spatial index, k is the keypoint index, (xk

t , y
k
t ) de-

notes the coordinate of the k-th estimated keypoint in the t-
th frame, and σ = 4 controls the scale of the keypoints. We
repeatedly generate the heatmaps for all frames and stack
them along the temporal dimension into a keypoint heatmap
sequence K ∈ RT×HK×WK×K . Now the 64-frame train-
ing sample is processed as a video-keypoint pair denoted
as (V 64,K64). Finally, we temporally crop a 32-frame
counterpart (V 32,K32) and feed it along with the 64-frame
video-keypoint pair (V 64,K64) into the VKNet to extract
more robust vision features, which will be described in the
next section.

3.2. Video-Keypoint Network

An illustration of the proposed video-keypoint network
(VKNet) is shown in Figure 4. VKNet is composed of two
sub-networks, namely VKNet-32 and VKNet-64, which
take (V 32,K32) and (V 64,K64) as inputs, respectively.
The network architectures of VKNet-32 and VKNet-64 are
identical—both having a two-stream architecture consist-
ing of a video encoder and a keypoint encoder. Since we
denote keypoints as heatmaps, it is feasible to utilize any
existing convolutional neural networks to extract keypoint
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Figure 5. The architecture of our head network. Language-aware
label smoothing generates soft labels whose smoothing weights
are the normalized semantic similarities between the ground truth
and remaining glosses within the sign vocabulary. Inter-modality
mixup generates inter-modality features and the corresponding la-
bels to maximize the signs’ separability in a latent space. Integra-
tion between FC1 and FC2 can further boost SLR performance.

features. In this work, S3D [59] with five blocks (B1–
B5) is served as our video/keypoint encoder due to its ex-
cellent accuracy-speed trade-off. In our implementation,
VKNet-32 (VKNet-64) is composed of two separate S3D
networks with bidirectional lateral connections [10] applied
to the outputs of the first four blocks (B1–B4). Specifically,
VKNet-32 (VKNet-64) takes RGB video V 32 (V 64) and
keypoint heatmap sequence K32 (K64) as inputs to extract
the video feature fV

32 (fV
64) and the keypoint feature fK

32

(fK
64), respectively. We further concatenate fV

32 (fV
64) and

fK
32 (fK

64) to generate f32 (f64) as the output of VKNet-32
(VKNet-64). The final feature f extracted by VKNet is the
concatenation of f32 and f64.

It is worth mentioning that VKNet-32 and VKNet-64
are not two independent networks. We also introduce bidi-
rectional lateral connections [10] to the corresponding en-
coders of the same input modality for video-video and
keypoint-keypoint information exchange.

3.3. Head Network

Figure 5 illustrates our head network, which is composed
of a language-aware label smoothing branch and an inter-
modality mixup branch.

3.3.1 Language-Aware Label Smoothing
The classical label smoothing [15,56] was first proposed as
a regularization technique to alleviate overfitting and make
the model more adaptable. Specifically, given a training
sample belonging to the b-th class, label smoothing replaces
the one-hot label with a soft label y ∈ RN which is defined
as:

y[i] =

{
1− ϵ if i = b,

ϵ/(N − 1) otherwise,
(1)
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where ϵ is a small constant (e.g., 0.2) and N denotes the
class number.

The vanilla label smoothing uniformly distributes ϵ to
N−1 negative terms while the implicit semantics contained
in glosses (sign labels) are ignored. In Section 1, we dis-
cuss the phenomenon that visually indistinguishable signs
(VISigns) may have similar semantic meanings (finding-1).
Motivated by this finding, we present a novel regularization
strategy termed language-aware label smoothing, which as-
signs biased smoothing weights on the basis of semantic
similarities of glosses to ease the training.
Gloss Features. Gloss is identified by a word which is as-
sociated with the sign’s semantic meaning. Thus any word
representation learning framework can be adopted to ex-
tract gloss features for semantic similarity assessment. Con-
cretely, given a sign vocabulary containing N glosses, we
leverage fastText [39] pretrained on Common Crawl to ex-
tract a 300-d feature for each gloss. We use E ∈ RN×300

to denote the N gloss features.
Language-Aware Label Smoothing and Loss Function.
As shown in Figure 5, given a training sample whose label is
the b-th gloss, we first use fastText to extract its gloss feature
e ∈ R300. Then we compute the cosine similarities of the b-
th gloss and all N glosses within the sign vocabulary by s =
∥E∥2∥e∥T2 ∈ RN , where ∥ · ∥2 denotes row-wise L2-norm.
The proposed language-aware label smoothing generates a
soft label y ∈ RN as:

y[i] =

{
1− ϵ if i = b,

ϵ · exp (s[i]/τ)∑N
i=1,i ̸=b exp (s[i]/τ)

otherwise, (2)

where τ denotes a temperature parameter [5]. The classifi-
cation loss LCLS is a simple cross-entropy loss applied on
the prediction and soft label y.

