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Abstract

Most state-of-the-art methods for action segmentation
are based on single input modalities or naive fusion of mul-
tiple data sources. However, effective fusion of comple-
mentary information can potentially strengthen segmenta-
tion models and make them more robust to sensor noise
and more accurate with smaller training datasets. In order
to improve multimodal representation learning for action
segmentation, we propose to disentangle hidden features
of a multi-stream segmentation model into modality-shared
components, containing common information across data
sources, and private components; we then use an attention
bottleneck to capture long-range temporal dependencies in
the data while preserving disentanglement in consecutive
processing layers. Evaluation on 50salads, Breakfast and
RARPA45 datasets shows that our multimodal approach out-
performs different data fusion baselines on both multiview
and multimodal data sources, obtaining competitive or bet-
ter results compared with the state-of-the-art. Our model is
also more robust to additive sensor noise and can achieve
performance on par with strong video baselines even with
less training data.

1. Introduction

Action segmentation is the task of predicting which ac-
tion is occurring at each frame in untrimmed videos of com-
plex and semantically structured human activities [ 18, 32].
While conventional methods for human action understand-
ing focus on classification of short video clips [0, 27, 34],
action segmentation models have to learn the semantics of
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Figure 1. Different paradigms for multi-source data fusion via
(a) early fusion, (b) disentanglement of modality-shared and
modality-specific representations (our model) and (c) late fusion;
(d) Example from 50salads highlighting shared and private infor-
mation that can be extracted from video and accelerometer data.
While both modalities can detect the activation of relevant tools
and common motion cues, RGB videos additionally capture funda-
mental details about objects without acceleration sensors and their
state (e.g. chopped tomatoes), the overall spatial configuration and
the localization of motion in the scene. Accelerometer signals,
on the other hand, contain explicit and complementary informa-
tion about 3D fine motion patterns of activated objects and their
co-occurrence. In the presence of noise (e.g. video occlusions) or
other variability factors, some shared attributes could become part
of the private space of the uncorrupted modality.

all action classes as well as their temporal boundaries and
contextual relations, which is challenging and requires the
design of efficient strategies to capture long range temporal
information and inter-action correlations.

Recent methods for action segmentation input pre-
computed low-dimensional visual features [6, | 1] into dif-
ferent long-range temporal processing units, such as tem-
poral convolutions [1 1, 19], temporal self-attention [38,45]
or graph neural networks [46]. While these methods utilize

2384



only video data, recent computer vision datasets have in-
creasing availability of multiple synchronized data sources
[9,24,32], some of which could be collected readily in real-
case scenarios (e.g. audio recordings [9], teleoperated robot
kinematics [35]). Effective fusion of different data modali-
ties or different ‘ views’ of the same modality (here we use
the term ‘view’ to denote any different representation of the
same data source) is not trivial and still a very active area
of research, as potential advantages include higher recogni-
tion performance, improved robustness to sensor noise and
mitigating the need for large training datasets [3].

Action segmentation with multiple data sources has not
been investigated as extensively as similar tasks like action
classification. It has generally been addressed via naive
fusion strategies such as multimodal feature concatenation
[5,45] and prediction fusion [37], or limited to the fea-
ture encoding stage [22]. However, sensor fusion can also
benefit from long-range temporal modelling performed in
later stages. Inspired by work on multimodal representa-
tion learning [5, 20], we approach the problem implement-
ing a multi-stream action segmentation model, one stream
for each available data source, and disentangling their latent
space into modality-shared versus modality-specific repre-
sentations (Fig. 1b and 1d), aiming at learning more dis-
criminative features and more robust action recognition.
We assume that creating a shared feature space across data
sources produces more abstract action representations and
reduces over-fitting to modality-specific nuances and noise,
while private features could retain useful complementary
information for the downstream task. Instead of relying
on adversarial mechanisms [41], autoencoders [5, 20] or
generative approaches [20], we learn shared feature spaces
with minimal model modification by minimizing Maxi-
mum Mean Discrepancy (MMD) on partitions of the la-
tent spaces to reduce the distance between their distribu-
tions. In order to capture long-range temporal dependen-
cies in the data while preserving feature disentanglement in
consecutive processing layers, an attention bottleneck [26]
is then integrated into the segmentation model and initial-
ized with learned modality-shared features, allowing inde-
pendent processing of all private features. We called the
model ASPnet (Action Shared-Private network).

