
Adversarial Example Detection Using Latent Neighborhood Graph

Ahmed Abusnaina†�, Yuhang Wu‡, Sunpreet Arora‡, Yizhen Wang‡,
Fei Wang‡, Hao Yang‡, and David Mohaisen†¶

† University of Central Florida, ‡ Visa Research
� ahmed.abusnaina@knights.ucf.edu, ¶ mohaisen@ucf.edu,

‡{yuhawu, sunarora, yizhewan, feiwang, haoyang}@visa.com

Input Image Embedding Space

Neighborhood Embeddings

G
ra

ph
 C

on
st

ru
ct

io
n

Em
be

dd
in

g
Ex

tra
ct

io
n

Pre-trained
Classifier

Figure 1: Generation of Latent Neighborhood Graph (LNG) for adversarial example detection. After computing the input
example embedding, a LNG that describes the local manifold around the input example is constructed using both adversarial
and benign example embeddings from a reference database. The LNG is then classified using a graph discriminator to
determine whether the graph is generated from an adversarial or benign example.

Abstract

Detection of adversarial examples with high accuracy is
critical for the security of deployed deep neural network-
based models. We present the first graph-based adversar-
ial detection method that constructs a Latent Neighborhood
Graph (LNG) around an input example to determine if the
input example is adversarial. Given an input example, se-
lected reference adversarial and benign examples (repre-
sented as LNG nodes in Figure 1) are used to capture the
local manifold in the vicinity of the input example. The LNG
node connectivity parameters are optimized jointly with the
parameters of a graph attention network in an end-to-end
manner to determine the optimal graph topology for ad-
versarial example detection. The graph attention network
is used to determine if the LNG is derived from an adver-
sarial or benign input example. Experimental evaluations
on CIFAR-10, STL-10, and ImageNet datasets, using six
adversarial attack methods, demonstrate that the proposed
method outperforms state-of-the-art adversarial detection
methods in white-box and gray-box settings. The proposed
method is able to successfully detect adversarial examples
crafted with small perturbations using unseen attacks.

1. Introduction

Deep learning techniques are being widely used in var-
ious domains including computer vision [6, 13, 10, 24],
natural language processing [12, 43], and speech recogni-
tion [16, 37]. However, an extensive line of research has
shown that an attacker can manipulate the prediction of a
deep learning-based classification system by adding a small
perturbation to deep learning model inputs, intermediate
embeddings [19, 11, 8], or by inducing distribution shifts
[26, 41]. These results highlight a major security issue for
deep neural network-based prediction systems, especially
the ones deployed in critical applications such as access
control and user authentication [49].

To address this security concern, a variety of defense
mechanisms have been proposed. These defense mecha-
nisms can be broadly categorized into two categories. The
proactive approaches, e.g. adversarial training [7, 14] and
robustness-driven regularization [42], explicitly considers
the presence of known adversarial attack methods to train
a model, which increases model robustness to adversarial
perturbation. However, in order to use this approach, ex-
isting models need to be re-trained, which can be costly.
In contrast, the reactive approach requires no re-training of

7687

existing models; instead, it builds a detector to filter adver-
sarial examples in the test environment, and thus becomes
a viable solution for already deployed systems. In addition,
detection-based defense mechanisms can also help to iden-
tify security-compromised input sources.

A key finding of recent state-of-the-art detection meth-
ods [47, 38] is that there is a significant correlation between
the legitimacy of an input example and its neighborhood in-
formation in the learned embedding space. For instance, the
Deep k-Nearest Neighbors (DkNN) [47] detector computes
the embedding of nearest neighbors of the input example
at each layer of the network, and subsequently uses both
the embedding and the class labels of the nearest neigh-
bors to determine if the input is adversarial. Inspired by
this insight, we propose a method to leverage dynamically
constructed neighborhood graphs for detecting adversarial
examples. We introduce Latent Neighborhood Graph – a
general structure encoding not only the neighbors of the in-
put, but also the relation between them – to represent the
neighborhood of the input. Compared to DkNN, the bene-
fits of our solution are three folds: (i) LNG covers multi-hop
neighbors which characterizes the local manifolds of the in-
put example, while DkNN only describes the manifold of
the input example, (ii) LNG aggregates neighborhood in-
formation adaptively based on the connectivity learned on
the embedding space which encodes much richer informa-
tion than the class labels employed in DkNN, (iii) LNG in-
corporates both adversarial and benign neighbors in detec-
tion while DkNN only utilizes benign neighbors due to the
measurement of consistency of the neighborhood labels at
each layer of the network. In addition to information en-
coding, existing detectors are also limited by the computa-
tion cost. PeerNet [21], a graph-based convolutional net-
work claimed to be robust to adversarial attacks, relies on
pixel-wise neighborhood retrieval based on the intermedi-
ate 2D feature maps of a deep neural network, which in-
creases the computation burden at test time. To overcome
the aforementioned limitations, our approach purely relies
on the embeddings at the final hidden layer of a deep neural
network. We show that a combination of graph attention net
and our novel LNG representation suffice to achieve state-
of-the-art adversarial example detection performance.