3.3.2 Inter-Modality Mixup
In Section 1, we observe that VISigns may have distinct se-
mantic meanings (finding-2), motivating us to make use of
the semantic meanings of glosses to maximize signs’ sepa-
rability in the latent space. To achieve the goal, as shown
in Figure 5, we introduce the inter-modality mixup, which
generates the inter-modality features by combining the vi-
sion feature and gloss features to predict the corresponding
inter-modality labels.
Inter-Modality Mixup and Loss Function. Given the vi-
sion feature f ∈ RD extracted by our VKNet and the gloss
features E ∈ RN×300 encoded by the fastText, we first use
a fully-connected (FC) layer to map E to Ē of dimension of
N ×D. After that, we integrate the vision feature f and the
mapped gloss features Ē via a broadcast addition operation
into the inter-modality features F = f + Ē ∈ RN×D. The
n-th row of F (denoted as F n), which is the combination
of the vision feature (whose corresponding ground truth is
the b-th gloss) and the n-th gloss feature, is associated with

the inter-modality labels yn ∈ RN :

yn[i] =

{
0.5 if i = b or i = n,

0 otherwise.
(3)

Note that as a special case, we set yn[b] = 1.0 when n =
b. Then we feed F n into a classification layer to generate
its prediction pn ∈ (0, 1)N , and use cross-entropy loss to
approximate yn:

Ln
IMM = −

N∑
i=1

yn[i]log(pn[i]). (4)

Similarly, we could obtain the predictions of N inter-
modality features and their corresponding labels. The over-
all loss of inter-modality mixup is the average of N cross-
entropy losses:

LIMM =
1

N

N∑
n=1

Ln
IMM . (5)

It is worth noting that LIMM is an auxiliary loss and we
drop the inter-modality mixup branch in the inference stage.
Boost Sign Language Recognition via the Integrated
Classification Layer. As shown in Figure 5, we term the
classification layer in the language-aware label smoothing
branch and inter-modality mixup branch as FC1 and FC2,
respectively. Though the inter-modality mixup only at-
tends the training, the well-optimized FC2 contains implicit
knowledge of recognizing signs with the help of language
information. This inspires us to integrate FC2 into FC1 to
boost sign language recognition. Concretely, the parameters
of the FC1 are updated by a weighted sum of its own param-
eters and the FC2’s parameters at each iteration, which can
be formulated as:

θ1, θ2 ← optimizer(θ1, θ2,∇θ1L,∇θ2L, η)
θ1 ← µθ1 + (1− µ)θ2,

(6)

where θ1 and θ2 denote the parameters of FC1 and FC2,
respectively, L is the overall loss of the head network intro-
duced in Section 3.3.3, η is the learning rate, and µ controls
the contribution of θ2.
3.3.3 Overall Loss
The loss L of the head network is the sum of the classifi-
cation loss LCLS and the inter-modality mixup loss LIMM

with a trade-off hyper-parameter γ: L = LCLS + γLIMM .
Note that we apply the head network to each vision feature
in Figure 4 independently, and the overall loss for the whole
model is the sum of the loss of each head network.

