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Figure 1. Generalized dense prediction. (left) We leverage the pre-trained text-to-image diffusion model [47] as a prior for various dense
prediction tasks. (right) With only a small amount of labeled training data in a limited domain (i.e., 10K bedroom images with labels) for
each task, our method performs favorably against SOTA predictors [5, 15, 26] on arbitrary images.

Abstract

Contents generated by recent advanced Text-to-Image
(T2I) diffusion models are sometimes too imaginative for
existing off-the-shelf dense predictors to estimate due to the
immitigable domain gap. We introduce DMP, a pipeline uti-
lizing pre-trained T2I models as a prior for dense predic-
tion tasks. To address the misalignment between determin-
istic prediction tasks and stochastic T2I models, we refor-
mulate the diffusion process through a sequence of interpo-
lations, establishing a deterministic mapping between input
RGB images and output prediction distributions. To pre-
serve generalizability, we use low-rank adaptation to fine-
tune pre-trained models. Extensive experiments across five
tasks, including 3D property estimation, semantic segmen-
tation, and intrinsic image decomposition, showcase the
efficacy of the proposed method. Despite limited-domain
training data, the approach yields faithful estimations for
arbitrary images, surpassing existing state-of-the-art algo-
rithms. The code is available at https://github.com/
shinying/dmp.

1. Introduction

Text-to-image (T2I) diffusion models [11, 19, 47, 50] have
achieved unprecedented progress on text-guided image gen-
eration, producing highly imaginative and realistic images
from diverse and free-from textual descriptions. These ad-
vancements open up a new era of AI-aided content creation
with applications spanning various domains [1, 22, 43, 45,
49, 53, 61]. However, the creativity of images generated by
T2I models poses challenges for off-the-shelf dense (e.g.,
depth, normal, segmentation) prediction methods [5, 15, 26]
due to the domain gap. For example, the ZoeDepth [5]
approach fails to accurately predict the depth of the cu-
bism painting shown in the sixth column in Figure 1. Such
property predictions are vital for understanding high-level
semantics of generated contents and can facilitate various
downstream applications such as 3D imaging [54] and re-
lighting [73].

Existing dense prediction models are typically trained on
“real-world” images regardless of the training dataset scale.
While these models aim for generalization, bridging the do-
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main gap between real-world and T2I-generated images re-
mains challenging, as we demonstrate in the right-hand side
of Figure 1. A potential solution is to take advantage of the
inherent generalizability of pre-trained T2I models, for ex-
ample, by formulating dense prediction as image-to-image
translation. However, while several recent efforts have been
made to solve various image-to-image translations with pre-
trained T2I models [7, 22, 43], we show in Section 4 that
these methods are not directly applicable.

Leveraging pre-trained T2I models as a prior for dense
prediction is challenging for two reasons. First, most dense
prediction tasks are inherently deterministic, posing diffi-
culties when adapting a pre-trained T2I model designed for
stochastic text-to-image generation. Second, it is crucial to
strike a balance between learning target tasks and retaining
the inherent generalizability of pre-trained T2I models. In
other words, learned dense predictors should generalize to
arbitrary images from the training data in a limited domain.

In this paper, we propose DMP (Diffusion Models as
Priors) to leverage the pre-trained T2I model [47] as a
prior for generalized dense prediction. To resolve the
determinism-stochasticity misalignment, we introduce a de-
terministic mapping between the input RGB images and
output prediction distributions. Specifically, we reformu-
late the diffusion process as a chain of interpolations be-
tween input RGB images and their corresponding output
signals, where the importance of input images gradually in-
creases over the diffusion process. The reverse diffusion
(i.e., known as denoising or generation in original T2I) pro-
cess becomes a series of transformations that progressively
synthesize desired output signals from input images. With-
out randomization, such as Gaussian noise imposed, the
mapping is entirely deterministic. In addition, to retain the
generalizability of the pre-trained T2I model while learn-
ing target tasks, we use low-rank adaptation [24] to fine-
tune the pre-trained model with the aforementioned deter-
ministic diffusion process for each dense prediction task.
Figure 1 demonstrates the generalization ability of the pro-
posed method on the deterministic normal, depth, and seg-
mentation prediction problems.

