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Abstract

Motivated by the increasing popularity of transformers
in computer vision, in recent times there has been a rapid
development of novel architectures. While in-domain per-
formance follows a constant, upward trend, properties like
robustness or uncertainty estimation are less explored—
leaving doubts about advances in model reliability. Studies
along these axes exist, but they are mainly limited to classifi-
cation models. In contrast, we carry out a study on semantic
segmentation, a relevant task for many real-world applica-
tions where model reliability is paramount. We analyze a
broad variety of models, spanning from older ResNet-based
architectures to novel transformers and assess their relia-
bility based on four metrics: robustness, calibration, mis-
classification detection and out-of-distribution (OOD) de-
tection. We find that while recent models are significantly
more robust, they are not overall more reliable in terms of
uncertainty estimation. We further explore methods that can
come to the rescue and show that improving calibration can
also help with other uncertainty metrics such as misclassi-
fication or OOD detection. This is the first study on modern
segmentation models focused on both robustness and uncer-
tainty estimation and we hope it will help practitioners and
researchers interested in this fundamental vision task'.

1. Introduction

Humans tend to overestimate their abilities, a cogni-
tive bias known as Dunning-Kruger effect [27]. Unfortu-
nately, so do deep neural networks. Despite impressive per-
formance on a wide range of tasks, deep learning models
tend to be overconfident—that is, they predict with high-
confidence even when they are wrong [19]. This effect is
even more severe under domain shifts, where models tend
to underperform in general [23,40,45].

While these vulnerabilities affect deep models in gen-
eral, they are often studied for classification models and are
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Figure 1. Top: mloU and ECE vs. domain shift. Errors are
normalized with respect to the lowest error on the training dis-
tribution (Cityscapes). We compare recent segmentation mod-
els, both transformer-based (SETR [58], SegFormer [55] and Seg-
menter [48]) and convolution-based (ConvNext [30]) with ResNet
baselines (UPerNet [54] and DLV3+ [6]). All recent models (both
transformers and CNNss) are remarkably more robust than ResNet
baselines (whose lines in mloU overlap), however, ECE increases
sharply for all methods. Bottom: Sample images for each dataset.

comparably less explored for semantic segmentation, a fun-
damental task in computer vision that is key to many criti-
cal applications such as autonomous driving and Al-assisted
medical imaging. In those applications, domain shifts are
more the rule than the exception (e.g., changes in weather
for a self-driving car or differences across patients for a
medical imaging system). Therefore, brittle performance
and overconfidence under domain shifts are two important
and challenging problems to address for a safe deployment
of artificial intelligence systems in the real world.

With that in mind, we argue that a reliable model should
i) be robust to domain shifts and ii) provide good uncer-
tainty estimates. The core goal of this study is providing an
answer to the following, crucial question: are state-of-the-
art semantic segmentation models improving in terms of
robustness and uncertainty estimation?

To shed light on this, we evaluate a large body of seg-
mentation models, assessing their in-domain (ID) vs. out-
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of-domain (OOD) prediction quality (robustness) together
with their calibration, misclassification detection and OOD
detection (uncertainty estimation).

We argue that a study of this kind is crucial to under-
stand whether research on semantic segmentation is moving
in the right direction. Following the rise of transformer ar-
chitectures in computer vision [4, 15,29,50], several studies
have compared recent self-attention and CNN-based classi-
fication models in terms of robustness [2, 3, 30, 32, 36, 43]
and predictive uncertainty [33,44]. Yet, when it comes to
semantic segmentation, prior studies [55, 59] only focused
on robustness, using synthetic corruptions as domain shifts
(e.g., blur, noise) [25]. In contrast, we consider natural, re-
alistic domain shifts and study segmentation models both
in terms of robustness and uncertainty, leveraging datasets
captured in different conditions—see Fig. 1 (bottom).

Task-specific studies are important, since task-specific
architectures and learning algorithms may carry different
behaviors and some observations made for classification
might not hold true when switching to segmentation. For
instance, contrary to Minderer et al. [33], we observe that
improvements in calibration are far behind those in robust-
ness, see Fig. 1 (top). Furthermore, previous analyses only
consider simple calibration approaches [19] while assessing
model reliability; in contrast, we make a step forward and
explore content-dependent calibration strategies [14, 17],
which show promise to improve reliability out of domain.

Our analysis allows us individuating in which directions
we are improving and in which we are lagging behind. This
is the first work to systematically study robustness and un-
certainty under domain shift for a large suite of segmen-
tation models and we believe it can help practitioners and
researchers working on semantic segmentation. We sum-
marize our main observations in the following.

i) Remarkable improvements in robustness, but poor in
calibration. Under domain shifts, recent segmentation
models perform significantly better (in terms of mloU)—
with larger improvements for stronger shifts. Yet, OOD
calibration error increases dramatically for all models.

ii) Content-dependent calibration [14] can improve OOD
calibration, especially under strong domain shifts, where
models are poorly calibrated.

iii) Misclassification detection shows different model rank-
ing in and out of domain. When tested in domain, recent
models underperform the ResNet baseline. As the domain
shift increases, recent models take the lead.

iv) OOD detection is inversely correlated with perfor-
mance. Indeed, a small ResNet-18 backbone performs best.
v) Content-dependent calibration [14] can improve OOD
detection and misclassification out of domain. We observe
a significant increase in misclassification detection under
strong domain shifts after improving calibration. We also
observe improvements for OOD detection, albeit milder.

