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Figure 1. Given a landscape image, StyleCineGAN generates a seamless cinemagraph at 1024×1024 resolution. This figure contains
video clips, thus consider viewing it using Adobe Reader. The same results are also included in the supplementary video.

Abstract
We propose a method that can generate cinemagraphs

automatically from a still landscape image using a pre-
trained StyleGAN. Inspired by the success of recent un-
conditional video generation, we leverage a powerful pre-
trained image generator to synthesize high-quality cinema-
graphs. Unlike previous approaches that mainly utilize the
latent space of a pre-trained StyleGAN, our approach uti-
lizes its deep feature space for both GAN inversion and cin-
emagraph generation. Specifically, we propose multi-scale
deep feature warping (MSDFW), which warps the interme-
diate features of a pre-trained StyleGAN at different resolu-
tions. By using MSDFW, the generated cinemagraphs are
of high resolution and exhibit plausible looping animation.
We demonstrate the superiority of our method through user
studies and quantitative comparisons with state-of-the-art
cinemagraph generation methods and a video generation
method that uses a pre-trained StyleGAN.

1. Introduction
Cinemagraph is a unique form of media that combines a still
image and video. While most of the scene remains still,
subtle and repeated movements in only a small region ef-
fectively highlight a particular object or an important event
that occurred at the time of capture. Because this mixture

of still and moving elements in one scene creates an inter-
esting eye-catching effect, cinemagraphs have recently at-
tracted increasing attention in social media.

Despite the growing popularity of cinemagraph, its cre-
ation heavily relies on a manual process. To create a motion
in part of the input image, one typically utilizes an image
manipulation tool to stretch, scale, rotate, or shift the part of
the image in a physically plausible and aesthetically pleas-
ing way. This process is often time-consuming and requires
a high level of skill in the use of image editing tools. There-
fore, creating a cinemagraph has generally been considered
to be a personal project of professionals so far.

To allow ordinary users to create a cinemagraph with a
single image, automatic methods have been proposed. One
line of research uses a reference video as guidance [14, 25,
33]. These methods are capable of producing realistic mo-
tions in the target scene similar to a reference video. Re-
cent methods obviate the need for a reference video, by
training deep generative models [4, 6, 9, 15, 17–19, 23].
These methods decompose the task into two processes of
learning motion and spatial information individually from
separate datasets. The decomposition effectively reduces
the complexity of simultaneously learning both tempo-
ral and spatial information, and improves the perceptual
quality of the generated videos. However, these models
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must be trained from scratch, which sometimes requires
several days if not weeks on a modern GPU. Moreover,
these models are not specifically designed to generate high-
resolution of 1024×1024 cinemagraphs, because of the sig-
nificant requirements in memory and processing power.

In this paper, we propose the first approach to high-
quality one-shot landscape cinemagraph generation based
on a pre-trained StyleGAN [12]. By using the learned
image prior of StyleGAN, our method removes the need
for training a large model from scratch and systematically
improves the resolution of the generated cinemagraphs to
1024×1024. Moreover, our method enables a user to easily
edit the style and appearance of the generated cinemagraph
by leveraging the properties of StyleGAN for image styliza-
tion and editing.

Our method is inspired by recent unconditional video
generation methods [7, 34] which allow to navigate the la-
tent space of a pre-trained image generator, to synthesize a
high-quality temporally coherent video. Unlike these meth-
ods that utilize the latent codes of StyleGAN, we opt to use
the deep features that are generated by convolution opera-
tions in each layer of StyleGAN. We use these deep fea-
tures for two reasons. First, we observed that highly de-
tailed landscape images cannot be reconstructed accurately
from the latent codes using GAN inversion methods be-
cause these latent codes are low-dimensional [30]. Sec-
ond, a plausible motion that preserves the content cannot
be created by only navigating the latent space, because this
space is highly semantic-condensed and lacks explicit spa-
tial prior [38].