In the proposed method, input example is used as a cen-
tral node to construct a latent graph connected with samples
curated from a reference dataset (see Figure 1). The graph
describes the local manifold patterns for both the input ex-
ample and its immediate benign and adversarial neighbors
for adversarial detection. Both the nodes and the linkage of
the graph are estimated on-the-fly, and we train the graph
constructor and discriminator in an end-to-end manner. Ex-
perimental evaluations on three benchmark datasets show
that the proposed approach yields state-of-the-art adversar-
ial example detection performance against various known

and unknown adversarial attacks, while maintaining high
performance (more than 80%) against best-efforts white-
box attack configuration.

The contributions of this work are as follows:

• We present the first work that poses adversarial example
detection as a graph classification problem. Our method
efficiently constructs a latent neighborhood graph using
reference examples for adversarial example detection.

• The proposed method estimates the latent neighborhood
graph’s adjacency matrix on-the-fly based on the dis-
tances of neighborhood examples, and adaptively aggre-
gates the information from both benign and adversarial
neighbors for adversarial example detection.

• State-of-the-art gray-box and white-box detection perfor-
mance on adversarial examples generated using known
and unseen adversarial example generation methods.

2. Related Work
A variety of proactive defense techniques have been pro-

posed to counter adversarial examples. Some of the earliest
ones include adversarial training [19, 7, 14, 35, 28], gradient
masking [14], distillation networks [29], feature squeezing
[36], and k-NN search [4, 48]. Reactive approaches, on the
contrary, aim to effectively learn to distinguish between be-
nign and adversarial examples [20, 44, 46, 18, 9]. For exam-
ple, Feiman et al. [32] develop a logistic regression-based
(LR) adversarial example detector that uses kernel density
and Bayesian uncertainty features. Ma et al. [38] estimate
a Local Intrinsic Dimensionality (LID) score at each neu-
ral network layer using extreme value theory, and charac-
terize key properties of the adversarial subspace for adver-
sarial example detection. Ma et al. [34] analyzed the deep
neural networks internals (i.e. weights) and proposed a net-
work invariants, including value invariants and provenance
invariants, extraction technique for adversarial example de-
tection. Even though the aforementioned methods achieve
competitive gray-box adversarial example detection accu-
racy, most of them can be circumvented using Carlini and
Wagner (CW)’s optimization-based attack [1]. Recently,
Hu et al. [33] proposed an algorithm that demonstrated em-
pirical robustness to the CW attack. The two key steps used
in this algorithm are: (i) the application of Gaussian noise
on the input example, and (ii) the use of the number of steps
required to change the classification of the example (from
benign to adversarial and vice versa) as a distance metric to
counter the powerful CW attack.

Another family of approaches uses nearest neighbors for
adversarial defense. Deep k-Nearest Neighbors (DkNN)
[47] method uses a k-nearest neighbor model at every layer
of the network to assess if the input example is adversar-
ial. Nearest neighbors, especially those that do not belong

7688

Table 1: Comparison of different adversarial detection
methods based on information used for defense. Use of (i)
adversarial examples (Adv. Ex.) for training, (ii) input em-
bedding space (Embedding) for prediction, (iii) detection is
independent from the sample class (Class-indep.), and (iv)
Graph-based adversarial detection (Graph).

