-
[pdf]
[supp]
[arXiv]
[bibtex]@InProceedings{Yan_2025_CVPR, author = {Yan, Ziang and Li, Zhilin and He, Yinan and Wang, Chenting and Li, Kunchang and Li, Xinhao and Zeng, Xiangyu and Wang, Zilei and Wang, Yali and Qiao, Yu and Wang, Limin and Wang, Yi}, title = {Task Preference Optimization: Improving Multimodal Large Language Models with Vision Task Alignment}, booktitle = {Proceedings of the Computer Vision and Pattern Recognition Conference (CVPR)}, month = {June}, year = {2025}, pages = {29880-29892} }
Task Preference Optimization: Improving Multimodal Large Language Models with Vision Task Alignment
Abstract
Current multimodal large language models (MLLMs) struggle with fine-grained or precise understanding of visuals although they give comprehensive perception and reasoning in a spectrum of vision applications. Recent studies either develop tool-using or unify specific visual tasks into the autoregressive framework, often at the expense of overall multimodal performance. To address this issue and enhance MLLMs with visual tasks in a scalable fashion, we propose Task Preference Optimization (TPO), a novel method that utilizes differentiable task preferences derived from typical fine-grained visual tasks. TPO introduces learnable task tokens that establish connections between multiple task-specific heads and the MLLM. By leveraging rich visual labels during training, TPO significantly enhances the MLLM's multimodal capabilities and task-specific performance. Through multi-task co-training within TPO, we observe synergistic benefits that elevate individual task performance beyond what is achievable through single-task training methodologies. Our instantiation of this approach with VideoChat and LLaVA demonstrates an overall 14.6% improvement in multimodal performance compared to baseline models. Additionally, MLLM-TPO demonstrates robust zero-shot capabilities across various tasks, performing comparably to state-of-the-art supervised models.
Related Material