We conduct extensive quantitative and qualitative exper-
iments on five dense prediction tasks to evaluate the pro-
posed DMP approach: 3D property estimation (depth, nor-
mal), semantic segmentation, and intrinsic image decompo-
sition (albedo, shading). We show that with only a small
amount of limited-domain training data (i.e., 10K bedroom
training images with labels), the proposed method can pro-
vide faithful estimations of the in-domain and unseen im-
ages, especially those that the existing SOTA algorithms
struggle to handle effectively. We summarize the contri-
butions as follows:

• We propose DMP, an approach leveraging the pre-
trained T2I model as a prior for dense prediction tasks.

• We design an image-to-prediction diffusion process
that adapts the stochastic T2I model for deterministic
dense prediction problems.

• We use five dense prediction tasks to validate that the
proposed method obtains faithful estimation on arbi-
trary images despite training with a small amount of
data in a limited domain.

2. Related Work

Diffusion models. Diffusion models estimate a target data
distribution by modeling the transition from a noisy version
of the distribution [23, 57]. Recently, diffusion models have
shown unprecedented quality in the text-to-image [47, 50]
setting by training on large-scale datasets [52]. The ad-
vancements unleash various text-guided image manipula-
tion applications [1, 7, 9, 22, 40, 43, 45, 53]. The stochas-
ticity in the generation process, a preferred property in
most applications, derives from the initial noise and ad-
ditional noise added during the denoising process. How-
ever, the dense prediction problems are usually determin-
istic. Some recent methods adopt deterministic sampling
algorithms [30, 35, 58] and reformulate the diffusion and
generative process by α-blending and de-blending [21].
Though the mapping between initial noise and outputs in
target distributions is deterministic, the correlation between
each noise and output sample is stochastic. If adapted to de-
terministic tasks, the model may generate high-quality out-
puts unfaithful to input images.

Image-to-image translation. The task aims to learn a map-
ping between two visual domains. Early efforts [8, 25,
31, 42, 79, 80] mostly make use of generative adversar-
ial networks and cycle consistency loss to learn the trans-
lation from scratch. With StyleGAN [28, 29] showing
high-quality synthesis on certain categories, some meth-
ods [46, 63] seek to achieve image-to-image translation
using pre-trained StyleGAN by training an additional en-
coder. However, the translation is limited to certain cat-
egories. Recently, following the success of large-scale
text-to-image models, attempts have been made to perform
image-to-image translation with pre-trained diffusion mod-
els [7, 22, 43, 65]. These methods, however, are not directly
applicable to the dense prediction task.

Fine-tuning text-to-image diffusion models. In addition
to image-to-image translation, pre-trained diffusion mod-
els are adopted to take additional modalities [33, 75], be
customized on certain objects [16, 48] or styles [76], and
synthesize videos [17, 20, 36]. These methods train ad-
ditional zero-initialized layers [75], manipulate attention
modules [17, 33], learn a token embedding [16, 76], or learn
parameter offsets with low-rank matrices [24]. In this work,
we adopt the low-rank adaptation [24] to fine-tune only pa-
rameter offsets of attention layers.
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Generative prior for dense prediction. Prior work has
leveraged pre-trained generative models as a prior for other
tasks, such as representation learning [13], as the latent fea-
tures of pre-trained generative models are found to be rich
in semantics [64, 70, 72]. Bhattad et al. [6] manipulates
style latents of StyleGAN [27] and reveals its learned abil-
ity to estimate image properties, but the generalizability is
limited. Some works reuse [2, 18, 71, 77] or merge [62]
latent features of pre-trained denoising U-Nets to perform
segmentation and depth estimation. Others [67, 68] trans-
form generation models into multi-task generalists by stan-
dardizing the outputs of tasks as images. In this work, in-
stead of developing a specific approach for a particular task,
we focus on analyzing the potential of pre-trained models
as a prior for general dense prediction through a universal
transferring framework.

3. Method
Our goal is to leverage the pre-trained T2I diffusion model
as a prior to learn a dense prediction task from a set of la-
beled training data D = {(xi, yi)}ni=1, where xi denotes
the input image, yi indicates the corresponding output (e.g.,
depth map), and xi, yi ∈ RH×W×3. We first describe the
text-to-diffusion models used as the prior in Section 3.1.
Then we introduce the proposed DMP approach in Sec-
tion 3.2.

3.1. Text-to-Image Diffusion Models

We use the pre-trained T2I latent diffusion model [47] as the
prior. It consists of an autoencoder and a U-Net. The au-
toencoder converts between an image y ∈ RH×W×3 and its
latent feature ỹ ∈ Rh× w×c, where (h,w) = (H/8,W/8)
and c represents the channel size of latent features. Since we
do not modify the autoencoder in the proposed approach,
we use y to represent the latent feature ỹ to simplify the
annotation in this paper.