To solve these problems, for the first time in the cinema-
graph generation domain, we utilize the deep features of a
pre-trained StyleGAN. These deep features preserve spatial
information and encode both high-level semantic and low-
level style appearances across high and low-level convolu-
tional layers. To produce cinemagraphs from these deep
features, we propose a multi-scale deep feature warping
(MSDFW) to apply the motions generated using a motion
generator to the deep feature space of StyleGAN.

We demonstrate the effectiveness and advantages of our
method by comparing it to state-of-the-art methods in cin-
emagraph generation [6, 9, 17, 19] and to an uncondi-
tional video generation method that uses a pre-trained Style-
GAN [34], using various metrics. We also performed a user
study to verify the effectiveness of our method for creat-
ing visually pleasing cinemagraph effects. Both qualitative
and quantitative results confirm that our method substan-
tially outperforms all existing baselines.

2. Related Work
2.1. Cinemagraph Generation
One of the early studies for cinemagraph generation used a
procedural approach to decompose each object into layers

and apply time-varying stochastic motion [5]. This method
can handle a diverse range of images such as photos and
paintings by relying on manual interaction from the user.
Another approach is to use a reference video to animate the
given image [20–22, 25]. These methods rely on a statistical
motion analysis of videos to transfer their periodic motion
property to the desired image. Another method distills a
dynamic NeRF to render looping 3D video textures from
the representative motion found in the reference video [14].
Without any reference video as guidance, Halperin et al.
[8] proposed a framework to animate arbitrary objects with
periodic patterns in a simple motion direction.

Recent approaches use the capacity of deep learning to
automatically create cinemagraphs from a single image.
One study trained an image-based renderer to generate wa-
ter animation, utilizing the water simulation results [32].
Another research first predicts a sequence of normal maps,
then generates the corresponding RGB images that show
a looping animation of a garment as if it is blown in the
wind [4]. Another line of research trains a generator to pro-
duce a motion field [6, 9, 15, 18, 19]. Our work is similar
to these deep learning-based approaches in that a motion
generator is utilized to synthesize the cinemagraphs. The
difference is that our method leverages the deep features of
a pre-trained image generator and thus can generate plau-
sible high-quality results without fine-tuning or training a
separate synthesis network. At the same time, our method
systematically improves the resolution of the generated cin-
emagraphs to 1024×1024.

2.2. Unconditional Video Generation
The task of video generation is known to be difficult be-
cause the generation process has to take into account both
spatial and temporal information. To ease the problem, pre-
vious approaches [27, 36] decompose video generation into
content and motion generation. These methods first predict
the latent trajectory for motion, then generate a video from
the set of predicted latent codes using the image genera-
tor. Instead of training the generation model from scratch,
MoCoGAN-HD [34] and StyleVideoGAN [7] leverage a
pre-trained image generator model, StyleGAN [12]. These
methods use the property of well-constructed latent space
to morph one frame toward the next frames [10]. Utilizing
the image generation capability of a pre-trained generator,
MoCoGAN-HD and StyleVideoGAN only need to train a
motion trajectory generator, which greatly reduces the train-
ing time. These methods can generate high-quality videos
in multiple domains such as faces, cars, and even sky. How-
ever, the content details are not well preserved, which has
hindered the methods’ application for cinemagraph gener-
ation. Our method builds upon a similar concept of using
a pre-trained StyleGAN. We leverage the deep features in-
stead of the latent codes of StyleGAN to generate looping
and content-preserving cinemagraphs.
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2.3. Video Synthesis using pre-trained StyleGAN

A pre-trained generative model, StyleGAN [11–13], has
been actively employed for downstream image and video
editing applications. For GAN-based applications, one of
the essential steps is to project the desired images or videos
to the latent space of the pre-trained GAN model, which
is known as GAN inversion. The latent codes are obtained
using either an optimization technique [1, 2], a trained en-
coder [26, 35], or a hybrid of both approaches [16]. For
video editing applications, previous methods [3, 29, 37, 42]
have utilized a pre-trained image encoder to project all of
the frames to the latent space. While most of the methods
operate in W+ space [2], we opt to use both w+ and deep
features [24, 43, 44] of the pre-trained StyleGAN to accu-
rately reconstruct the original image and synthesize motion.