Evaluation results of our model on three challeng-
ing benchmark datasets show improvement over unimodal
baselines and different fusion strategies using both multi-
modal (e.g. video and accelerometer) and multiview (e.g.
RGB and optical flow) inputs, leading to competitive or
better results than the state-of-the-art. In addition, results
suggest that ASPnet could generalize well to multiple data
sources, improving its performance with growing number
of inputs. Despite requiring synchronized recordings of
multiple sensors, we demonstrated that our model is also
more robust to additive input noise and can match the per-

formance of strong video baselines with less data. In sum-
mary, our contributions are the following:

* We present ASPnet, a new multi-source activity recog-
nition model to effectively exploit shared and com-
plementary information contained in multiple data
sources for robust action segmentation. ASPnet par-
titions the latent representation of each modality and
exploits a bottleneck mechanism to allow feature inter-
action at multiple levels of abstraction while preserv-
ing disentanglement. Additionally, modality fusion is
influenced by long-range temporal dynamics captured
at different scales.

* We show the advantage of feature disentanglement to
fuse not only multimodal data, but also multiple repre-
sentations of the same modality.

* We perform extensive ablation studies to evaluate
ASPnet against strong baselines, different levels of
noise and less training data.

* We evaluate ASPnet on three challenging benchmark
datasets and achieved competitive or better results than
state-of-the-art models.

2. Related Work

Action segmentation: Many studies on action segmen-
tation classify video frames using temporal convolutional
networks [19], that capture multi-scale temporal dependen-
cies in the data through temporal pooling layers [19,21,47]
and/or dilated convolutions [11]. While performing well
in frame-wise accuracy, over-segmentation errors are very
common among models designed to predict one action class
for each frame. Different strategies were devised to allevi-
ate this issue, from auxiliary smoothing losses [11, 28] to
self-supervised domain adaptation techniques [7, 8], predic-
tion refinement modules [1, 15, 16,28,31,36,40], and post-
processing strategies [4,23]. In contrast, graph-based mod-
els attempt to directly regularize model predictions by ex-
plicitly modelling contextual relations between successive
actions [460].

Recent studies [10, 38,45] have shown the potential of
the attention mechanism in capturing long-range temporal
dependencies in long video sequences. ASFormer [45], for
example, uses sliding-window attention to reduce complex-
ity of transformers and integrates it with temporal convo-
lutions. Predictions can be refined with different types of
attention-based decoders [4,38]. In this paper, we focus on
the idea of efficiently fusing multiple data sources in long-
range action segmentation models and use ASFormer as our
backbone model, as in related work [22, 38]. However, the
proposed methodology can be integrated with arbitrary de-
coders [4,38], refinement modules [ 1, 1 6] or post-processing
strategies [23] to improve final predictions.

Multimodal action recognition: While several ac-
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tion segmentation studies used features from multiple data
sources [11,35,38,45,46], many relied on naive merging
strategies such as early concatenation of RGB and flow fea-
tures. Alternatively, multimodal fusion was elaborated at
the video encoding level [22], failing to capture common
longer-range temporal dependencies among data sources.

Modality fusion has been explored more extensively for
action classification, the task of labelling trimmed action
clips. While CNNs have dominated the scene for several
years [6,30], they rely on strong architectural priors that are
often modality-specific, offering limited flexibility to data
fusion and leading to a variety of customized schemes that
need to be re-adapted to each application and dataset [3].
More flexible fusion strategies relied on weighted blending
of supervision signals in multistream systems [39].

The research focus has recently shifted towards trans-
formers [43], representing flexible perceptual models able
to handle a wide range of data sources with minimal
changes to the model structure [13, 17]. The self-attention
operation in transformers represents a straight-forward so-
lution to combine different signals [42,44], but it does not
account for information redundancy and it does not scale
well to longer temporal sequences. To mitigate these is-
sues, [26] introduced ‘attention bottleneck’ to restrict the
attention flow between tokens from different data sources
and force each modality to share only what is necessary
with the other modalities. In our model, we explicitly sepa-
rate modality-shared and private feature representations in a
long-range action segmentation model and exploit the bot-
tleneck mechanism to preserve feature disentanglement in
subsequent temporal processing layers.