Sem. Robust Uncertainty Natural OOD calib
segm. performance estimation shifts  methods

Kamann et al. [25] N v

Bhojanapalli et al. [3]

Xie et al. [55] N

Naseer et al. [36]

Bai et al. [2]

Minderer et al. [33]
Paul and Cheng [43]
Mao et al. [32]

NESNEN ENEN

Liu et al. [30]

Zhou et al. [59] v

Pinto et al. [44]

NIIEN/ENI ENIENI ENI RN NI RN NI RN

Ours v

Table 1. Studies of recent architectures. While several prior
works studied robustness and uncertainty of transformer- and
CNN- based classifiers, studies on segmentation limited to robust-
ness. This is the first study assessing robustness and uncertainty of
modern segmentation models. Moreover, we consider natural do-
main shifts and are the only analysis to include content-dependent
methods [ 14, 17] to improve calibration in OOD settings.

2. Related work

We study robustness and uncertainty in semantic seg-
mentation. In doing so, we touch several fields, which we
cover in the following. We further discuss related studies.
Segmentation models. Modern segmentation pipelines
typically consist of encoder-decoder architectures [1, 13,39,

]. Decoders are usually designed ad hoc for segmenta-
tion, with DeepLab [5—7] and UPerNet [54] being two of
the most prominent. On the other hand, the evolution of
encoders has been closely related to that of classification
models, with ResNet [21] being one of the most popular for
years. The rise of transformers in computer vision [15] has
led to a flurry of works leveraging self-attention for seg-
mentation [48, 55, 58]. Novel convolutional architectures
inspired by transformers have also risen [30]. We compare
several recent segmentation models against ResNet base-
lines, in terms of both robustness and uncertainty.
Robustness. The brittleness of neural networks to changes
in the input domain is a well-studied problem and many
sub-formulations exist [49]. Robustness against synthetic
shifts takes into account samples crafted by artificially alter-
ing images, for example injecting noise or blur (corruption
robustness [23,25]), or crafting imperceptible perturbations
to induce model failure (adversarial robustness [18]). Ro-
bustness against natural shifts focuses on changes that may
arise naturally, without human intervention [24,45].

In this work we are interested in comparing the robust-
ness of different off-the-shelf segmentation models under
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natural domain shifts, since these are particularly relevant
in real-world applications. In particular, we focus on
semantic segmentation of urban scenes, hence, we evaluate
models on samples from unseen geographical locations [51]
and weather conditions [47]. Segmentation robustness
against natural shifts has been studied before [52, 56], yet
not in tandem with uncertainty and within a large-scale
study taking into consideration several recent models.

Uncertainty. Guo et al. [19] have shown that deep models
are overconfident. They have proposed a simple, yet effec-
tive solution known as temperature scaling (TS) where the
output logits are divided by a temperature parameter before
the softmax layer. Other calibration methods have been pro-
posed (e.g., [20,28,35]), but TS is still very popular due to
its simplicity and the fact that it does not alter predictions.

Calibration with TS is effective in ID settings; yet, Ova-
dia et al. [40] have shown that model calibration degrades
significantly out of domain. Some methods have been pro-
posed that address this problem [41,42, 53], by assuming
access to unlabeled OOD images beforehand. On the other
hand, Gong et al. [17] have proposed methods that im-
prove OOD calibration without any data from the target do-
main. They propose to cluster the calibration set in different
“domains” and find a different temperature value for each.
At test time, images are calibrated using the temperature
from the closest cluster. Ad hoc for semantic segmentation,
Ding et al. [14] propose a content-dependent calibration
strategy that learns a small calibration network to predict
a temperature for each pixel in an image.

In our study we test ID and OOD performance of sev-
eral calibration methods, focusing on techniques that do not
require access to OOD samples [14, 17, 19]—as generally
robustness is evaluated on unseen domains [23,25,44,49]

Previous analyses. In Tab. 1 we compare related stud-
ies on different aspects of reliability. Several works have
suggested that transformer-based classifiers are more robust
than CNNs [2, 3,32, 36,43]. Yet, the recent ConvNeXt [30]
has challenged this result and later work have suggested that
further investigation is needed [44]. Minderer et al. [33]
have compared calibration of several classifiers, concluding
that convolution-free models are more robust and better cal-
ibrated. In contrast, Pinto et al. [44] have compared recent
transformers and CNNs, arguing there is “no clear winner”.
Some works have compared the robustness of transform-
ers and CNNs for segmentation [55, 59]—but only against
synthetic domain shifts. We broadly study robustness and
uncertainty in segmentation under natural domain shifts.
Similarly to [44], we do not observe a single model fam-
ily which is better calibrated in all scenarios. In contrast
with [33] though, we observe that robustness and calibra-
tion do not go hand in hand. This shows that not all trends
observed in classification transfer to segmentation, confirm-
ing the importance of task-specific studies like ours.

3. Experimental settings and preliminaries
3.1. Datasets

As discussed in Section 2, we use different datasets for
semantic segmentation of urban scenes to model natural do-
main shifts—inspired by prior art [ 10,52, 56].

Cityscapes (CS) [12] contains images taken across 50 Eu-
ropean cities at day time with overall good weather. Train-
ing and validation sets use sequences from disjoint sets of
cities. Following this protocol, we further split validation
cities into a calibration and a test set. Since CS is a main-
stream benchmark in semantic segmentation, we use it as
our training set (ID) to leverage available trained weights.
IDD [51] was captured in the cities of Hyderabad, Banga-
lore and their outskirts. Given the different geographical
location, it poses a clear domain shift for CS models.
ACDC [47] contains images captured in adverse conditions
(Fog, Rain, Snow and Night), which translate into strong
domain shifts. Similarly to previous work [44, 55, 59],
we focus on covariate shifts, i.e., changes in the input
distribution—keeping the label set fixed. In practice, for
0OD settings (IDD and ACDC) we consider the 19 classes
from CS, ignoring the others. The only exception is one
experiment in Appendix L, where we consider label shifts.