3. Methods

An overview of our method is shown in Figure 2. Given
a landscape image I , our method generates a seamlessly
looping cinemagraph V = {Î0, ..., ÎN} using a pre-trained
StyleGAN. At the core of our method, we use a pre-trained
generator without additional fine-tuning. The overall pro-
cess is described below.

(A) First, we project the landscape image into both the latent
space and the feature space of StyleGAN. To this end, we
train an encoder that outputs both latent codes w+ and
intermediate features D10 of StyleGAN (Sec. 3.1).

(B) In addition, we predict a mask S to divide the image into
static and dynamic regions (Sec. 3.2).

(C) Next, we use a motion generator that accepts the land-
scape image I to synthesize a motion field M , which
defines the position of each pixel in the future frames
(Sec. 3.3).

(D) Lastly, we generate the final cinemagraph frames us-
ing the pre-trained StyleGAN with deep feature warping
(DFW) operation added in between the original layers.
(Sec. 3.4).

In the following sections, we will describe the details of
each process.

3.1. GAN Inversion

The first step for generating a cinemagraph is to project the
input image to the latent space of a pre-trained StyleGAN.
This process is necessary because StyleGAN is an uncondi-
tional generator that cannot take a conditioning input. Many
previous methods have used W+ [2] latent space, which is
an extended space of native latent space W . However, we
observed that w+ ∈ W+ is not expressive enough to recon-
struct the original high-frequency details of the landscape
images. Therefore, we chose to use the generated deep fea-
tures D10 of StyleGAN as well as w+. The use of D10

enables us to recover details in the original input as shown
in Figure 8.

To project an image I to both the latent space and fea-
ture space and obtain w+ and D10, we train an encoder E
similarly to Yao et al. [43], in which the encoder takes I
as input and predicts (w+, D10). Additional training details
can be found in the supplementary material.

3.2. Mask Prediction

We improve the quality of GAN inversion described in
Sec. 3.1 by training an additional classifier that predicts a
mask to separate the static and dynamic regions. Using the
mask, the structure of the static regions can be preserved.
To this end, we train a multi-layer-perceptron (MLP) classi-
fier that accepts the deep features of StyleGAN as its input
and outputs the mask that specifies each dynamic region in
the image, as performed in DatasetGAN [46].

To train the classifier, we manually annotate 32 segmen-
tation masks S of the selected images. We then follow the
same procedure as DatasetGAN but using the deep features
Di where i ∈ {10, 11, ..., 18}. We resize all these deep
features followed by concatenating them in the channel di-
mension to construct the input feature D∗. In the end, paired
data (D∗, S) is constructed. An ensemble of 10 MLP classi-
fiers is trained with a cross-entropy loss. To further improve
the performance of the previous work, at inference, we also
refine the predicted mask. For additional details, please re-
fer to the supplementary material.

3.3. Motion Generation

To generate motion from a static landscape image I , we use
an Eulerian motion field M which represents the immediate
velocity of each pixel. To predict M given I , an image-
to-image translation network [39] is trained as a motion
generator. We train the network with paired data (I,M)
as performed in the previous method [9]. Adding controls
in motion generation is also possible, either by using text
prompts [19] or drawing arrows [18].