Shared-private representation learning: Shared and
private feature disentanglement was explored in Domain
Separation Network (DNS) for unsupervised domain adap-
tation [5]. DNS uses a shared-weight encoder to capture
domain-shared features for a given input sample, and a pri-
vate encoder for each domain to capture domain—specific
attributes. To generate such disentangled representations
and avoid trivial solutions, auxiliary losses are employed
to bring shared representations close, while pushing them
apart from the private features; a shared decoder is also em-
ployed to reconstruct input samples from their partitioned
representations. The shared representation of the source do-
main is finally used to train the network on the task of inter-
est. We differ from this work under multiple aspects: first,
we use multimodal data rather than multi-domain images.
This implies that modality-specific feature representations
could contain useful information for our downstream task
and are considered also for prediction. Second, feature dis-
entanglement is obtained by partitioning the latent space of
each unimodal encoder, rather than building separate private
and shared encoders, using an auxiliary similarity loss and a
bottleneck mechanism, but no additional layers or auxiliary

tasks. Our solution allows information exchange at multiple
abstraction levels while preserving disentanglement.

Few other studies have used similar decompositions for
different multimodal tasks, such as representation learning
[20] and cross-modal retrieval [41]. These models are how-
ever based on probabilistic frameworks [20] or generative
adversarial networks [4 1], which are not trivial to train.

3. Methods

This section presents a detailed description of ASPnet.
The model is illustrated in Fig. 2 in the case of two input
modalities. Pre-extracted frame-wise features from multi-
ple data sources are disentangled into modality-shared and
private spaces (Section 3.1) and then refined via temporal
processing with a shared attention bottleneck (Section 3.2)
to generate frame-wise action predictions.

3.1. Shared-private feature disentanglement

The core hypothesis in this paper is that we can partition
latent representations of multimodal or multiview networks
into a shared space, containing common information across
all sources, and a private space for each modality, and that
such disentangled representations are more robust and fa-
cilitate action prediction. This is because shared knowledge
can help abstraction from modality-specific details, while
private spaces retain useful complementary knowledge.

The goal of the first stage of ASPnet is to obtain well-
separated shared and private representations of the input
signals. Given N synchronized input sequences X; of
length T" and size D;, ¢ = 1 : N, we project them into
low dimensional features of size F' via independent fully
connected layers F'C}; followed by normalization layers [2].
We then partition the latent space of each modality into pri-
vate and shared spaces (P;, S;) of size F/2, as in [20].
To effectively make all .S; features contain shared informa-
tion across data sources, the Maximum Mean Discrepancy
(MMD) [14] between all .S; pairs is minimized during train-
ing:

N—-1 N
Lma=»_, Y MMD(S;,S;). (1)

i=1 j=i+1
3.2. Temporal attention bottleneck

The goal of the second stage of ASPnet is to process ef-
fectively the disentangled feature sequences from the first
stage and generate frame-wise action predictions. Our so-
lution consists of a multi-stream segmentation model, one
stream for each data source. As our focus is to optimize
information fusion, we chose the encoder of a popular seg-
mentation model, ASFormer [45], as the backbone of all
ASPnet streams.

To preserve feature disentanglement in consecutive pro-
cessing layers, we integrated a temporal attention bottle-
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Figure 2. ASPnet schematic. The modules introduced in Sections 3.1 and 3.2 are illustrated in separate boxes. Frame-wise features from
multiple data sources are first disentangled into modality-shared and private features. They then go through a sequence of L encoder layers
with temporal attention bottleneck to generate frame-wise action predictions, later refined through multiple decoders.

neck into our multi-stream architecture. The bottleneck is
shared among all modalities, similar to [26], and the first
layer is initialized by the average S of the shared spaces .S;
generated in the first ASPnet stage. At each layer Enc!,[ €
{1, ..., L}, shared (S) and private (P;) features are processed
independently for each modality ¢, and all the refined shared
spaces \S; are then averaged again:

P!, 5] = Encj(P;, ), )
g-Lly o
= - s
=1

where S’ is the refined bottleneck and P/ is the refined pri-
vate space of modality i.