Method Adv. Ex. Embedding Class-indep. Graph
Adv. training [14] � × × ×
Cohen et al. [15] � × � ×
Mahalanobis [23] � � × ×
DkNN [47] × � × ×
Hu et al. [33] � � × ×
LID [38] � � � ×
Ours � � � �

to the majority class, are used for this determination. Kimin
et al. [23] proposed a Mahalanobis distance-based method
that models the distribution of samples in each class in-
dependently. Compared to [47, 23], our class-independent
method does not make any prior assumption on the data dis-
tribution of a specific class and are less sensitive to the num-
ber of samples in each class. Recently, Svoboda et al. [21]
propose PeerNets, a deep network structure that aggregates
information from nearest neighbors to improve the robust-
ness to adversarial attacks, and Cohen et al. [15] used the
influence functions to identify important examples from a
training dataset for the adversarial example detection task,
and an LR classifier for predicting if the input example
is adversarial. While such approaches (e.g., [47, 21, 15])
yield competitive detection performance, they suffer from
high computational complexity: [47] requires the retrieval
of nearest neighbors from a subset of deep network layers,
[21] retrieves neighbors for each pixel on multiple 2D fea-
ture maps, and the method in [15] computes influence func-
tions for the entire training dataset online.

Table 1 compares key differences in adversarial detection
methods based on the information used for detection.

3. Methodology
Our defense mechanism first generates a latent neighbor-

hood graph (LNG) for each input example, and then uses
Graph Neural Networks (GNNs) to exploit the relationship
between nodes in the neighborhood graph to distinguish be-
tween benign and adversarial examples. The fundamental
premise is to harness the rich information in local mani-
folds with LNG, and use the GNNs model – with its high
expressiveness – to effectively find higher-order patterns for
adversarial example detection from the local manifolds of
the nodes encoded in the graph.

Figure 2 shows the overview of our defense mechanism.
First, for each image I in the data set, we extract its em-
bedding z from the pre-trained neural network model we
are defending, and use the embedding representation there-

(I)
Node Retrieval

Input Image Embedding Center Node

Reference Data

.
dh

Edge EstimationGraph Discriminator LNG

0

1

A

(z)

Zref

(X,A)

(V,X)

Figure 2: Overview of the proposed method.

after instead of the original pixel values. In addition to the
training data for the original learning task, we maintain an
additional reference data set for retrieving the manifold in-
formation. A neighborhood of n reference examples is se-
lected around z from the reference set. After retrieving the
reference examples, we construct the following two matri-
ces: the n×m embedding matrix X stores the embeddings
of neighborhood examples, where each row is a 1×m em-
bedding vector of one example; the n×n adjacency matrix
A encodes the manifold relation between all pairs of exam-
ples in the neighborhood. Since A is unknown, we propose
an efficient algorithm to estimate A based on the embed-
ding distance in the following sections. The LNG of z is
characterized by these two matrices. Finally, a GNN model
ingests both X and A as inputs, and predicts whether z is
an adversarial example.

In the following, we explain the main components of our
mechanism in detail. We first describe the creation of refer-
ence dataset, followed by generation of LNG, and the struc-
ture of our GNN model for adversarial example detection.

3.1. Reference Dataset

Given a training set of inputs Z, we randomly sam-
ple a subset of inputs Zref . We call such Zref the clean
reference set because the inputs are all natural. Given a
trained model for the original task, we can also create an
adversarially-augmented reference set: we first pick an at-
tack algorithm, create adversarial examples for all inputs in
Zref against the given model, and add the adversarial ex-
amples to Zref . The resulted adversarially-augmented ref-

7689

(a) Benign k-NNG (b) Adversarial k-NNG (c) Benign LNG (d) Adversarial LNG

Figure 3: Sample graphs generated by the proposed method. (a) and (c) show the k-NNG and LNG for the benign image,
while (b) and (d) show the k-NNG and LNG for the adversarial pair generated using the same image. Blue border refers to
the input image, while black and red borders refer to benign and adversarial neighbors, respectively.

erence set will have twice as many points as the clean ref-
erence set. We observe these adversarial samples are able
to encode information regarding the layout of adversarial
examples to benign examples in the local manifold.

3.2. Latent Neighborhood Graph

A latent neighborhood graph is characterized by an em-
bedding matrix X and an adjacency matrix A. We construct
an LNG by a 2-step procedure – node retrieval followed by
edge estimation. The node retrieval process selects a set of
points V in z’s neighborhood from the reference data set.
Stacking the embedding vectors of these points (including
z) yields the embedding matrix X . Edge estimation uses
a data-driven approach to determine the relationships be-
tween nodes in V , which yields the adjacency matrix A.