While the trained network works well to a certain de-
gree, we observed that the predicted motion field M does
not align with the boundaries between the static and dy-
namic regions and often contains motion in static regions.
Thus, we further refine M by multiplying it with the seg-
mentation mask S, which effectively removes most errors.
The refined M is then used to simulate the motion of a pixel
at time t using the Euler integration as follows:

xt+1 = xt +M(xt), M(xt) = Ft→t+1(xt),

F0→t(x0) = F0→t−1(x0) +M(x0 + F0→t−1(x0)), (1)

where x0 is the source pixel position at time 0, F0→t is the
displacement field that defines the displacement of the pixel
position x0 to the pixel position xt at time t.
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Figure 2. Overview of StyleCineGAN. Given an input landscape image I , our goal is to generate a cienemagraph using a fixed pre-trained
StyleGAN G. We project the image into both latent codes w+ and deep features D10 of G. Using the deep features D∗, a mask predictor
predicts a segmentation mask S. To animate the input image, we use a motion generator to predict the motion field M from I . M is refined
using S. Through Euler integration, M produces the future and past displacement fields F0→t and FN→t. To synthesize cinemagraph
frames, we add a DFW layer in between the layers of G. DFW refers to Eqns. 2 and 3. This modification enables the intermediate features
of G to be warped according to F0→t and FN→t using a joint splatting method at different resolutions, specifically for the StyleGAN
layers indexed with i ∈ [10, 12, 14, 16, 18]. The warped deep features are used to synthesize frames Ît resulting in the final cinemagraph
video.

3.4. Cinemagraph Generation

After acquiring the displacement field F0→t (Sec. 3.3),
latent codes w+, and deep features D10 of StyleGAN
(Sec. 3.1), we feed these data into the pre-trained StyleGAN
with our DFW layer added. We apply forward warping (or
splatting) to the original content to generate a cinemagraph.
Here, the application of forward warping directly to an RGB
image often results in images with tearing artifacts. To re-
duce the artifacts, we warp the deep features Di

0 of Style-
GAN in different resolutions or scales:

Di
t = Warp(Di

0, F0→t), (2)

where Warp is the forward warping function and Di
t is the

warped deep feature at time t and scale i. We observed
that warping a single deep feature (e.g., only D10

0 ) results
in blurry textures in the generated cinemagraphs. There-
fore, we opt to warp the multi-scale deep features; we call
this operation a MSDFW. Specifically, we apply warping to
the deep features Di

0 where i ∈ [10, 12, 14, 16, 18]. The
deep feature D10

0 is acquired using GAN inversion, and the
consequent deep features D12

0 , D14
0 , ..., and D18

0 are subse-
quently generated using both D10

0 and w+, as shown in the
rightmost column of Figure 2.

Looping video V with frame length N + 1 is synthe-
sized using the joint splatting technique [9] using the future
and past displacement fields F0→t and FN→t, generated
through Euler integration. The displacement fields are com-
puted with t times of integration on M for F0→t, and N − t
times of integration on −M for FN→t. The multi-scale fea-

ture Di
0 is warped in both directions and is composited to

form Di
t. Specifically, Di

t is computed as a weighted sum of
Warp(Di

0, F0→t) and Warp(Di
0, FN→t) as follows:

Di
t(x

′) =

∑
x∈χ αt ·Warp(Di

0(x), F0→t)∑
x∈χ αt

+

∑
x∈χ(1− αt) ·Warp(Di

0(x), FN→t)∑
x∈χ(1− αt)

, (3)

where x ∈ χ is a set of pixels being mapped to the same
destination pixel x′, and αt is the looping weight defined as
(1− t

N ).
With the above DFW module, we can generate a video

frame given the predicted deep features D10, latent code
w+, and mask S:

Ît = S ⊙ (Gwarp(D
10
0 , w+, F0→t, FN→t))

+ (1− S)⊙ I, (4)

where ⊙ is an element-wise multiplication and Gwarp is
a fixed pre-trained StyleGAN that incorporates our DFW
module.
Style Interpolation In addition to motion generation, the
change of appearance style is an additional feature often ob-
served in a landscape cinemagraph. This can be achieved
by interpolating the latent code with the target latent code
as follows:

w+
s = w+ · (1− β) + w+

t · β, (5)
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Figure 3. Generated cinemagraph results. This figure contains
video clips, thus consider viewing it using Adobe Reader. The
first two are cinemagraphs without appearance change, and the last
two are cinemagraphs with appearance change.

where w+
s is the interpolated latent code, w+

t is the latent
code of the target style, and β is the interpolation weight.
This is possible because the later layers of the StyleGAN
only modify the color of the synthesized image while the
original structure is preserved.