The concatenation of the shared bottleneck and all pri-
vate spaces in the last layer is used to generate action pre-
dictions, later refined with multiple ASFormer decoders and
moving-average post-processing.

3.3. Loss function

As for ASFormer, the loss function is a combination
of cross-entropy classification loss (L..) and smooth loss
(Lsm) [11] computed at the encoder (p = 0) and decoder
(p = 1: D) prediction stages. In addition, we introduce the
auxiliary MMD loss (L;,.mq) for feature disentanglement:

D
L= 'Ymed + Z(Lce (P) + )\Lem(p))v (4)

p=0
D is the number of decoder stages, A and +y are loss weights.
3.4. Implementation and training details

As our goal was to optimize data fusion, we did not tune
ASPnet on 50salads and Breakfast, but used the same set of
model and training hyperparameters as ASFormer [45]. The
final model consists of N encoder streams, where N is the

number of available data sources, and one common 3-stage
decoder. Each encoder stream and decoder stage contains
10 attention layers with feature size = 64 (shared feature
size = private feature size = 32). Smooth loss weight X is
0.25. For MMD we used multiscale kernels with bandwidth
range [0.2, 0.5, 0.9, 1.3]. We set v to 1 without tuning.
On 50 salads, we trained the model for 100 epochs using
Adam optimizer and learning rate 0.0005. On Breakfast,
we trained it for 100 epochs with learning rate 0.0001. Pre-
dictions were post-processed with a moving average filter
of 7 seconds in 50salads and 2 seconds in Breakfast, with
grid search performed on a range from 1 to 10 seconds.

On RARP45, we tuned ASPnet on a separate validation
set, and then re-trained the model on the full train set with
the chosen hyperparameters. We optimized the number of
layers (set to 8, with search in [10, 9, 8, 7]), initial learning
rate (set to 0.0005, with search in [0.0005, 0.0001], number
of training epochs (set to 50) and smooting window size (set
to 3 seconds, with grid search in the range 1 to 5 seconds).
The other parameters remained the same.

We implemented ASPnet in PyTorch and trained it on
NVIDIA Tesla V100. Optical flow features, if not already
available, were extracted from RAFT [33] flow frames us-
ing I3D [6] pre-trained on Kinetics with window size = 9.

4. Experiments and Results

We benchmarked ASPnet on challenging action segmen-
tation datasets and performed extensive ablation studies.

4.1. Datasets

50Salads [32] dataset contains 50 top-view videos of salad
preparation activities performed by 25 different users in the
same kitchen and is annotated with 19 action classes. It
also contains 3-axis accelerometer signals of devices at-
tached to the cooking tools and synchronization parameters
for temporal alignment with the videos. In line with related
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Table 1. Comparison of multimodal ASPnet and different uni-
modal and fusion baselines on 50salads. MA = moving average.

F150 F125 F110 Acce Edit #Param(M)

Table 2. Results with different input sources on 50salads. R =
RGB, F = optical flow, A = accelerometer. + = concatenation.

F150 F125 F110 ACC Ed7t #Param(M)

ASFormer accel | 584 66.7 69.1 660 66.5 1.01
ASFormer video | 76.3  83.1 84.8 86.2 80.0 1.13
Late fusion 719 79.0 80.7 854 732 2.14
Early fusion 789 846 860 884 79.7 1.14
Mid fusion 78.8 843 86.1 87.0 79.6 1.39