3.4. Intra-Modality Mixup

We empirically find that Mixup [66] is helpful for sign
language recognition. In contrast to the traditional Mixup
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Method
MSASL1000 MSASL500 MSASL200 MSASL100

Per-instance Per-class Per-instance Per-class Per-instance Per-class Per-instance Per-class
Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

I3D [4] – – 57.69 81.08 – – 72.50 89.80 – – 81.97 93.79 – – 81.76 95.16
I3D+BLSTM [4, 16] 40.99 – – – – – – – – – – – 72.07 – – –
ST-GCN [62] 36.03 59.92 32.32 57.15 – – – – 52.91 76.67 54.20 77.62 59.84 82.03 60.79 82.96
BSL (multi-crop) [2] 64.71 85.59 61.55 84.43 – – – – – – – – – – – –
TCK† [36] – – – – – – – – 80.31 91.82 81.14 92.24 83.04 93.46 83.91 93.52
HMA [19] 69.39 87.42 66.54 86.56 – – – – 85.21 94.41 86.09 94.42 87.45 96.30 88.14 96.53
BEST [68] 71.21 88.85 68.24 87.98 – – – – 86.83 95.66 87.45 95.72 89.56 96.96 90.08 97.07
SignBERT† [18] 71.24 89.12 67.96 88.40 – – – – 86.98 96.39 87.62 96.43 89.56 97.36 89.96 97.51

NLA-SLR (Ours) 72.56 89.12 69.86 88.48 81.62 93.09 81.36 93.39 88.74 96.17 89.23 96.38 90.49 97.49 91.04 97.92
NLA-SLR (Ours, 3-crop) 73.80 89.65 70.95 89.07 82.90 93.46 83.06 93.54 89.48 96.69 89.86 96.93 91.02 97.89 91.24 98.19

Table 1. Comparison with previous works on MSASL. The results of I3D, I3D+BLSTM, and ST-GCN are reproduced by [26], [1], and [18],
respectively. BSL achieves multi-crop inference by sliding a window with a stride of 8 frames. (†denotes methods using extra data.)

which is applied to images and videos, we adopt the Mixup
regularization on both RGB videos and keypoint heatmap
sequences. For a distinction with our proposed Inter-
Modality Mixup, we term the classical Mixup as Intra-
Modality Mixup in our work.

4. Experiments
4.1. Datasets and Evaluation Metrics

Datasets. We evaluate our method on three public sign lan-
guage recognition datasets: MSASL [26], WLASL [34],
and NMFs-CSL [20]. MSASL is an American sign language
(ASL) dataset with a vocabulary size of 1,000. It consists of
16,054, 5,287, and 4,172 samples in the training, develop-
ment (dev), and test set, respectively. It also released three
subsets consisting of only the top 500/200/100 most fre-
quent glosses. WLASL is the latest ASL dataset with a larger
vocabulary size of 2,000. It consists of 14,289, 3,916, and
2,878 samples in the training, dev, and test set, respectively.
Similar to MSASL, it also released three subsets consisting
of 1,000/300/100 most frequent glosses. NMFs-CSL is a
challenging Chinese sign language (CSL) dataset involving
many fine-grained non-manual features (NMFs). It consists
of 25,608 and 6,402 samples in the training and test set with
a vocabulary size of 1,067. However, since the dataset own-
ers only provide label indexes instead of glosses, we cannot
apply inter-modality mixup on it, and we have to replace
our language-aware label smoothing with the vanilla one.
Evaluation Metrics. Following [18,19,23], we report both
per-instance and per-class accuracy, which denote the av-
erage accuracy over instances and classes, on the test sets.
Note that since NMFs-CSL is a balanced dataset, i.e., each
class contains equal amount of samples, we only report per-
instance accuracy on it.

4.2. Implementation Details

Training Details and Hyper-parameters. The S3D back-
bone within VKNet-64/32 is first pretrained on Kinetics-
400 [27]. Then we separately pretrain the video and key-

point encoder within VKNet-64/32 on SLR datasets. Fi-
nally, our VKNet is initialized with the pretrained VKNet-
64 and VKNet-32. Data augmentations include spatial
cropping with a range of [0.7-1.0] and temporal cropping.
We adopt identical data augmentations for both RGB videos
and heatmap sequences to maintain spatial and tempo-
ral consistency. Unless otherwise specified, we set λ ∼
Beta(0.8, 0.8) for intra-modality mixup [66], and ϵ = 0.2
and τ = 0.5 in Eq. 2. Similar to [13], we gradually in-
crease µ in Eq. 6 such that greater gradients of FC1 come
from LCLS in the late training stage since only FC1 is
used during inference. Specifically, µ = 1 − (1 − µbase) ·
(cos (πm/M)+1)/2, where µbase = 0.99, m is the current
epoch, and M is the maximum number of epochs. For the
same reason, we gradually decrease the weight of LIMM

by γ = (cos (πm/M) + 1)/2. The whole model is trained
with a batch size of 32 for 100 epochs. We use a cosine an-
nealing schedule and an Adam optimizer [31] with a weight
decay of 1e− 3 and an initial learning rate of 1e− 3.
Inference. We report results of single-crop and 3-crop
inference for a comparison with state-of-the-art methods
[2, 23, 24]. All ablation studies are conducted in the setting
of single-crop inference. For 3-crop inference, we tempo-
rally crop videos at the start, middle, end of the raw video,
and the average prediction is served as the final prediction.
More details are in the supplementary materials.