With modified Equation 4, we prevent the visual mis-
match between the static and dynamic regions by also re-
flecting the changes to the static regions as follows:

Ît = S ⊙ (Gwarp(D
10
0 , w+

s , F0→t, FN→t))

+ (1− S)⊙ (I +∆Is),
(6)

∆Is = G(D10
0 , w+

s )−G(D10
0 , w+), (7)

where ∆Is is the color difference between the two images
generated from latent codes w+

s and w+.

4. Experiments

In this section, we compare our method with state-of-the-art
landscape cinemagraph generation methods [6, 9, 17, 19]
(Sec. 4.1) and with an unconditional video generation
method [34] (Sec. 4.2). In addition, we show the impor-
tance of the components used in our method through abla-
tion studies (Sec. 4.3). To observe more various results, we
recommend readers see the supplementary video. Example
results are presented in Figures 1 and 3.

4.1. Comparisons with Cinemagraph Generation
Methods

We compared our method with state-of-the-art cinemagraph
generation methods: Animating Landscape (AL) [6], Deep
Landscape (DL) [17], Eulerian Motion Field (EMF) [9],
and Text2Cinemagraph (T2C) [19]. AL is a learning-based
method that uses backward warping to generate cinema-
graph frames. DL trains a style-based generator to synthe-
size images and dynamic motion in a scene. EMF and T2C
train an encoder-decoder architecture paired with a motion
generator to produce looping cinemagraphs. We used of-
ficial implementations of AL, DL, and T2C, and faithfully
reproduced EMF based on the provided training details and
hyper-parameters. In the following, we will examine the
qualitative difference, evaluate the results using two met-
rics, and report the results of human perceptual studies.

ALOurs.

DLOurs.

EMFOurs.

T2COurs.

Figure 4. Qualitative comparison with state-of-the-art cinema-
graph generation methods. Please refer to the supplementary video
for more examples.

Table 1. Quantitative comparison with the state-of-the-art cinema-
graph generation methods. We compared our method with AL,
EMF, DL, and T2C. The best scores are bolded.

Static Consistency Motion Quality
Method LPIPS↓ MS-SSIM↑ RMSE↓ LPIPS↓ MS-SSIM↑ RMSE↓ FID↓

AL 0.0477 0.9524 8.8956 0.0617 0.6819 25.1089 53.6893
EMF 0.0103 0.9723 6.0440 0.0533 0.7102 22.8932 45.8035
DL 0.0071 0.9931 2.1044 0.0504 0.7062 21.8011 41.6374
T2C 0.0063 0.9773 4.8785 0.0159 0.7224 21.2784 40.1186
Ours 0.0062 0.9962 1.9430 0.0131 0.7237 20.8948 39.2113

Qualitative Comparisons Figure 4 shows visual results
from AL, EMF, DL, T2C, and our method. AL exhibits
stretching artifacts (row 1) due to recurrent backward warp-
ing, whereas our method uses forward warping that pre-
vents the appearance of such distortions. EMF struggles
with precise reconstruction (row 2), because its encoder-
decoder architecture is trained from scratch on a low-quality
video dataset. In contrast, our method leverages a Style-
GAN model pre-trained on high-quality images, resulting in
cinemagraphs with high perceptual quality. DL often loses
fine details in textures (row 3) as it performs GAN inver-
sion using the latent codes of StyleGAN, and fine-tunes the
generator. Our method, utilizing deep features for GAN in-
version, retains original texture details. T2C encounters dif-
ficulties in preserving high-frequency details, and accurate
motion segmentation between static and dynamic regions
(row 4). In contrast, our method utilizes a pre-trained Style-
GAN for cinemagraph generation, and uses its features for
mask prediction, preserving both fine and structural details
of the source image.
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Quantitative Comparisons The evaluation was per-
formed considering two aspects: (1) static consistency and
(2) motion quality. Static consistency measures the consis-
tency over time of non-movable regions such as buildings
and mountains. Motion quality refers to both the image
quality of the animated regions and the animation plausibil-
ity. For a fair comparison, we normalized the speed of mo-
tion in the generated results for all methods to match the av-
erage speed in the test dataset. AL, EMF, DL, and T2C were
provided with the first frame I0 of the test video to gen-
erate 512×512 videos. Our method generates 1024×1024
results, thus we downsampled it to the size of 512×512.