ASPnet - Gaus 79.1 853 865 874 80.6 1.33
ASPnet - Eucl 80.0 858 87.0 86.0 815 1.39
ASPnet 847 832 892 898 838 1.39
ASPnet + MA 856 895 904 898 85.6 1.39

work, evaluation on 50salads is performed at 15Hz via 5-
fold cross-validation and the average results are reported.
Breakfast [18] is a much larger dataset containing 1712
videos of breakfast preparation activities recorded from
multiple points of view in 18 different kitchens and anno-
tated with 48 action classes. To compare with ASFormer,
we reported average results over 4 cross-validation folds.
RARP4S [35] is a recent action segmentation dataset con-
taining surgical activities extracted from 45 robot-assisted
radical prostatectomies performed by 8 surgeons with dif-
ferent expertise, and it is annotated with 8 action classes.
The data consist of synchronized endoscopic videos and
kinematic trajectories recorded from the robotic platform,
but only the videos are publicly available. This dataset is
challenging not only because it contains real-life activities
in uncontrolled environment, but also because images are
noisy (due to occlusions and specularities) and motion is
analyzed at finer granularity, so that action segmentation
models must learn to discriminate subtle motion cues rather
than the identity of the objects in use. Results on RARP45
are reported as average scores over the test videos.

For our experiments on 50salads and Breakfast we used
the I3D features extracted from RGB and flow frames by
[11], unless stated otherwise. For RARP45, we extracted
the same type of features ourselves.

4.2. Evaluation metrics

We analyzed segmentation performance using accuracy,
edit distance and segmental F1-scores [19]. Accuracy eval-
uates predictions in a frame-wise manner, but it is not able
to assess temporal properties. The other scores measure
the ability of a network to understand the structure of com-
plex activities. While the edit distance only evaluates ac-
tion ordering, the F1-scores additionally measure the tem-
poral overlap between predicted and ground truth segments
at different thresholds: 10%, 25%, 50%.

4.3. Result on multimodal data

We tested the ability of ASPnet to fuse multimodal data
using the video and accelerometer signals contained in
50salads (Table 1). Our model outperforms all unimodal

ASFormer (R+F) | 79.7 86.6 87.8 862 822 1.13
ASPnet (R, F) 809 868 886 872 827 1.39
ASPnet (R+F, A) | 856 8.5 904 89.8 856 1.39
ASPnet (R,F, A) | 864 904 91.3 903 858 1.64

Table 3. Testing the contribution of learned shared-private features
towards prediction performance via feature masking.

F150 F125 F110 Acc Edit
Mask private | 74.6 81.8 83.0 822 763
Mask shared | 79.2 849 865 854 80.6
No mask 856 895 904 898 85.6

baselines as well as three different modality fusion strate-
gies: early fusion corresponds to the original ASFormer
model, where multimodal features are concatenated; late
fusion corresponds to parallel unimodal ASFormer streams
with average output logits; middle fusion corresponds to
parallel ASFormer encoders and a common ASFormer de-
coder, which is equivalent to ASPnet with zero-sized bottle-
neck. We also trained ASPnet-Gaus, a variant of our model
where the attention bottleneck is initiliazed with a Gaussian
with zero mean and standard deviation of 0.02, as in [20].
We observed that modality-shared features provide a more
effective initialization (improvement ranging from +2.4%
to +5.6% on different scores). Naive moving-average post-
processing further increases the final segmental scores and
is used in the rest of the experiments. Qualitative results are
shown in Fig. 3.

We finally experimented training ASPnet with a sim-
pler similarity loss minimizing the Euclidean distance be-
tween modality-shared features (ASPnet-Eucl), but it de-
graded performance compared with MMD alignment; this
could be partially due to the fact that the auxiliary loss is ap-
plied at a very early processing stage, where features cannot
yet reach abstraction from their sensor-specific characteris-
tics. We also tried introducing a second auxiliary loss to
push shared and private features apart [41], but it was not
helpful; feature separation occurred spontaneously while
training one disentangled stream per modality, as opposed
to separate shared-private streams [5], and the separation
loss was minimized just after a few training iterations.

Feature disentanglement was sanity checked against triv-
ial solutions by testing ASPnet with a mask on either the
bottleneck or the private features. In both cases we observed
a moderate drop in prediction performance (Table 3), indi-
cating that both representations contain useful information
and are needed for action segmentation.
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Figure 3. Qualitative results on 50salads. ASPnet exploits multimodal information better than all fusion baselines and improves upon
video-based predictions despite the low predictive power of accelerometers alone.