The U-Net model takes as input a text description and
learns to reverse the following diffusion process that gradu-
ally turns the image y into noise map yT :

yt =
√
ᾱty +

√
1− ᾱtϵt ϵ ∼ N (0, I), (1)

where t = [1, · · · , T ], and ᾱt is the noise schedule [23].

3.2. Leveraging Diffusion Prior

There are two challenges to leverage (i.e., fine-tune) the
pre-trained T2I approach for estimating the pixel-level out-
put (e.g., depth) y from an input image x: 1) determinism-
stochasticity misalignment and 2) generalizability. We in-
troduce the solutions to tackle these two issues as follows.
Deterministic diffusion. The diffusion process described
in Eq. (1) is designed specifically for stochastic image gen-
eration. However, the mapping between input images and

= =… …

Figure 2. Deterministic diffusion process. We formulate the dif-
fusion process as a chain of interpolations between an input image
x and output y. The U-Net model is fine-tuned to gradually trans-
form the input x to the desired dense prediction y.

outputs in dense prediction problems is typically determin-
istic. We observe that directly applying the diffusion pro-
cess in Eq. (1) to the dense prediction tasks introduces
unnecessary variation in outputs that leads to apparent ar-
tifacts. Therefore, we use the blending strategy [21, 34] and
re-design the diffusion process as follows. Instead of con-
verting from noise maps to images in the conventional T2I
method, the diffusion process in our DMP approach directly
maps between the input image x and output y. As illustrated
in Figure 2, the proposed diffusion process is formulated as

yt =
√
ᾱty +

√
1− ᾱtx t = [1, · · · , T ]. (2)

As we can see from Figure 2 and Eq. (2), the proposed
scheme gradually increases the weight of the input image
x over the diffusion process. This can be considered as
progressively morphing the output y into the input image
x via interpolation. As a result, we can fine-tune the U-Net
model to reverse the diffusion process that interactively “de-
morphs” the input image x and gives the final prediction y.

Parameterization. We explore various parameterizations
for the U-Net model to make different predictions. As
discussed in Section 4.5, we empirically find that the v-
prediction [51] works well for the dense prediction tasks.
Specifically, the U-Net model vθ is fine-tuned using the fol-
lowing mean square loss:

LDMP = E(x,y),t

[
∥(
√
ᾱtx−

√
1− ᾱty)− vθ(yt, t)∥22

]
,

(3)
where vθ(yt, t) is the U-Net prediction. The reverse diffu-
sion process can then be formulated as

yt−1 =
√
ᾱt−1(

√
ᾱtyt −

√
1− ᾱtvθ(yt, t))

+
√
1− ᾱt−1x t = [T, · · · , 1],

(4)

where yT = x and y0 is the desired output.

U-Net fine-tuning. To learn the target tasks while retain-
ing the inherent generalization ability of the pre-trained T2I
model, we use the low-rank approximation [24] scheme to
fine-tune all the attention layers in the U-Net model to min-
imize the objective described in Eq. (3).
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Figure 3. 3D property estimation of arbitrary input images. The first row shows the input images, while the remaining rows present the
normals and depth estimated by different approaches. The proposed DMP method gives faithful estimation, even on the images where the
off-the-shelf [5, 26] schemes fail to handle.

4. Experimental Results

4.1. Experiment Setup

We evaluate the proposed DMP approach using five dense
prediction tasks, including 3D property estimation (i.e.,
depth and normals), semantic segmentation, and intrinsic
image decomposition (i.e., albedo and shading).

Datasets. To better analyze generalizability by varying
training and test data domains, we conduct the evaluation
with synthetic images. We first generate diverse text de-
scriptions using a large language model [39] by filling a
keyword in a prompt template modified from the one used
in Parmar et al. [44]. We then use a text-to-image diffusion
model [47] to synthesize the images according to the text
descriptions. Second, we use the following off-the-shelf
predictors to generate the pseudo ground truth for each im-
age: Omnidata v2 [26] for surface normals, ZoeDepth [5]
for monocular depth, EVA-2 [15] for semantic segmenta-
tion, and PIE-Net [12] for intrinsic image decomposition
(albedo, shading). Finally, we follow the protocol used in
Bhattad et al. [6] to generate a set of training data, and three

sets of test data:

• Training set: We generate 10K labeled images using
the keyword “bedroom”.

• In-domain test set: We generate 2K labeled images us-
ing the keyword “bedroom”.