For a quantitative evaluation, we used 224 test videos
from the Sky Time-Lapse dataset [41]. To measure the
static consistency, we computed LPIPS [45], Root-Mean-
Squared Error (RMSE), and MS-SSIM [40] between gener-
ated frame În and the input image I0 with the sky masked
out. To measure the motion quality, we used the same
evaluation metrics along with Fréchet inception distance
(FID) [28] between În and the ground-truth frame In with
the static parts masked out.

Table 1 reveals the quantitative evaluation results. For
both static consistency and motion quality, our method out-
performs the other approaches. Our cinemagraphs repre-
sent static consistency better because use of the mask im-
proves the accuracy in the detection of static regions. In
addition, the quality of texture details are improved in the
generated frames due to GAN inversion and the MSDFW
based on the deep features of StyleGAN. The use of our mo-
tion generator and DFW leads to improved motion quality
for each scene, compared with that of the results of previous
approaches.

User Study We conducted a user study with 17 partic-
ipants to subjectively evaluate our method in comparison
with previous cinemagraph generation methods. We did not
target any specific demographic groups, as the evaluation of
cinemagraphs should not be dependent on particular demo-
graphic distributions. We conducted two evaluations: score
evaluation and side-by-side comparison. Both evaluations
assessed static consistency and motion quality. In the score
evaluation, participants rated the video presented with a ref-
erence image on a 1-to-5 scale, with ”very bad” being 1
and ”very good” being 5. In the side-by-side comparison,
participants selected the preferred cinemagraph from two
videos generated using different methods, presented with a
reference image. For both evaluations, we used ten samples
randomly chosen from the LHQ [31] dataset. To eliminate
bias, distinct samples were used for each evaluation, and
the positions of the cinemagraphs were randomized in all
questions.

Tables 2 and 3 summarize the statistics of the user stud-
ies. For both score evaluation and human preference, our
method outperforms the previous approaches by a substan-

Table 2. Human perceptual study results for score evaluation. The
best scores are bolded.

Method Static Consistency Motion Quality
AL 1.59 ± 0.20 1.76 ± 0.45

EMF 2.35 ± 0.89 2.24 ± 0.99
DL 3.35 ± 0.83 3.25 ± 0.67
T2C 3.75 ± 0.69 2.96 ± 0.66
Ours 4.37 ± 0.18 3.86 ± 0.53

Table 3. Human perceptual study results for side-by-side com-
parison. The percentage of ours chosen against each competing
method is reported.

Human Preference (Ours %)
Method Static Consistency Motion Quality
vs AL 99.35% 92.81%
vs EMF 96.08% 86.93%
vs DL 94.77% 84.97%
vs T2C 77.78% 73.86%

tial margin. We also performed statistical analysis (Kruskal-
Wallis H-test) on the resulting evaluation scores. The results
showed that our method achieved significantly higher scores
in all pairs of comparisons with every previous method
(p<0.001 in post-hoc analysis). Both user study results re-
veal the advantages of our method for generating cinema-
graphs with high image quality and plausible animation.

4.2. Comparisons with Video Generation Methods

We compared our approach with MoCoGAN-HD [34], a
video generation method that predicts the trajectory within
the latent space of a pre-trained StyleGAN. For content
generation, we used the same pre-trained StyleGAN as
that used by MoCoGAN-HD, which was trained on the
Sky Time-lapse [41] dataset to generate 128×128 images.
The comparison was made in an unconditional manner us-
ing 300 randomly sampled latent codes, at a resolution of
128×128. We compared the first 60 frames of the gener-
ated videos with those of MoCoGAN-HD, as our method
produces looping videos.