4.4. Results on multiview data

The 2048-dimensional video features used in the pre-
vious experiment were extracted by [I 1] using both RGB
and optical flow video frames. This gave us the opportu-
nity to test the ability of our model to effectively fuse multi-
view data by separating those features. As reported in Table
2, ASPnet achieved slighlty better performance compared
with the original ASFormer, that uses a simple concatena-
tion of the same data views. However, improvement is less
significant than the multimodal case; different sensors gen-
erally contain more complementary information than mul-
tiple views of the same source, explaining why modality-
shared and modality-specific feature disentanglement can
be more beneficial in multimodal case.

4.5. Scalability to multiple data streams

ASPnet has a flexible design that supports in principle an
arbitrary number of input modalities. On 50salads, three-
stream ASPnet using 13D RGB, I3D optical flow and ac-
celerometer features outperformed all two-stream solutions
(Table 2). This suggests that ASPnet could generalize read-
ily to multiple data sources, increasing its accuracy as the
number of input sources grows.

In practice, however, two modifications are necessary to
make ASPnet scalable to a large number of input sensors:
first and foremost, all encoder streams can share weights, so
that the network size becomes independent from the number
of inputs. In our experiments, this resulted in only a mod-
erate drop in performance (Table 4), showing that 3-stream
ASPnet with shared weights can be used with reduced com-
putational resources while still offering competitive perfor-
mance. We also observe that ASPnet size is comparable to
ASFormer (1.13M) and smaller than other less competitive
models (ranging from 0.8M to 19.2M [28]).

The second modification is on the auxiliary loss. Instead
of computing MMD between all pairs of modality-shared
spaces, we can compute MMD between each shared space
and the corresponding average bottleneck (ﬁmmd). This is
not convenient with two modalities (the number of losses
grows from 1 to 2), and it is irrelevant with three modalities
(the number of losses is 3 in both cases), but it is efficient

Table 4. Computational scalability with multiple data streams.
We assess ASPnet performance when all encoders have shared
weights and using a scalable variation of the MMD loss (L.nmd)-

F150 F125 Fllo Acc Edit #Param(M)
Shared-Lyma | 85.5 89.4 909 89.6 857 1.15
Shared 856 89.6 91.0 89.6 857 1.15
Non-shared 864 904 913 903 858 1.64

with more than three modalities. In our experiments with 3
data streams, recognition performance was not significantly
affected by this design choice (Table 4).

4.6. Robustness to noise

Improved prediction performance is not the only poten-
tial advantage of multimodal data fusion. Multiple data
sources generally contain complementary information and
are subject to different types of noise, and when one modal-
ity is corrupted or insufficient to discriminate a certain ac-
tion, the other modalities could compensate and rectify the
model predictions.

Analysis of model robustness to different levels of ad-
ditive zero-mean Gaussian noise (standard deviation s €
[0.5,1,1.5,2], corresponding to about [10, 20, 30, 40]%
of the input feature range) is presented in Fig. 4a. Re-
sults are reported as average crossvalidation scores over 5
testing runs using different instances of the same random
noise. Compared with video ASFormer, 3-stream ASPnet
shows significantly reduced sensitivity to data corruption,
whether on the video or both modalities. Moreover, ASP-
net with corrupted accelerometer signals still outperforms
ASFormer on original uncorrupted videos. Accelerometer
signals in 50salads are very compact and easy to process,
but insufficient to discriminate all action classes (as shown
in Table 1 and Fig. 3). ASPnet thus strongly relies on the
visual features and is more sensitive to video noise than ac-
celerometer noise; however, the complementary motion in-
formation from the accelerometers is exploited effectively
to improve prediction performance and make ASPnet re-
markably more robust to video noise than the corresponding
video baseline (the performance drop of ASPnet from un-
corrupted inputs is about 50% smaller than ASFormer when
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Figure 4. (a) ASPnet robustness to noise. Multimodal ASPnet and multiview video ASPnet are compared with video ASFormer under
different levels of additive zero-mean Gaussian noise (x-axis denotes noise standard deviation). Multimodal ASPnet is tested with acceler-
ation noise, video noise and both. (b) Impact of reducing the training set size on different models. The x-axis shows the amount of training
data in percentage. Vertical double arrows highlight performance gap between our models and ASFormer, which tends to increase as the
number of training sequences decreases. F1-25 and F1-10 scores follow a trend similar to other evaluation scores in both experiments. R

=RGB, F = flow, A = accelerometer. + = feature concatenation.

s = 1, and this gap increases with stronger noise).