• Out-of-domain test set: We use the 409 category
names of the indoor scenes in the SUN dataset [69]
as the keywords to generate 2K labeled images. The
set is considered to be out-of-domain compared to the
training set. Nevertheless, the off-the-shelf models that
provide the pseudo ground truth still work well since
the images belong to normal indoor scenes.

• Arbitrary test set: We use random textual descriptions
to generate the images. Since the generated images
are almost free-form, the off-the-shelf models cannot
provide proper predictions. Therefore, we consider
the off-the-shelf approaches as compared methods and
present only the visual comparisons.

Note that we present the quantitative results only on the in-
domain test set for semantic segmentation due to the se-
mantic label set constraint. In addition, we show qualitative
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Table 1. Quantitative comparisons on 3D property estimation. We compute the metrics using the estimated results and the pseudo
ground truth generated by the off-the-shelf predictors.

Normal Depth

In-domain Out-of-domain In-domain Out-of-domain

L1↓ Ang↓ L1↓ Ang↓ REL↓ δ ↑ RMSE↓ REL↓ δ ↑ RMSE↓

SPADE [41] 0.0708 0.1635 0.1268 0.2833 0.2132 0.4961 0.1379 0.3587 0.3190 0.2554
DRIT++ [32] 0.0784 0.1723 0.1350 0.3006 0.3792 0.2458 0.2134 0.4374 0.2585 0.3212

SDEdit [38] 0.2599 0.5087 0.2675 0.5293 0.4656 0.3533 0.3240 0.6640 0.2495 0.3382
DDIB [60] 0.1849 0.4210 0.2271 0.4847 0.3087 0.5130 0.2367 0.6275 0.2788 0.3120
IP2P (hard) [7] 0.3017 0.5468 0.3168 0.5757 0.4834 0.3235 0.3358 0.6450 0.2252 0.3461
IP2P (learned) [7] 0.3550 0.7181 0.3397 0.6836 0.3965 0.3302 0.3494 0.5182 0.2664 0.3261
VISII [40] 0.2081 0.4386 0.2448 0.4895 0.3498 0.4405 0.2912 0.5364 0.2855 0.3181

DMP 0.0514 0.1156 0.0872 0.1886 0.1072 0.8861 0.1020 0.2117 0.6395 0.1360

comparisons of bedroom images using diverse styles (e.g.,
cyberpunk, comic) to understand the generalization ability.

Compared methods. We compare our method with the
GAN-based image translation methods SPADE [41] and
DRIT++ [32, 37]. These models are trained from scratch
using the training set (i.e., 10K labeled bedroom images).
We also include for comparison the following approaches
that leverage the pre-trained T2I model as the prior:

• SDEdit [38]: We fine-tune using the training label im-
ages {yi}10Ki=1 with the standard diffusion process in
Eq. (1). Then we follow the original SDEdit approach
that adds the noise to an input x and uses the fine-tuned
model to de-noise for generating the output y.

• DDIB [60]: We use the same fine-tuned model in
SDEdit and adopt the DDIB method to predict the out-
put y from the input x.

• InstructPix2Pix (IP2P) [7]: We evaluate two versions.
In IP2P (hard), we use the pre-defined instructions
such as “make it into the corresponding depth map”
as the input to the model for inference. For the second
version IP2P (learned), we optimize the token ∗ in the
input text “make it into ∗” using the training set.

• VISII [40]: We use their approach for fine-tuning with
the training set and inference.

4.2. 3D Property Estimation

Surface normals [10, 14] and depth [56, 59] are crucial to
3D visual applications such as 3D reconstruction [74] and
autonomous driving [66]. To evaluate normal prediction,
we use the average L1 distance and average angular error
Ang. For monocular depth, given the ground truth depth
yi and predicted depth ŷi, we use the average relative error
REL = 1

M

∑M
i=1 |yi− ŷi|/yi, percentage of pixels δ where

max(yi/ŷi, ŷi/yi) < 1.25, and the root mean square error
RMSE of the relative depth. Specifically, we normalize the
ground-truth and predicted depth maps separately to be in
the range of [0, 1] as the relative depth.

The quantitative comparisons are presented in Table 1,

and qualitative results are shown in Figure 4. The pro-
posed approach performs favorably against the compared
algorithms in terms of accuracy and generalization ability.
Although the REL and δ scores reported for our method
degrade from the in-domain to out-of-domain test sets, the
RMSE score of the relative depth remains the same. This
is due to the scene scale difference between the training
images (bedroom) and test images (larger spaces such as
sports fields). The RMSE measurement is computed based
on relative depth, which is more resistant to the scene scale
change. Consistent with the quantitative results, we observe
that the depth predicted by our method is in the correct order
for the out-of-domain images in Figure 4.