4.3. Comparison with State-of-the-art Methods

MSASL. Table 1 shows a comprehensive comparison be-
tween other methods and ours on all the sub-splits of
MSASL. Our approach outperforms the previous best
method SignBERT [18], which utilizes extra data, by
2.56%/2.50%/1.46% on the 1,000/200/100 sub-splits re-
garding the top-1 accuracy, respectively.
WLASL. Performance of our method on all the sub-splits
of WLASL is shown in Table 2. The previous state-of-the-
art method, SAM-SLR-v2 [23], proposes a heavy multi-
modal ensemble framework, which involves many modal-
ities including RGB videos, keypoints, optical flow, depth
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Method
WLASL2000 WLASL1000 WLASL300 WLASL100

Per-instance Per-class Per-instance Per-class Per-instance Per-class Per-instance Per-class
Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

OpenHands [53] 30.60 – – – – – – – – – – – – – – –
PSLR [57] – – – – – – – – 42.18 71.71 – – 60.15 83.98 – –
I3D [4] 32.48 57.31 – – 47.33 76.44 – – 56.14 79.94 – – 65.89 84.11 – –
ST-GCN [62] 34.40 66.57 32.53 65.45 – – – – 44.46 73.05 45.29 73.16 50.78 79.07 51.62 79.47
Fusion-3 [17] 38.84 67.58 – – 56.68 79.85 – – 68.30 83.19 – – 75.67 86.00 – –
BSL (multi-crop) [2] 46.82 79.36 44.72 78.47 – – – – – – – – – – – –
HMA [19] 51.39 86.34 48.75 85.74 – – – – – – – – – – – –
TCK† [36] – – – – – – – – 68.56 89.52 68.75 89.41 77.52 91.08 77.55 91.42
BEST [68] 54.59 88.08 52.12 87.28 – – – – 75.60 92.81 76.12 93.07 81.01 94.19 81.63 94.67
SignBERT† [18] 54.69 87.49 52.08 86.93 – – – – 74.40 91.32 75.27 91.72 82.56 94.96 83.30 95.00
SAM-SLR* (5-crop) [24] 58.73 91.46 55.93 90.94 – – – – – – – – – – – –
SAM-SLR-v2* (5-crop) [23] 59.39 91.48 56.63 90.89 – – – – – – – – – – – –

NLA-SLR (Ours) 61.05 91.45 58.05 90.70 75.11 94.62 75.07 94.70 86.23 97.60 86.67 97.81 91.47 96.90 92.17 97.17
NLA-SLR (Ours, 3-crop) 61.26 91.77 58.31 90.91 75.64 94.62 75.72 94.65 86.98 97.60 87.33 97.81 92.64 96.90 93.08 97.17

Table 2. Comparison with previous works on WLASL. The results of I3D and ST-GCN are reproduced by [34] and [18], respectively. BSL
achieves multi-crop inference by sliding a window with a stride of 8 frames. (†denotes methods using extra data. *denotes methods using
many more modalities than ours, e.g., optical flow, depth map, and depth flow.)

Method Top-1 Top-5

I3D♢ [4] 64.4 88.0
TSM♢ [37] 64.5 88.7
Slowfast♢ [12] 66.3 86.6
GLE-Net [20] 69.0 88.1
HMA [19] 75.6 95.3
SignBERT† [18] 78.4 97.3
BEST [68] 79.2 97.1

NLA-SLR (Ours) 83.4 98.3
NLA-SLR (Ours, 3-crop) 83.7 98.5

Table 3. Comparison with previous works on NMFs-CSL.
(♢methods reproduced by GLE-Net. †methods using extra data.)

map, and depth flow. However, our method significantly
outperforms SAM-SLR-v2 by 1.87%/1.68% in terms of the
per-instance/class top-1 accuracy while using much fewer
modalities (only RGB videos and keypoints).
NMFs-CSL. Finally, as shown in Table 3, our approach also
outperforms the previous best method BEST [68] by a large
margin (83.7% vs. 79.2% on top-1 accuracy).