3.2. Architectures

We implement our models with MMsegmentation [11].
Following prior work [33,44], we use the original training
recipes for each model to compare them at their best. For
completeness, we also explore the effects of pre-training
dataset and number of training iterations in Appendix I.
SETR [58]. The first convolution-free segmentation
model. It uses a ViT backbone [15] and different decoders
(SETR-Naive, SETR-MLA and SETR-PUP). We use the
ViT-Large backbone and analyze all three decoders.
Segmenter [48]. Similarly to SETR, it also uses a ViT
backbone; yet, unlike the simpler SETR decoders, it carries
a transformer-based one. We also test ViT-Large.
SegFormer [55]. This model incorporates an original self-
attention mechanism and several architectural changes to
be more efficient. We evaluate all models from this family
(BO-B5), gradually increasing the number of parameters.
ConvNeXt [30]. Convolutional model with changes in-
spired by transformers. We use ConvNeXt-Large, compa-
rable in size to ViT-Large, with an UPerNet decoder [54].
ResNet-based [22]. We use ResNet-V1c model, the de-
fault ResNet in MMsegmentation library [11]. Compared
to vanilla ResNet [21] it uses a stem with three 3x3 convs
(instead of a 7x7 conv). We use ResNet-18/50/101 models
and two popular decoders: [6] and UPerNet [54]

Additionally, in Appendix J we explore Mask2Former,
an architecture for universal image segmentation [8] that
does not follow the conventional logits + softmax paradigm.
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3.3. Reliability metrics

We evaluate model reliability on four aspects: robustness,
calibration, misclassification detection and OOD detection.
Robustness. We measure robustness by evaluating the
standardized mean Intersection-over-Union (mloU) perfor-
mance in OOD settings, i.e., on ACDC and IDD. We also
provide ID performance, evaluating models on CS.
Calibration. A model is said to be calibrated when the pre-
dictive probabilities (i.e., the logits after a softmax) corre-
spond to the true probabilities. For instance, if we group all
samples where the predicted probability is 90%, we would
expect that 90% of those predictions are correct. The most
common calibration metric is the Expected Calibration Er-
ror (ECE) [35], which looks at the expected difference be-
tween the predicted and actual probabilities. To estimate the
ECE we quantize the predicted probabilities and compare
the accuracy with the mean probability in each bin. Since
the binning strategy can affect the results, we test ECE with
equally spaced bins [35], equally populated bins [37, 38]
and the Kolmogorov-Smirnov test [20], which gets rid of
the binning strategy altogether. We report results with stan-
dard ECE, but find that all three aforementioned metrics
yield similar conclusions (see Appendix A).

Given that in segmentation we have per-pixel predic-
tions, the number of calibration samples explodes (a single
CS image contains 2048 x 1024 ~ 2M pixels). We ablate
the different calibration metrics as we sub-sample the num-
ber of pixels per image and observe that 20k pixels per im-
age in enough to estimate the ECE (see Appendix B).
Misclassification detection. A desiderata for a reliable
model is to assign a larger confidence to correct outputs
than incorrect ones®. In the ideal case, if we sorted all
predictions from least to most confident, we would have
all the incorrect predictions first and correct ones later.
Misclassification detection measures how far away are
we from such an ideal case. This can be measured with
Rejection-Accuracy curves [16, 24]:  we reject samples
with low confidence and compute the accuracy vs. amount
of rejected samples. However, these are biased in favor
of better-performing models, since the base accuracy is
higher in the first place. To avoid that, we follow Malinin et
al. [31] and normalize the area under the curve by that of an
oracle and subtracts a baseline score with randomly sorted
samples. The resulting metric, known as the Prediction
Rejection Ratio (PRR), will be positive if the confidence is
better than the random baseline and will have a maximum
score of 100% when the model matches the oracle.
Out-of-domain detection. Another important aspect in re-
liability is that models are aware of their “domain of exper-
tise” (i.e., their training domain). When a sample differs

2We use max softmax as confidence in the paper; in Appendix C we
present similar results with negative entropy.
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Figure 2. Expected mIoU error () vs. calibration error () be-
fore and after TS for different model families (top and bottom,
respectively). All models trained and calibrated on CS. Marker-
size proportional to number of parameters. Notice how TS yields
marginal relative gains in OOD settings (IDD and ACDC).

significantly from the training samples, we would expect
the model to be more uncertain of its prediction. Similarly
to misclassification detection, in OOD detection we try to
separate ID from OOD images based on the network confi-
dence. This has broad applicability, e.g., generating alerts
for samples too far from the training domain or, connecting
to active learning, gathering them for further review and an-
notation. As in the rest of our work, we consider a whole
image to be out of domain if it presents a significant domain
shift; that is, we consider CS in domain and IDD/ACDC out
of domain. Since we define ID and OOD samples at the im-
age level, we consider the average confidence of all pixels in
a given image. We use the Area Under the Receiver Oper-
ating Characteristic curve (AUROC) [34], which goes from
0 to 1 (1 being the best score). Additionally, in Appendix L
we consider OOD detection at a region level, considering
classes in the IDD dataset not present in CS, i.e., rickshaw,
billboard, guard rail, tunnel and bridge.

4. Are modern segmentors more reliable?

In the following, we present the main findings of our
study on the reliability of semantic segmentation models.