Generalization ability. We demonstrate the generalizabil-
ity of the proposed approach in Figure 3, where we use ar-
bitrary images as the inputs. Although our method is fine-
tuned with only 10K bedroom images with labels, it faith-
fully estimates the 3D property even on those images that
the off-the-shelf methods fail to handle.

4.3. Semantic Segmentation

Semantic segmentation [78] is a fundamental visual under-
standing task. Since the prediction is categorical, we use a
simple conversion for regression models to predict discrete
labels. We first generate ground-truth labels using the off-
the-shelf EVA-2 [15] model. The label maps are then trans-
formed into color maps where each category has different
colors. The training and inference of the diffusion model
are conducted using the color maps (in the RGB space).
During inference, the predicted color maps are converted to
categorical label maps by assigning each pixel to its nearest
category in the color space.

We report the intersection over union (IoU) and accuracy
to measure the in-domain performance in Table 2. The pre-
diction by the proposed scheme is reasonable across all cat-
egories compared to the existing methods. Figure 5 demon-
strates the results of our method and pseudo ground truth
with the in- and out-of-domain (i.e., bedroom images in di-

7865



DMP

DMP

DMP

DMP

Off-the-shelf Off-the-shelf

Sh
ad

in
g

Al
be

do
In
pu

t

Off-the-shelf Off-the-shelf

DMP

DMP

DMP

DMP

N
or
m
al

De
pt
h

Off-the-shelf Off-the-shelf

Off-the-shelf Off-the-shelf

(a) In-domain (b) Out-of-domain

Figure 4. Qualitative results. The first row shows the input images. In the following, every two rows show the results predicted by the
off-the-shelf predictors (which we considered as pseudo ground truth) and those by the proposed method.

verse styles) input images. Particularly in out-of-domain
examples, our model gives favorable predictions compared
to the off-the-shelf approach, e.g., the painting of the first,
the curtain of the second, the window of the third, and the

carpet of the fourth images in Figure 5 (b). This validates
our idea that leverages the pre-trained T2I diffusion model
as the prior for better generalization.
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Table 2. Quantitative comparisons on semantic segmentation. We compute the metrics using the estimated results and the pseudo
ground truth generated by the off-the-shelf predictors.

Bed Pillow Lamp Window Painting Mean

Acc↑ mIoU↑ Acc↑ mIoU↑ Acc↑ mIoU↑ Acc↑ mIoU↑ Acc↑ mIoU↑ Acc↑ mIoU↑

SPADE [41] 0.8677 0.6370 0.5861 0.3473 0.3659 0.2084 0.6925 0.5627 0.5249 0.3826 0.6074 0.4276
DRIT++ [32] 0.8485 0.4587 0.2427 0.1435 0.1218 0.0776 0.3023 0.2414 0.2579 0.2114 0.3546 0.2265

SDEdit [38] 0.0958 0.0901 0.3824 0.0864 0.1522 0.0651 0.4501 0.2593 0.1333 0.0746 0.2428 0.1151
DDIB [60] 0.3984 0.3040 0.2256 0.0637 0.1630 0.0593 0.4741 0.2896 0.1728 0.0881 0.2868 0.1609
IP2P (learned) [7] 0.0714 0.0620 0.0086 0.0042 0.0228 0.0116 0.3532 0.1699 0.0386 0.0192 0.0989 0.0534
VISII [40] 0.0060 0.0059 0.0261 0.0136 0.0014 0.0011 0.2576 0.1772 0.0013 0.0012 0.0585 0.0398

DMP 0.8947 0.8506 0.5871 0.3645 0.6399 0.4414 0.8338 0.7335 0.7490 0.6735 0.7409 0.6127

DMP

Off-the-shelf

DMP

Off-the-shelf

(a) In-domain (b) Out-of-domain
Figure 5. Qualitative results on semantic segmentation. The first, second, and third rows respectively show the input images, pseudo
ground truth predicted by an off-the-shelf model, and our results. The out-of-domain samples in (b) are bedroom images in diverse styles.

Table 3. Quantitative comparisons on intrinsic image decom-
position. We compute the metrics to measure the difference be-
tween the estimated results and the pseudo ground truth created
by the off-the-shelf predictors.