4.4. Ablation Studies

We conduct ablation studies on WLASL following [23,
36] due to its large vocabulary size.
VKNet. We first validate the effectiveness of our back-
bone, VKNet. As shown in Table 4, the two-stream mod-
els, VKNet-32/64, can significantly outperform the single-
stream models, Video/Keypoint-32/64, which validates the
effectiveness of modeling both videos and keypoints. Be-
sides, 64-frame models can consistently outperform 32-
frame ones as expected since longer inputs can provide
more information for the model to classify sign videos.
However, our VKNet performs better than a single 64-frame
model, VKNet-64, especially on top-5 accuracy, which im-
plies that the 64-frame and 32-frame inputs can complement

Method Per-instance Per-class
Top-1 Top-5 Top-1 Top-5

Video-32 45.73 81.10 42.69 79.90
Keypoint-32 46.66 79.95 43.81 78.49
VKNet-32 52.95 85.75 50.26 84.50

Video-64 51.15 83.43 48.14 82.20
Keypoint-64 49.10 82.00 46.18 80.71
VKNet-64 56.95 87.00 54.13 86.05

VKNet 57.19 88.29 54.35 87.49
Table 4. Ablation studies on VKNet.

each other and the difference in temporal receptive fields
can provide additional information for model training.
Major Components of NLA-SLR. As shown in Table 5,
we study the effects of the major components of our NLA-
SLR framework: language-aware label smoothing (Lang-
LS) and sign mixup (ensemble of the intra- and inter-
modality mixup). First, Lang-LS can improve the perfor-
mance of the baseline, VKNet, by 1.22%/1.11% on the top-
1 and top-5 accuracy, respectively, which validates the ef-
fectiveness of language-aware soft labels. Besides, more
performance gain comes from sign mixup, which signifi-
cantly improves the top-1 accuracy from 57.19% to 60.32%.
Finally, using both Lang-LS and sign mixup along with the
VKNet can achieve the best performance: 61.05%/91.45%
on the top-1 and top-5 accuracy, respectively. Note that
both of the major components introduce negligible extra
cost: Lang-LS simply replace the one-hot labels with the
language-aware soft labels; sign mixup merely introduces
two extra fully-connected layers (one for mapping gloss fea-
tures and the other one for auxiliary training) for each head
network, and both of them are dropped during inference.
Sign Mixup. Our sign mixup is composed of two parts:
intra-modality mixup, which extends the vanilla mixup [66]
to keypoint heatmaps, and inter-modality mixup, which
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VKNet Lang-LS Sign Mixup Per-instance Per-class
Top-1 Top-5 Top-1 Top-5

✓ 57.19 88.29 54.35 87.49
✓ ✓ 58.41 89.40 55.74 88.67
✓ ✓ 60.32 90.86 57.55 90.06
✓ ✓ ✓ 61.05 91.45 58.05 90.70

Table 5. Ablation studies for the major components of NLA-SLR.
(Lang-LS: language-aware label smoothing.)

Sign Mixup Per-instance Per-class
Intra-Modality Inter-Modality Top-1 Top-5 Top-1 Top-5

58.41 89.40 55.74 88.67
✓ 59.56 90.10 56.77 89.33

✓ 59.66 90.10 56.72 89.20
✓ ✓ 61.05 91.45 58.05 90.70

Table 6. Ablation studies on sign mixup which is composed of
intra-modality and inter-modality mixup.