Qualitative Comparisons Figure 5 presents a qualitative
comparison. As shown in the first and third rows, the videos
generated using our method exhibit static consistencies,
with the clouds moving while the ground remains static. In
contrast, as shown in the second and fourth rows, the frames
generated by MoCoGAN-HD deviate significantly from the
original image, making the method unsuitable for cinema-
graph generation.

Quantitative Comparisons We compared the content
preservation ability of both methods by measuring
LPIPS [45], RMSE, and MS-SSIM [40] between the first
frame Î0 and the subsequent frames În. Because the main
content to be preserved in cinemagraphs is the static re-
gions, we defined content preservation as static consistency.
We masked out the sky for all image frames according to the
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Figure 5. Qualitative comparison with the state-of-the-art video
generation method, MoCoGAN-HD [34]. For more examples
from this comparison, please refer to the supplementary video.

Figure 6. Quantitative comparison of content preservation with
state-of-the-art video generation method MoCoGAN-HD [34].

segmentation mask and compared only the static parts. We
used 219 videos in which the scene could be horizontally di-
vided into static and animated regions. LPIPS, RMSE, and
MS-SSIM were all computed for each pair of Î0 and În,
and were averaged over the number of samples. Figure 6
shows that MoCoGAN-HD exhibits significant divergence
in terms of LPIPS, RMSE, and MS-SSIM over time. This
indicates that MoCoGAN-HD is unable to generate motion
that preserves the content of the original image. In contrast,
our method exhibits a small diverging trend, confirming its
superiority in preserving the content of the original image
over time, by utilizing deep features.

4.3. Ablation Study
To demonstrate the effectiveness of our design choices for
the proposed method, we conducted a series of ablation
studies. Specifically, we focused on the effectiveness of our
warping and GAN inversion methods. To evaluate warping,
we compared the image frames generated with and without
the use of 1) forward warping, 2) DFW, 3) MSDFW, and
4) segmentation mask. The first frames of 224 test videos
from the Sky Time-Lapse [41] dataset were given as input to
generate 1024×1024 videos, and we used the first 60 frames
for the evaluation. For the evaluation of GAN inversion, we
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Figure 7. Results of qualitative comparison in ablation study.
Please see the supplementary video for the animated results.

GT Full w/o  

Figure 8. Qualitative comparison results on GAN inversion.

compared images reconstructed with and without the use
of the deep features. A total of 256 images, 128 from the
Sky Time-Lapse and 128 from the Eulerian [9] dataset were
provided to generate 1024×1024 reconstructed images.

Forward Warping We compared the image frames gen-
erated with and without forward warping (FW). For the case
without FW, we warped the deep features of StyleGAN us-
ing backward warping. The first row in Figure 7 shows the
qualitative results of this comparison. As revealed in the
figure, without FW, the results usually contain unrealisti-
cally stretched textures. For quantitative comparisons, we
computed LPIPS, MS-SSIM, and RMSE between In and
În. Table 4 shows that excluding forward warping resulted
in significant degradation in terms of MS-SSIM. This indi-
cates that the stretched textures resulted in huge structural
distortions in the generated images.

Deep Feature Warping We then compared frames gener-
ated with and without DFW. For the case without DFW, we
directly warped RGB images using predicted motion fields
for comparison. The second row in Figure 7 presents the
qualitative comparison. As shown in the figure, the frame
generated without DFW contained tearing artifacts in the
animated regions. Table 4 shows an increase in the LPIPS
score, which indicates that excluding DFW degraded the
perceptual quality by introducing tearing artifacts.
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Table 4. Results of quantitative evaluation in ablation study. The
best scores are bolded.