4.1. Robustness

Since the domain shifts we consider are natural and not
synthetically induced, there is no straightforward way to
evaluate their strength. To this end, we establish an or-
dering for the severity of the shift based on performance
degradation of the ResNet baselines (DLV3+R101 and UP-
NetR101), which results in CS < IDD < ACDC. This aligns
with a qualitative evaluation of the different datasets (see
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Fig. 1, bottom, for a few samples). In Fig. 1 (top left) we
present the mloU error (i.e., 100 — mloU) for several mod-
els evaluated on the three datasets. To highlight the loss in
performance as we increase the shift, we normalize all er-
rors w.r.t. the best performing CS model (ConvNeXt). The
trend is clear: the larger the domain shift, the larger the im-
provement brought by more recent segmentation models.

We expand on this in Fig. 2 (top), where we plot the
mloU error (on the x-axis) vs. the calibration error for all the
models belonging to the different families (Sec. 3.2). The
size of the markers is proportional to the number of param-
eters. Similarly to Fig. 1, we observe that the gap in mloU
between ResNet baselines and recent models grows larger
as we increase the domain shift (¢f. marker position on the
x-axis). Interestingly, two of the models that perform best
under ACDC'’s strong shift (SETR and Segmenter) are not
significantly better than the ResNet baseline on the training
domain (CS). This indicates that, in our setting, only assess-
ing ID performance can hide the real value of newly crafted
models and, hence, it is important to evaluate architectures
out of domain in order to fully grasp their potential.

While there is no single model family that performs sig-
nificantly better in all datasets, we can reach the clear con-
clusion that all recent models are significantly more robust
than well established baselines under natural shifts.

4.2. Calibration error

Off-the-shelf calibration. In Fig. | (top-right) we present
the ECE for different models as we increase the domain
shift. Similarly to the mloU error, ECE is normalized by
the best CS model (in terms of calibration). Interestingly,
despite the remarkable improvements in terms of robust-
ness, recent models are not significantly better calibrated.
When moving from CS to ACDC, the relative mloU error
increases by a factor ~2x for recent models vs. ~3x for
ResNet baselines; yet, in terms of relative calibration error,
all models increase by a ~40x factor. This clearly highlights
the need for further advances in model calibration.

In Fig. 2 (top) we show the ECE vs. mloU error for all
models and datasets. When it comes to calibration vs. ro-
bustness trade-off, there is no clear winner among the model
families we consider. Moreover, we do not observe a clear
trend between mloU and ECE in any domain.

Calibration with TS. In Fig. 2 (bottom) we present the
same results after applying TS [19], tuned on CS. Compar-
ing top and bottom, we observe an overall improvement in
calibration for all networks. In particular, SegFormer mod-
els (#), which had the largest ECE on CS and IDD, seem
to benefit the most from TS. Nevertheless, even after this
improvment, OOD calibration error (IDD, ACDC) remains
significantly larger than the ID one (CS) for all models. Re-
garding ECE vs. mloU out of domain, a mild trend emerges
after TS: For transformer models, better-calibrated models
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Figure 3. ECE () after clustering TS for a selection of models
(best mIoU on CS per family). If the calibration samples are rep-
resentative of the test domains Clust All can indeed improve ECE,
however, without access to OOD samples (Clust CS and Clust CS
aug.) benefits of clustering are limited. Oracle baselines (O) al-
ways use calibration images from the test domain.

are also the most robust (before TS, SegFormer (#) did not
follow this trend). On the other hand, for ResNet base-
lines (x,®) the better-calibrated models are generally the
most brittle. Regarding ConvNeXt (m), although it is one
of the best performing models, it seems to be worse cali-
brated than other models with similar mloU. Overall, recent
models are not significantly better calibrated than ResNet
baselines neither before nor after TS.

4.3. Can we improve out-of-domain calibration?

Calibration error on samples from the training domain
in not alarming, especially after TS. Nonetheless, the sharp
increase in ECE out of domain is concerning for many ap-
plications, especially since recent segmentation models do
not show a clear improvement in this direction. This renders
methods that seek to improve calibration out of domain all
the more important, but yet this is a rather underexplored re-
search area. As discussed in Sec. 2, to the best of our knowl-
edge, only Gong et al. [17] tackle OOD calibration without
additional information about the test domain. They suggest
clustering the calibration set into multiple “domains” based
on the image features extracted by the network. A different
temperature per cluster is then selected and test-time pre-
dictions are scaled according to the cluster assigned to the
images. This adaptive TS method was originally devised
for classification, but we extend it to the segmentation task
by scaling all the logits of a given image with the same tem-
perature. Regarding the number of clusters, we find 16 to
be a reasonable number (see Appendix D for this analysis).
Clustering on different calibration sets. In Fig. 3 we
present the results of calibrating with clusters computed on
different calibration sets. Since our training dataset is CS,
we assume that only CS images are available for calibration.
As a naive alternative to obtain more diverse clusters, we in-
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images extracted from the test domain). Even when evaluating on
the calibration set, where there can be no overfitting of the temper-
atures, ECE does not decrease monotonically as we increase the
number of clusters (one cluster is equivalent to vanilla TS).

troduce a CS aug. dataset where some of the CS calibration
images are randomly augmented with different transforma-
tions (e.g., color scaling, changes in brightness, contrast,
etc). The rationale is that more diverse clusters might gen-
eralize better to new domains.

To assess how beneficial OOD samples can be during
calibration, we also add another calibration set which con-
tains images from all the datasets (CS, IDD and ACDC)
mixed together, we will refer to it as All. This serves as
a sort of upper bound, since our main goal is still assess-
ing robustness in unseen domains. Furthermore, we intro-
duce two more oracle baselines (O), which use calibration
images from the test domain. For instance, when evaluat-
ing on IDD, the oracle calibration set will consist of only
IDD while All will contain images of IDD, ACDC and CS
mixed. One oracle baseline uses clustering, while the other
uses vanilla TS (Clust O and TS O, respectively).