Although in multiview scenarios we cannot take advan-
tage of a clean input when the other one is corrupted be-
cause all inputs derive from the same source, we observed
that video ASFormer is notably more sensitive to noise than
multiview video ASPnet based on the same input features,
highlighting another advantage of the proposed feature-
disentanglement strategy.

4.7. Sensitivity to training set size

The second potential gain when using richer data repre-
sentations such as multiple sensors or views could be the
ability to reach competitive performance with a reduced
number of training videos, and therefore reduced annotation
effort and costs. Fig. 4b shows prediction scores of mul-
timodal ASPnet, multiview ASPnet and video ASFormer
trained with decreasing amounts of data. Both multimodal
and multiview ASPnets show smaller performance drops
than ASFormer. In addition, multiview ASPnet trained with
50% of the videos outperforms video ASFormer trained
with 70% of the videos and the same input features. Sim-
ilar but amplified trend is observed for multimodal ASP-
net, matching the performance of video ASFormer using
only 70% of the training data, and outperforming video AS-
Former trained with 90% of the videos using only 50%.

4.8. Comparison with SOTA

On 50salads, I3D features have been recently replaced
with stronger video representations (Br-Prompt) [22] aimed
at improving ASFormer results (Br-Prompt+ASFormer).
Following [22], we used Br-Prompt RGB features for com-
parison with SOTA methods on this dataset, together with
13D optical flow [33] features and accelerometer data. As
reported in Table 5, our multiview video ASPnet outper-
forms the state-of-the-art in accuracy and gets close to or
matches the top segmental scores. When adding the ac-
celerometer signals, ASPnet outperforms the state-of-the-

Table 5. Results on 50salads. R=RGB, F=flow, A=accelerometer.

F150 F125 Fl]() Acce Edit
ASFormer [45] 76.0 834 851 856 79.6
ASFormer+ASRF [45] 793 854 851 856 81.7
CETnet [38] 80.1 865 876 869 81.7
DPRN [28] 794 863 87.8 872 820
UVAST [4] 81.7 876 89.1 874 839
Br-Prompt+ASFormer [22] | 81.3 87.8 89.2 88.1 838
Semantic2Graph [46] 873 902 915 88.6 89.1
Br-Prompt+ASPnet (R,F) 86.0 90.3 912 904 86.0
Br-Prompt+ASPnet (R,A) 873 913 922 909 875
Br-Prompt+ASPnet (R,FA) | 88.5 91.6 927 914 875

art in all the metrics but the edit score. The top ranking
method is a graph-based model, which is well suited to learn
sequences and avoid over-segmentation errors, thus achiev-
ing large edit scores.

We then tested multiview RGB-flow ASPnet on Break-
fast (Table 6), which does not contain multimodal data,
but is larger and more complex than 50salads. ASPnet
proved again to be superior to video ASFormer in all the
evaluation metrics, using the same input features and shar-
ing most of the network structure. It also demonstrated
to be competitive with the state-of-the-art. We note that
CETnet differs from ASFormer only in the decoder stage,
which is much larger (100 layers in CETnet as opposed to
30 in ASFormer), so ASPnet could be readily integrated
into CETnet to potentially improve the prediction scores
on larger datasets such as Breakfast. We also note that
there could be room for improvement with systematic hy-
perparameter search, smoothing losses [ 1, 28] or refine-
ment stages [10,23,28], that we did not explore in this study.

We finally tested multiview RGB-flow ASPnet on
RARP45 (Table 7), investigating the ability of our model
to work in a different data domain. While using only video-
derived information, we outperformed the state-of-the-art
method fusing video and robot kinematics [35]. This re-
sult shows that our model could be used in a wide range of
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Table 6. Results on Breakfast.

F150 F125 Fllo Acc Edit
ASFormer [45] | 574 706 76.0 735 75.0
EUT [10] 59.8 718 762 750 74.6
C2F-TCN [31] | 57.6 687 722 76.0 69.6
CETnet [38] 619 743 793 749 778
ASPnet 60.8 729 781 759 763

Table 7. Results on RARP45.