Albedo Shading

In Out In Out

SPADE [41] 0.0021 0.0030 0.0031 0.0040
DRIT++ [32] 0.0296 0.0392 0.0309 0.0408

SDEdit [38] 0.0375 0.0471 0.0501 0.0671
DDIB [60] 0.0411 0.0443 0.0403 0.0557
IP2P (hard) [7] 0.0329 0.0479 0.0361 0.0421
IP2P (learned) [7] 0.0215 0.0250 0.0290 0.0309
VISII [40] 0.0145 0.0246 0.0275 0.0285

DMP 0.0041 0.0064 0.0051 0.0070

4.4. Intrinsic Image Decomposition

Intrinsic image decomposition [4] recovers albedo and
shading properties from RGB images. It facilitates appli-
cations such as recoloring [3] and relighting [55]. Simi-

Table 4. Effect of different parameterizations. We fine-tune the
U-Net model to predict different signals in each reverse diffusion
step to get the final outputs: predicting the input image x, pre-
dicting the output y, and v-prediction described in Eq. (3). The
experiment is conducted on the surface normal prediction task.

In-domain Out-of-domain

L1↓ Ang↓ L1↓ Ang↓

Predicting x 0.0736 0.1629 0.1319 0.2764
Predicting y 0.0590 0.1291 0.0888 0.1914

v-prediction 0.0514 0.1156 0.0872 0.1886

lar to PIE-Net [12], we use the mean square error MSE as
the evaluation metric to compute the distance between the
predicted and pseudo ground-truth estimations. We show-
case the qualitative results in Figure 4 and quantitative com-
parisons in Table 3. The reported errors of most methods
are an order of magnitude larger than ours. Notably, while
our method and SPADE work well in both in- and out-of-
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Figure 6. Qualitative comparisons between various parameter-
izations. We fine-tune the U-Net model to predict different signals
in each reverse diffusion step to get the final output: predicting the
input image x, predicting the output y, and v-prediction described
in Eq. (3).

0.12

0.14 Ang

12 5 10 20
steps

0.05

0.07 L1

Figure 7. Effect of varying the numbers of diffusion steps. We
report the in-domain performance on the surface normal predic-
tion task. In the case of single-step, we train the U-Net model to
directly predict outputs from input images.

domain settings, we found our method less influenced by ar-
tifacts in pseudo ground truth and to offer more reasonable
estimations. More details are provided in the supplementary
document.

4.5. Ablation Study

Parameterization. We study the effect of employing vari-
ous parameterizations. Specifically, we fine-tune the U-Net
model to make different predictions in each reverse diffu-
sion step for obtaining the final prediction: 1) predicting
the input image x, predicting the output y (similar to x0-
prediction in standard diffusion models), and v-prediction
described in Eq. (3). We formulate each parameterization
in detail in the supplementary document. The quantitative
results are shown in Table 4 and the qualitative comparisons
are presented in Figure 6. Predicting the input image x gen-
erates accurate results in the in-domain setting. However, it
fails to generalize to unseen domains. On the other hand,

step = 1 5 (Ours)

Figure 8. Single vs. multiple diffusion steps. In the single-step
approach, we train the U-Net network to directly predict outputs
from input images. The single-step approach does not generalize
to unseen images well.

predicting the output y demonstrates preferred generaliza-
tion capability, but tends to produce blurry results with few
details. We choose to use the v-prediction approach as it
produces accurate results of arbitrary images.
Number of diffusion steps. We analyze the performance
of our method with different numbers of diffusion steps in
the inference stage. The quantitative comparisons on the
normal prediction are presented in Figure 7. Using 5 steps
strikes a good balance between inference speed and accu-
racy. Furthermore, we study an extreme case of using a sin-
gle step. We train the U-net to directly predict the output y
from the input image x. Although it shows competitive per-
formance in the in-domain setting according to Figure 7, we
find that the performance degrades significantly with the ar-
bitrary input images, as examples shown in Figure 8. Con-
sidering the generalizability, inference speed, and accuracy,
we use 5 generation steps for all the other experiments.

5. Conclusion
In this work, we leverage a pre-trained T2I diffusion model
for generalizable dense prediction. The core of our method
is the design of the deterministic diffusion process that
adapts the stochastic T2I framework for the deterministic
prediction tasks. With low-rank approximation, the pro-
posed approach learns the target tasks while retaining the in-
herent generalization ability of the T2I model. We show that
with only a small number of labeled training data in a lim-
ited domain (i.e., 10K bedroom images), our DMP scheme
makes faithful predictions on arbitrary images. We be-
lieve that this work establishes a foundation for achieving
ultimately-generalizable visual understanding in the future.
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