As expected, calibrating on all datasets (Clust All) sig-
nificantly improves ECE, with comparable performance to
oracles in most settings. In contrast, without access to OOD
samples (Clust CS), calibrating with the method by Gong et
al. yields rather limited improvements. Moreover, increas-
ing cluster diversity via data augmentation (Clust CS aug.)
is not always beneficial.

To gain more intuition, we visualize the cluster as-
signments (see Appendix E). When using all datasets for
calibration, test-time images are qualitatively close to the
assigned clusters; yet, with Clust CS or Clust CS aug.,
OOD images do not blend well with the calibration images
of their corresponding clusters. We argue that one implicit
assumption for clustering to work well is that test-time
images are close to one of the clusters (domains) in the
calibration set; therefore, under strong domain shifts, it is
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Figure 5. ECE (]) after local TS (LTS) for a selection of models
(best mIoU on CS per family). Even without access to OOD sam-
ples (LTS CS), LTS calibration improves ECE out of domain, es-
pecially under strong domain shifts (ACDC). With access to OOD
samples (LTS All), ECE out of domains improves further, albeit it
degrades in domain.

unlikely to bring much improvement.

On the bright side, if representative images from the
deployment domains are available, clustering could be
applied to allow a single model to be calibrated on mul-
tiple domains. Of course, with OOD annotated samples,
additional fine-tuning or adaptation techniques could be
applied, but this is out of the scope of this study, since our
focus is off-the-shelf model robustness, without adaptation.
Clustering does not improve ECE in domain. Comparing
oracles in Fig. 3, we can observe that clustering does not
improve significanly over TS. In some settings, it is even
worse. One possible explanation would be that this is due
to an overfitting of the temperature parameters to the par-
ticular calibration clusters. However, in Fig. 4 we observe
that even when evaluating the ECE in the calibration set, the
error does not monotonically decrease with the number of
clusters. Although somewhat surprising, this is in fact pos-
sible since decreasing the ECE for several disjoint subsets
of images (clusters) independently does not guarantee that
the ECE on the union set will decrease. We provide a for-
mal theorem in Appendix F, in support of this claim. Note
that we are not asserting that clustering will not improve
ECE in general (we empirically observed it can, if provided
with a representative calibration set) but rather that it is not
guaranteed to do so.

To sum up, clustering the calibration set does not bring
significant improvements unless representative images of
the test domain are present in the calibration set. Moreover,
it is not better than TS for ID calibration.

4.3.1 Adaptive temperature via calibration network

The partial failure of the clustering approach motivates us to
investigate other methods that adjust the temperature adap-
tively w.r.t. the input, since we can expect this to help im-
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Figure 6. Comparison of calibration methods. ECE (|) after cal-
ibration for a selection of models (best mloU on CS per family).
All models are calibrated on CS calibration set. LTS is markedly
the best calibration method out of domain with remarkable im-
provements under strong domain shifts.

proving OOD calibration. In this regard, Ding et al. [14]
suggest training a small calibration network that predicts
the temperature values as a function of both the input image
and the segmentation model logits. This Local Tempera-
ture Scaling (LTS) method is specific to segmentation so
the output is not a single temperature per image but a “tem-
perature map” with pixel-level temperature values. Despite
not being designed for OOD conditions, our intuition is that
a network providing sample-dependent temperatures can be
beneficial under domain shifts.
LTS using different calibration sets.  As in Sec. 4.3,
we test LTS on multiple calibration sets (CS, CS aug., All),
which in this case are used to learn the calibration network.
Also here, we compare against oracles, for which the cal-
ibration network is learned using images from the test do-
mains. Results are shown in Fig. 5. Interestingly, we find
that LTS using only CS images for calibration (LTS CS)
leads to a noticeable improvement in OOD ECE. In par-
ticular, when testing on ACDC—where the domain shift is
stronger—LTS CS outperforms even TS with access to im-
ages on the test domain (7S O) for some models. Also in
these experiments, introducing naive data augmentations on
CS (LTS CS aug.) does not yield substantial improvements.

When using all the datasets for calibration (LTS All),
OOD results improve even further; yet, there is a noticeable
increase in calibration error on CS. Unlike clustering, where
the temperature was optimized independently for each clus-
ter, LTS trains the calibration network using all the samples
at once and samples with large calibration error (like ACDC
or IDD) may dominate the loss. We hypothesize that further
improvements in the architecture and training schedule of
the calibration network can lead to even better performance
and are promising directions for future work.

Focusing on the oracle baselines, LTS outperforms TS on
IDD and ACDC, but TS outperforms LTS on CS (¢f. LTS
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Figure 7. Misclassification and OOD detection vs. Robustness
for different segmentation models and datasets. (Top) PRR (T)
vs. mloU (T): ResNet-based models (®,x) outperform more re-
cent models (other markers) in ID misclassification detection (CS,
left), but the trend is opposite under strong domain shifts (ACDC,
right). (Bottom) AUROC (7) vs. mIoU (7): There is no free-lunch
between robustness and OOD detection in any considered domain.

O and TS O). This may be due to the fact that CS is a very
homogeneous dataset if compared to the other two, hence, it
can be reasonable that a simpler method may perform best.
Comparing all calibration methods. In Fig. 6 we com-
pare TS CS, Clust CS and LTS CS (all calibrated on CS).
LTS is markedly the best calibration method out of domain,
especially under stronger domain shifts. In domain, TS
works best, but it does not bring significant improvements
out of domain. Since LTS predicts the temperature parame-
ter at the pixel level, this motivates an ablation of clustering
where we predict different temperatures per image; yet this
does not improve results (see details in Appendix G). Addi-
tionally, we perform an ablation of LTS using only the im-
age or the logits for calibration. Image information seems
to be more important for OOD calibration, while the logits
are more important in the ID setup (see Appendix H).