F150 F125 F110 Acce Edit
- 83.7 809 79.6
82.7 79.8

MA-TCN [35] -
ASPnet 748 84.0 86.7

surgical procedures where robot kinematics is not available,
such as traditional laparoscopy and endoscopy. Kinematic
information could potentially be replaced also with compact
surgical tool representations automatically extracted from
surgical videos using pre-trained object and key-point de-
tection models [12,25].

4.9. Other experiments

We tested a few variations of ASPnet architecture. For
example, we tried extending the attention bottleneck to the
decoder stage, in all or part of its layers, but we did not ob-
serve any significant improvement. The role of the decoder
is to refine the encoder predictions, improving specially the
segmental scores [45]. If such refinement is performed sep-
arately for each stream, the model could overfit individual
modalities rather than achieve effective data fusion.

We also experimented with different types of attention
layers. While attention bottlenecks were originally ap-
plied on spatio-temporal tokens extracted from short video
clips [26], full spatio-temporal self-attention is not tractable
with long video sequences. We can however decompose
the computation into a temporal dimension, that is the di-
mension regarded in ASPnet, and a spatial dimension to
capture complementary relations among all features at the
same timestamp. We thus tried introducing into ASP-
net additional spatial-attention layers with attention bottle-
neck. We experimented integrating them in the encoder
or in the full model, sequentially or interlaced with the
temporal-attention modules, but we didn’t obtain any rel-
evant gain in performance. We also observed that, replac-
ing all temporal-attention layers with spatial-attention, the
model reaches about 80% accuracy, but significantly lower
segmental scores (e.g. less than 5% edit score) on split
1 of 50salads. This indicates that useful information can
be captured via spatial self-attention, but it is challenging
to integrate it optimally into long-range temporal models
where temporal regularity is fundamental. Spatial attention
could also give us interesting insight on which features and

modalities the model focuses on at each timestamp. We will
investigate the problem more extensively in future work.

5. Conclusion

In this paper, we tackled the problem of automatic action
segmentation using multiple data sources. We presented
ASPnet, a flexible model to fuse multiple inputs while
simultaneously capturing long-range temporal dynamics in
sequential data. Despite requiring synchronized recordings
from multiple sensors, which might not always be possible,
or time-consuming data processing to generate multiple
input views, ASPnet has important advantages over strong
baselines, including higher recognition performance,
reduced sensitivity to input noise and smaller training sets.
The latter could have a large impact in reducing annotation
efforts and costs, data storage requirements (when the other
modalities are low-dimensional such as accelerometers,
lidars, robot kinematics, etc), as well as training time,
mitigating the model environmental impact.

Limitations and future work: while showing similar ad-
vantages, multiview ASPnet achieves only a marginal per-
formance gain compared with multimodal ASPnet. In the
case of optical flow, the amount of information that is com-
plementary to RGB features is more limited than, for ex-
ample, 3D acceleration trajectories of multiple objects. We
could therefore speculate that RGB-flow fusion will benefit
less from the disentanglement of modality-shared and pri-
vate feature representations. Future work will be aimed at
evaluating ASPnet on alternative views of the video frames,
such as human skeletons automatically identified in the
scene.

Improvement in prediction performance could also be
achieved by tuning the relative size of shared and private
latent spaces for every combination of inputs; we will in-
vestigate learning the optimal partition.

We finally noted that large-scale action detection
datasets such as as Epic-Kitchens-100 [9] and EGTEA [24]
include multiple synchronized data sources such as RGB,
accelerometer, audio and gaze signals, and constitute ideal
benchmarks to compare data fusion strategies. We plan to
expand our approach to the action detection task and to test
fusion efficacy with such diverse signals.

Societal impact: action segmentation represents a core
step in a wide range of applications, including delicate tasks
such as monitoring of surgical procedures. In this context,
adversarial attacks could put patients’ health at risk, espe-
cially with non-visual data sources such as robot kinemat-
ics, which are harder to inspect. While appropriate defense
strategies should always be implemented [29], we believe
that effective modality fusion is by itself a defense mecha-
nism, making models more robust to input corruption.
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