Auxiliary Inte- Loss Per-instance Per-class
Classifier gration Weight Decay Top-1 Top-5 Top-1 Top-5

59.56 90.10 56.77 89.33
✓ 59.87 90.31 57.07 89.57
✓ ✓ 60.84 91.07 57.99 90.28
✓ ✓ ✓ 61.05 91.45 58.05 90.70

Table 7. Ablation studies for inter-modality mixup.

aims to maximize the signs’ separability with the help of
language information. As shown in Table 6, either intra- or
inter-modality mixup can improve the performance by more
than 1% on the top-1 accuracy. In addition, intra- and inter-
modality mixup are compatible—using both mixup tech-
niques surpasses using either one of them.
Inter-Modality Mixup. As shown in Table 7, we first study
the effects of the auxiliary classifier, FC2 in Figure 5. It
only slightly improves the performance (0.31% on top-1 ac-
curacy). Most performance gain (almost 1% on the top-1
accuracy) comes from the integration of the two classifiers
(FC1 and FC2 as described in Section 3.3.2). The reason is
that it enables the natural language information to propagate
from FC2 to FC1, which is the primary classifier during in-
ference. Finally, the loss weight decay strategy of LIMM

also has a positive effect since it assures that more gradients
for FC1 come from LCLS in the late training stage.
Language-aware Label Smoothing. We conduct a com-
prehensive comparison between the vanilla label smooth-
ing and our language-aware label smoothing (Lang-LS) by
varying the smoothing parameter ϵ from 0.1 to 0.3. As
shown in Table 8, our Lang-LS consistently outperforms the
vanilla one regardless of the value of ϵ. The results suggest
that for SLR models, assigning biased smoothing weights to
the soft labels on the basis of gloss feature similarities (Eq.
2) is a stronger regularization technique than the uniform
distribution in vanilla label smoothing (Eq. 1).
Presence and Quantitative Results of VISigns. To iden-
tify the VISigns that appear in the test set, we first use our

ϵ Type Per-instance Per-class
Top-1 Top-5 Top-1 Top-5

0.1 Vanilla 59.83 90.72 56.90 90.10
Language 60.15 91.35 57.30 90.68

0.2 Vanilla 60.11 91.00 57.09 90.34
Language 61.05 91.45 58.05 90.70

0.3 Vanilla 60.01 90.97 57.01 90.12
Language 60.49 91.31 57.44 90.67

Table 8. Comparison between the vanilla and our language-aware
label smoothing.

Method VS-S VS-D Non-VS Overall

VKNet 50.50 48.13 59.13 57.19
+Lang-LS 64.36 50.93 59.51 58.41
+Lang-LS, Inter-Mixup 65.35 56.07 60.07 59.66

Table 9. Quantitative results over VISigns. We report top-1 ac-
curacy on WLASL2000. (VS-S/D: VISigns with similar/distinct
semantic meanings.)

baseline model, VKNet, to get the highest prediction score
p1 (classified as gloss g1) and the second highest prediction
score p2 (classified as gloss g2) for each sample. Then we
calculate the difference δ = p1 − p2. If δ ≤ 0.1, we re-
gard g1 and g2 as potential VISigns. Next, we calculate the
gloss similarity s of g1 and g2 via FastText. If s ≥ 0.5,
we consider g1 and g2 as VS-S, otherwise, they are consid-
ered as VS-D. Finally, we invite native signers to filter out
wrong cases. As a result, for WLASL with a vocabulary
size of 2000, we get 101 instances covering 64 VS-S, 428
instances covering 270 VS-D, and 2349 instances covering
1666 non-VISigns (non-VS), respectively. As shown in Ta-
ble 9, Lang-LS and Inter-Mixup yield the highest perfor-
mance gains for VS-S (50.50→ 64.36) and VS-D (50.93→
56.07), respectively, demonstrating that the improvements
of our method are derived from handling VISigns.

5. Conclusion
In this work, we propose Natural Language-Assisted

Sign Language Recognition (NLA-SLR) framework, which
leverages semantic information contained in glosses to pro-
mote sign language recognition. Specifically, we first pro-
pose language-aware label smoothing to ease model train-
ing by generating soft labels whose smoothing weights are
the normalized semantic similarities. Second, to maximize
the separability of signs with distinct semantic meanings,
we propose inter-modality mixup which blends vision and
gloss features as well as their labels. Besides, we introduce
a novel backbone, video-keypoint network, which models
both RGB videos and human body keypoints and absorbs
knowledge from sign videos with different temporal recep-
tive fields. Empirically, our approach surpasses previous
best methods on three widely-adopted benchmarks.
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Gül Varol. Sign language video retrieval with free-form tex-
tual queries. In CVPR, pages 14094–14104, 2022. 1

[12] Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and
Kaiming He. Slowfast networks for video recognition. In
ICCV, pages 6202–6211, 2019. 7

[13] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin
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