4.4. Misclassification detection

In Fig. 7 (top) we compare all models in terms of mis-
classification detection vs. robustness —PRR score (T) vs.
mloU (7). In domain, we observe a clear trend: within
the same model family, better performing models tend to
also show better PRR. However, when considering all mod-
els, higher mIoU does not generally imply higher PRR and
ResNet-based backbones perform significantly better than
more recent architectures. As we increase the domain shift,
the trend changes: for ACDC, recent models perform best
both in terms of mloU and PRR. Moreover, out of domain,
ResNet families show a negative correlation where better
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Figure 8. Misclassification and OOD detection after calibration
for several models after applying different calibration techniques
using CS samples. Misclassification — PRR (7) (first 3 rows):
Under strong domain shifts (ACDC), LTS calibration significantly
improves PRR. OOD detection — AUROC (1) (last row): Both
clustering and LTS yield improvements in OOD detection.

mloU leads to worse PRR. Overall, recent models seem
to improve misclassification detection under strong domain
shifts, but underperform baselines in domain.

4.5. Out-of-domain detection

In Fig. 7 (bottom) we compare OOD detection vs. ro-
bustness (AUROC score vs. mloU) for all models. To mea-
sure OOD detection we separate the ID images (CS) from
the OOD ones (IDD and ACDC). Therefore, the y-axis is
the same in all three plots and only the mIoU changes. For
OOD detection, there is a marked negative trend between
CS mloU and AUROC. When looking at IDD and ACDC,
the negative trend continues but there seems to be a dis-
tinction between ResNet baselines and other recent models:
the latter perform better in terms of mloU, but at the same
time show a drop in AUROC. In short, there is no free-lunch
between robustness and OOD detection. In terms of OOD
detection, a small ResNet-18 (®) performs best.

4.6. Can calibration improve misclassification and
out-of-domain detection?

In Fig. 8 we show misclassification (top) and OOD (bot-
tom) detection metrics for different models after calibration
using only CS samples. For misclassification, we observe a
sharp PRR improvement on ACDC after we calibrate mod-
els with LTS. This is encouraging as it indicates that the
calibration network learned in LTS can help discern correct
from incorrect predictions given its output temperature. We
do not observe significant improvements in other datasets or

with other methods. This is reasonable, since the largest cal-
ibration gain was observed with LTS on ACDC. (see Fig. 6).

Regarding OOD detection (Fig. 8 bottom) we observe
that both clustering and LTS calibration can improve OOD
detection. We find this interesting, since clustering on
CS did not improve OOD calibration significantly. Al-
though the clusters using only CS images are not represen-
tative enough to produce adequate temperatures for IDD or
ACDC, OOD samples are assigned to clusters which have
larger temperatures. This is enough to decrease the confi-
dence for OOD samples compared to ID and leads to better
OOD detection. Similarly for LTS, the calibration network
assigns larger temperatures to OOD images.

In conclusion, adaptive TS techniques are a promising
avenue to improve OOD detection and misclassification de-
tection under strong domain shifts.

5. Conclusion

We have studied the reliability of recent segmentation
models—in terms of robustness and uncertainty estima-
tion under natural domain shifts. Overall, while no sin-
gle model family is better in all scenarios, recent models
are remarkably more robust to domain shifts than ResNet
baselines. Yet, this does not translate into better calibra-
tion—severely degraded out of domain. Thus, it is crucial to
find methods to improve model calibration in OOD settings.
To this end, we have explored state-of-the-art methods and
found that Local Temperature Scaling [14], although origi-
nally devised for ID settings, is a promising technique.

Furthermore, we have explored misclassification and
00D detection—two other important tasks regarding un-
certainty estimation. We have shown that recent and more
robust models tend to perform better at misclassification un-
der strong domain shifts, but yet they underperform ResNet
baselines ID. On the other hand, OOD detection under do-
main shifts is negatively correlated with the mIoU, which
translates into a trade-off between robustness and uncer-
tainty. Finally, we find that adaptive temperature scaling
techniques can help beyond calibration and improve OOD
detection and misclassification in some settings.

All in all, although we appear to be on the right track for
what concerns robustness, our findings motivate the need
to improve reliability of segmentation models in other di-
mensions, where results are not equally postive. In that
regard, we identify several promising directions which we
hope may encourage future research on this important topic.

Acknowledgements We thank Francesco Pinto and
Gabriela Csurka for helpful discussions. Prof. Philip Torr
is supported by the UKRI grant: Turing AI Fellowship
EP/W002981/1 and EPSRC/MURI grant: EP/N019474/1.
We would also like to thank the Royal Academy of Engi-
neering and FiveAl

7180



References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla.
Segnet: a Deep Convolutional Encoder-Decoder Architec-
ture for Image Segmentation. IEEE Transactions on Pattern
Analysis and Machine Intelligence (PAMI), 39(12):2481-
2495, 2017. 2

Yutong Bai, Jieru Mei, Alan L Yuille, and Cihang Xie. Are
transformers more robust than CNNs? In NeurIPS, 2021. 2,
3

Srinadh Bhojanapalli, Ayan Chakrabarti, Daniel Glasner,
Daliang Li, Thomas Unterthiner, and Andreas Veit. Under-
standing robustness of transformers for image classification.
InICCV,2021. 2,3

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-
end object detection with transformers. In ECCV, 2020. 2,
22

Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos,
Kevin Murphy, and Alan L. Yuille. Deeplab: Semantic
Image Segmentation with Deep Convolutional Nets, Atrous
Convolution, and Fully Connected CRFs. [EEE Transac-
tions on Pattern Analysis and Machine Intelligence (PAMI),
40(4):834-848, 2017. 2

Liang-Chieh Chen, George Papandreou, Florian Schroft, and
Hartwig Adam. Rethinking Atrous Convolution for Seman-
tic Image Segmentation. arXiv:1706.05587,2017. 1,2, 3
Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian
Schroft, and Hartwig Adam. Encoder-Decoder with Atrous
Separable Convolution for Semantic Image Segmentation. In
ECCV,2018. 2

Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexan-
der Kirillov, and Rohit Girdhar. Masked-attention Mask
Transformer for Universal Image Segmentation. In CVPR,
2022. 3,22

Bowen Cheng, Alex Schwing, and Alexander Kirillov. Per-
pixel classification is not all you need for semantic segmen-
tation. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wort-
man Vaughan, editors, Advances in Neural Information Pro-
cessing Systems, 2021. 22

Sungha Choi, Sanghun Jung, Huiwon Yun, Joanne Kim, Se-
ungryong Kim, and Jaegul Choo. RobustNet: Improving
Domain Generalization in Urban-Scene Segmentation via In-
stance Selective Whitening. In CVPR, 2021. 3
MMSegmentation Contributors. MMSegmentation: Open-
mmlab semantic segmentation toolbox and benchmark.
https://github.com/open-mmlab/mmsegmentation,
2020. 3

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The Cityscapes
Dataset for Semantic Urban Scene Understanding. In CVPR,
2016. 3

Gabriela Csurka, Riccardo Volpi, Boris Chidlovskii, et al.
Semantic image segmentation: Two decades of research.
Foundations and Trends® in Computer Graphics and Vision,
14(1-2):1-162, 2022. 2

(14]

[15]

(16]

(17]

(18]

(19]

[20]

[21]

(22]

(23]

(24]

[25]

(26]

(27]

(28]

(29]

7181

Zhipeng Ding, Xu Han, Peirong Liu, and Marc Nietham-
mer. Local temperature scaling for probability calibration.
InICCV,2021. 2,3,7,8, 19, 20, 28

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An Image is
Worth 16x16 Words: Transformers for Image Recognition at
Scale. In ICLR, 2021. 2,3

Giorgio Fumera and Fabio Roli. Support vector machines
with embedded reject option. In International Workshop on
Support Vector Machines, 2002. 4

Yunye Gong, Xiao Lin, Yi Yao, Thomas G Dietterich, Ajay
Divakaran, and Melinda Gervasio. Confidence calibration
for domain generalization under covariate shift. In ICCV,
2021. 2,3,5,13, 14, 15, 16, 19, 26

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy.
Explaining and Harnessing Adversarial Examples. In /CLR,
2015. 2

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger.
On calibration of modern neural networks. In /CML, 2017.
1,2,3,5

Kartik Gupta, Amir Rahimi, Thalaiyasingam Ajanthan,
Thomas Mensink, Cristian Sminchisescu, and Richard
Hartley.  Calibration of neural networks using splines.
arXiv:2006.12800, 2020. 3, 4

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016. 2,3

Tong He, Zhi Zhang, Hang Zhang, Zhongyue Zhang, Jun-
yuan Xie, and Mu Li. Bag of tricks for image classification
with convolutional neural networks. In CVPR, 2019. 3

Dan Hendrycks and Thomas Dietterich. Benchmarking Neu-
ral Network Robustness to Common Corruptions and Pertur-
bations. In /CLR, 2019. 1,2, 3

Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Stein-
hardt, and Dawn Song. Natural adversarial examples. In
CVPR,2021. 2,4

Christoph Kamann and Carsten Rother. Benchmarking the
Robustness of Semantic Segmentation Models. In CVPR,
2020. 2,3

Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan
Puigcerver, Jessica Yung, Sylvain Gelly, and Neil Houlsby.
Big transfer (bit): General visual representation learning. In
Computer Vision—-ECCV 2020: 16th European Conference,
Glasgow, UK, August 23-28, 2020, Proceedings, Part V 16,
pages 491-507. Springer, 2020. 22

Justin Kruger and David Dunning. Unskilled and unaware of
it: how difficulties in recognizing one’s own incompetence
lead to inflated self-assessments. Journal of personality and
social psychology, 77(6):1121, 1999. 1

Meelis Kull, Miquel Perello Nieto, Markus Kéngsepp,
Telmo Silva Filho, Hao Song, and Peter Flach. Beyond tem-
perature scaling: Obtaining well-calibrated multi-class prob-
abilities with dirichlet calibration. In NeurIPS, 2019. 3

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin Transformer:



(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

[39]

[40]

(41]

[42]

[43]

[44]

[45]

[46]

(47]

Hierarchical Vision Transformer using Shifted Windows. In
ICCV,2021. 2,22

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feicht-
enhofer, Trevor Darrell, and Saining Xie. A ConvNet for the
2020s. In CVPR, 2022. 1,2,3,22

Andrey Malinin, Bruno Mlodozeniec, and Mark Gales. En-
semble distribution distillation. arXiv:1905.00076, 2019. 4
Xiaofeng Mao, Gege Qi, Yuefeng Chen, Xiaodan Li, Ranjie
Duan, Shaokai Ye, Yuan He, and Hui Xue. Towards robust
vision transformer. In CVPR, 2022. 2, 3