3.2.1 Node Retrieval

The construction of V starts with the k-nearest-neighbor
graph (k-NNG) of the input z and the nodes in Zref : each
point in Zref

⋃
{z} is a node in the graph, and an edge from

node i to node j exists iff j is among i’s top-k nearest neigh-
bors in Euclidean distance over the embedding space. We
then keep the nodes whose graph distance from z in the k-
NNG is within a threshold l. For example, if l = 1, then we
only keep the immediate top-k nearest neighbors of z (one-
hop neighbors); if l = 2, then we also keep the k nearest
neighbors for each z’s one-hop neighbors. Finally, we form
V with n neighbors to z. Based on this breadth-first-search
strategy to construct V , the node retrieval method discovers
all nodes with a fixed graph distance to z, repeats the same
procedure with increased graph distance until the maximum
graph distance l is reached, and then returns the n neighbors
to z from the discovered nodes.

Our approach can harness manifold information that is
otherwise not possible using Euclidean distance, e.g. the
Swiss-roll scenario [22]. We also note that when n = k,

the node retrieval process is equivalent to selecting n nearest
neighbors, like DkNN. Therefore, our approach offers more
flexibility in learning the local manifold.

3.2.2 Edge Estimation

Next, we determine the edges of the LNG based on the
nodes of k-NNG. The edges are paths to control the infor-
mation aggregation across the graph, which creates the con-
text to determine the center node’s class. Since each node’s
embedding is extracted independently, it is important to let
the system automatically determine the context used for ad-
versarial detection, and also aware of the pair-wise relation
between the query example and its neighbors. Motivated
by the design of Cosmo et al. [25], we connected all the
nodes in the generated graph with the center node using di-
rect linking and adopt a data-driven approach to re-estimate
the connections between neighbors. In particular, we model
the relation between two nodes i, j as a sigmoid function of
the Euclidean distance between them:

Ai,j =
1

1 + exp(−t · d(i, j) + θ)
,

where d(i, j) is the Euclidean distance between i and j, and
t, θ are two constant coefficients. Instead of manually as-
signing the coefficients t and θ, we make them learnable
parameters and optimize them in an end-to-end manner with
the graph discriminator introduced in the next section.

Figure 3 shows the k-NNG and LNG for a benign and
its corresponding CW-based adversarial “dog” image from
the CIFAR-10 dataset. The neighborhood nodes are highly
related to the input image embedding, while the connections
of LNG are estimated using the proposed approach.

3.3. Graph Discriminator

We use a specific graph attention network architec-
ture [31] to aggregate information from z and its neighbors,

7690

and at the same time learn the optimal t and θ to create
the right context from z′s neighbors for adversarial detec-
tion. The network takes two inputs: the embedding matrix
X and the adjacency matrix A of the latent neighborhood
graph. The graph attention network architecture consists of
four consecutive graph attention layers, followed by a dense
layer with 512 neurons, and a dense classification layer with
two-class output. Formally, let f denote a function in the
model class, and let Xz and Az denote the embedding and
adjacency matrix of an input z generated by our LNG algo-
rithm. During the training stage, we solve:

f∗ = argmin
f

∑
(z,y)

�(f(Az, Xz), y)

where � is the cross-entropy loss between the class probabil-
ity prediction and the true label. To summarize, method can
characterize the local manifold with LNG, and can adapt to
different local manifolds based on graph attention network.
Both factors are vital to our choice of using a GNN struc-
ture, and the empirical improvement of detection rates in
Section 4 validates our belief.

4. Experiments
The proposed adversarial example detection approach

is evaluated against six state-of-the-art adversarial example
generation methods: FGSM (L∞), PGD (L∞), CW (L∞),
AutoAttack (L∞), Square (L∞), and boundary attack. All
attacks are implemented as “non-targeted” attacks on three
datasets: CIFAR-10 [5], ImageNet dataset [6], and STL-
10 [3]. The non-targeted attacks are typically harder than
the targeted attacks to detect, as less perturbation is applied.
The performance is compared to four state-of-the-art adver-
sarial examples detection approaches, namely DkNN [47],
kNN [4], LID [38], as well as Hu et al. [33].
DkNN [47]: checks the label consistency of neighborhood
examples in each deep network layers to test whether the
input example is “off-manifold”.
kNN [4]: shares the same intuition with DkNN. However,
because it was originally proposed to work on a web-scale
database, it uses fewer layers than DkNN. We converted this
approach into an adversarial detector and employed the em-
bedding layer for the nearest neighbors’ retrieval.
LID [38]: characterizes properties of adversarial exam-
ples, which can be facilitated to detect adversarial examples
when accompanied with a simple k-NN classifier.
Hu et al. [33]: is one of the most recent algorithms for ad-
versarial detection, and was demonstrated to be extremely
robust to white-box adversarial attacks. The method relies
on an online search stage to measure the distance of the in-
put example to a decision boundary.