Method LPIPS↓ MS-SSIM↑ RMSE↓
Ours - Full 0.0511 0.7165 21.8188
Ours - w/o FW 0.0524 0.6853 22.9816
Ours - w/o DFW 0.0537 0.6908 22.4993
Ours - w/o MSDFW 0.0629 0.6946 22.3227
Ours - w/o Mask 0.0564 0.6980 22.6213

Table 5. Quantitative evaluation results on GAN inversion. The
best scores are bolded.

w+ D10 FID↓ LPIPS↓ RMSE↓ MS-SSIM↑
✓ – 40.8276 0.0153 18.5901 0.7891
✓ ✓ 11.8231 0.0019 5.6410 0.9907

Multi-scale Deep Feature Warping Image frames gen-
erated with and without MSDFW were also compared. For
the case without MSDFW, only a single deep feature D10

was warped and propagated through the next blocks of
StyleGAN. The results of the qualitative comparison are
shown in the third row of Figure 7. As revealed in the fig-
ure, excluding MSDFW resulted in blurry textures in the
dynamic region. The quantitative comparison reported in
Table 4 shows a significant increase in the LPIPS score.
This indicates that excluding MSDFW degraded the percep-
tual quality, especially the texture details.

Segmentation Mask We compared the image frames
generated with and without a segmentation mask. For the
case without a mask, we used the initially predicted mo-
tion field for warping. The fourth row in Figure 7 shows
the qualitative result of this comparison. As shown in the
figure, excluding the mask resulted in erroneous movement
in the static regions. The quantitative comparison reported
in Table 4 reveals a significant degradation of MS-SSIM,
which indicates the structural distortion caused by the erro-
neous motion.

Deep Feature Inversion To evaluate the effectiveness of
GAN inversion, we compared the images reconstructed
with and without the use of the deep features D10. For the
case without deep feature inversion, only the latent codes
w+ of a pre-trained StyleGAN were used to reconstruct the
input landscape image. Figure 8 shows a qualitative result
of this comparison. As revealed in the figure, using only w+

failed to accurately reconstruct the details of the original
images. For quantitative comparisons, FID, LPIPS, RMSE,
and MS-SSIM were computed between I and Î . Table 5 re-
veals significant improvements in the perceptual quality of
the results when reconstructed using the deep features D10.

5. Limitations and Future Work
Our mask predictor and motion generator generally per-
formed well for landscape images. However, automatic pre-
diction cannot be accurate for all images because most land-
scape images contain inherent ambiguity in their motion

(a) (b)

Figure 9. Limitations of StyleCineGAN: (a) automatic prediction
of motion cannot be accurate for all images, and (b) the motion of
a very thin structured object is hard to be isolated.

directions except for some obvious cases (e.g., waterfalls).
The failure case is illustrated in Figure 9 (a). User-defined
motion hints can be used to resolve such ambiguities and
provide further control capability during the generation pro-
cess [18, 19]. In addition, it is hard for our method to isolate
the motion of a very thin structured object placed within the
animated region as shown in Figure 9 (b). This is because
our method performs warping of features at multiple res-
olutions, in which low-resolution features cannot spatially
represent the thin structures.

In this work, we mainly focused on animating the land-
scape images, particularly skies and fluids, while putting
other types of animations outside the scope. In future devel-
opments, we would like to expand the capabilities to include
other forms of motion. Investigating the rotating hands of a
clock, the playing arm of a guitarist moving up and down,
and a flag or the wings of a bird fluttering for cinemagraph
generation would be a very interesting direction to pursue.

6. Conclusion
We proposed the first approach that leverages a pre-trained
StyleGAN for high-quality one-shot landscape cinema-
graph generation. In contrast to previous studies, our
method does not require training a large image generator
from scratch, and also systematically improves the resolu-
tion of the generated cinemagraphs to 1024×1024. At the
core of our method, we utilized the deep features of a pre-
trained StyleGAN, because those features can help preserve
spatial information and encode both high-level semantic
and low-level style appearances. Using our MSDFW ap-
proach, we applied the predicted motion to the deep fea-
ture space of StyleGAN. Both qualitative and quantitative
results confirm that our method substantially outperforms
existing baselines.
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