Matthias Minderer, Josip Djolonga, Rob Romijnders,
Frances Hubis, Xiaohua Zhai, Neil Houlsby, Dustin Tran,
and Mario Lucic. Revisiting the calibration of modern neu-
ral networks. NeurIPS, 2021. 2, 3,22

Kevin P Murphy. Machine learning: a probabilistic perspec-
tive. MIT press, 2012. 4

Mahdi Pakdaman Naeini, Gregory Cooper, and Milos
Hauskrecht. Obtaining well calibrated probabilities using
bayesian binning. In AAAZ 2015. 3,4

Muhammad Muzammal Naseer, Kanchana Ranasinghe,
Salman H Khan, Munawar Hayat, Fahad Shahbaz Khan, and
Ming-Hsuan Yang. Intriguing properties of vision transform-
ers. NeurlPS, 2021. 2, 3

Khanh Nguyen and Brendan O’Connor. Posterior calibra-
tion and exploratory analysis for natural language processing
models. arXiv:1508.05154, 2015. 4

Jeremy Nixon, Michael W Dusenberry, Linchuan Zhang,
Ghassen Jerfel, and Dustin Tran. Measuring calibration in
deep learning. In CVPR Workshops, 2019. 4

Hyeonwoo Noh, Seunghoon Hong, and Bohyung Han.
Learning Deconvolution Network for Semantic Segmenta-
tion. In ICCV, 2015. 2

Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, David
Sculley, Sebastian Nowozin, Joshua Dillon, Balaji Lakshmi-
narayanan, and Jasper Snoek. Can you trust your model’s
uncertainty? evaluating predictive uncertainty under dataset
shift. NeurIPS, 2019. 1, 3

Anusri Pampari and Stefano Ermon. Unsupervised calibra-
tion under covariate shift. arXiv:2006.16405, 2020. 3
Sangdon Park, Osbert Bastani, James Weimer, and Insup
Lee. Calibrated prediction with covariate shift via unsuper-
vised domain adaptation. In AISTATS, 2020. 3

Sayak Paul and Pin-Yu Chen. Vision transformers are robust
learners. In AAAI 2022. 2,3

Francesco Pinto, Philip HS Torr, and Puneet K Dokania. An
impartial take to the cnn vs transformer robustness contest.
In ECCV, 2022. 2, 3,22

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and
Vaishaal Shankar. Do imagenet classifiers generalize to im-
agenet? In ICML, 2019. 1,2

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
Net: Convolutional Networks for Biomedical Image Seg-
mentation. In MICCAI, 2015. 2

Christos Sakaridis, Dengxin Dai, and Luc Van Gool. ACDC:
The Adverse Conditions Dataset with Correspondences for
Semantic Driving Scene Understanding. In /CCV, 2021. 3

(48]

[49]

(50]

(51]

(52]

(53]

[54]

[55]

(561

[57]

(58]

[59]

7182

Robin Strudel, Ricardo Garcia, Ivan Laptev, and Cordelia
Schmid. Segmenter: Transformer for Semantic Segmenta-
tion. In /ICCV, 2021. 1,2, 3

Rohan Taori, Achal Dave, Vaishaal Shankar, Nicholas Car-
lini, Benjamin Recht, and Ludwig Schmidt. Measuring ro-
bustness to natural distribution shifts in image classification.
NeurIPS, 2020. 2, 3

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Hervé Jégou. Training
data-efficient image transformers & distillation through at-
tention. In /ICML, 2021. 2

Girish Varma, Anbumani Subramanian, Anoop Namboodiri,
Manmohan Chandraker, and C.V. Jawahar. IDD: A Dataset
for Exploring Problems of Autonomous Navigation in Un-
constrained Environments. In WACV, 2019. 3

Riccardo Volpi, Pau De Jorge, Diane Larlus, and Gabriela
Csurka. On the Road to Online Adaptation for Semantic Im-
age Segmentation. In CVPR, 2022. 3

Ximei Wang, Mingsheng Long, Jianmin Wang, and Michael
Jordan. Transferable calibration with lower bias and variance
in domain adaptation. NeurIPS, 2020. 3

Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, and
Jian Sun. Unified Perceptual Parsing for Scene Understand-
ing. In ECCV, 2018. 1,2, 3

Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar,
Jose M. Alvarez, and Ping Luo. SegFormer: Simple and Effi-
cient Design for Semantic Segmentation with Transformers.
In NeurIPS, 2021. 1,2, 3

Xiangyu Yue, Yang Zhang, Sicheng Zhao, Alberto
Sangiovanni-Vincentelli, Kurt Keutzer, and Boqing
Gong. Domain Randomization and Pyramid Consistency:
Simulation-to-Real Generalization without Accessing Target
Domain Data. In ICCV, 2019. 3

Wenwei Zhang, Jiangmiao Pang, Kai Chen, and
Chen Change Loy. K-net: Towards unified image seg-
mentation. In A. Beygelzimer, Y. Dauphin, P. Liang,

and J. Wortman Vaughan, editors, Advances in Neural
Information Processing Systems, 2021. 22

Sixiao Zheng, Jiachen Lu, Hengshuang Zhao, Xiatian Zhu,
Zekun Luo, Yabiao Wang, Yanwei Fu, Jianfeng Feng, Tao
Xiang, Philip H.S. Torr, and Li Zhang. Rethinking Seman-
tic Segmentation from a Sequence-to-Sequence Perspective
with Transformers. In CVPR, 2021. 1,2, 3

Daquan Zhou, Zhiding Yu, Enze Xie, Chaowei Xiao, Ani-
mashree Anandkumar, Jiashi Feng, and Jose M Alvarez. Un-
derstanding the robustness in vision transformers. In /CML,
2022. 2,3