4.1. Experimental Setup

Training and Testing. The CIFAR-10 dataset is split into

Table 2: Detection performance (AUC) of the k-NNG dis-
criminator for different number of neighbors (k).

Neighbors
2 3 4 5 6

96.39% 98.86% 99.23% 99.54% 99.17%

three subsets, training set (45,000 images), reference set
(5,000 images), and testing set (10,000 images). For Ima-
geNet [30] dataset, we use the reference dataset of the 2012
original set, which contains a total of 50,000 labeled images
(50 images per class). The dataset is split into two subsets,
reference set (40,000) and testing set (10,000). For STL-10
dataset, we split the labeled images into three sets: training
set (4,000 images), reference set (1,000 images), and testing
set (8,000 images).

The ResNet-110 [40] classifier is trained on the CIFAR-
10 training set and yields a classification accuracy of
93.41%. A pre-trained Densenet-121 [17] model with em-
bedding of size 1 × 1024 and a reported accuracy of 75%
is used for ImageNet. For STL-10 dataset, ResNet-20 clas-
sifier with classification accuracy of 82.30% is used. Any
reference or testing examples incorrectly classified by the
classifier were discarded.

The discriminator is trained on graphs generated using
the reference dataset (see section 3) and adversarial exam-
ples generated using one adversarial attack method on the
same dataset. We evaluate the performance of the discrimi-
nator using 100 random examples per class from the testing
dataset for CIFAR-10, and the whole testing dataset for Im-
ageNet and STL-10. Adversarial Robustness Toolbox [27]
is used for implementing the adversarial attacks. For the
baseline evaluation, we follow the same configurations used
in the original DkNN [47] approach. For Hu et al.’s [33] and
LID [38] adversarial detectors, the reference set is used to
determine the thresholds that provide the best detection per-
formance. All baseline adversarial detectors are trained on
the reference dataset augmented with adversarial examples,
and evaluated on the test set similar to our discriminator.
Parameter Tuning. To demonstrate the efficiency of the
proposed method, we select l = 2 for k-nearest neighbor-
based graph generation (section 3.2.1). To determine k, a
line search is used. Table 2 shows the effect of changing k
on the FGSM adversarial examples detection performance
on the CIFAR-10 dataset using k-NNG. We set k = 5 in our
approach considering the trade-off between benign and ad-
versarial accuracy. To find the optimal number of neighbors
in DkNN and kNN, we tested k ∈ [10, (|reference set|)

(#classes)] and
then select k = 200 for CIFAR-10 dataset, and k = 40 for
STL-10 and ImageNet datasets.
Feature space. To obtain the node feature for each neigh-
borhood example, we use the image embedding generated

7691

(a) Benign (b) FGSM (c) CW (d) CWwb

Figure 4: A visualization of the embedding space (using t-SNE [45]) of (a) benign (black), and adversarial (red) examples
generated using different adversarial attacks (b) FGSM, (c) Carlini and Wagner, and (d) white-box Carlini and Wagner on the
CIFAR-10 dataset. Note specifically the considerable overlap of adversarial and benign clusters in (d).

using the pre-trained classifier. The DkNN classifier is eval-
uated using the outputs from all blocks (per block output for
ResNet), while the kNN classifier is evaluated using the out-
put of the embedding layer only. Originally, DkNN is used
for adversarial examples recognition. However, by using
the characteristics extracted, a simple LR detector can be
trained for adversarial examples detection as shown in [15].

For LNG, the entries in A derived from the sigmoid func-
tion are real numbers in [0, 1]. We quantize the entries with
a threshold value th as follows:

A′
i,j =

{
0, if Ai,j < th

1, if Ai,j ≥ th
.

The resulted binary A′ is the final adjacency matrix of our
LNG. Since the sigmoid function is monotonic w.r.t. d(i, j),
the threshold th will also correspond to a distance threshold
dh. A′ implies that an edge exists between pairs of nodes
closer than dh. In practice, we line search th and choose the
best value in validation.

4.2. Threat Model

The proposed method is evaluated in both the white-box
and gray-box settings. In the following, a brief description
of each setting is provided below.
White-box Setting. In this setting, the adversary is aware
of the different steps involved in the adversarial defense
method but does not have access to the method’s param-
eters. Additionally, it is assumed that the entire training
and reference sets are available to the adversary. To im-
plement the white-box attack, the attack strategy of Carlini
and Wagner [1] is used. The objective function of the CW
minimization is modified as follows:

argmin
Iadv

||Iadv − I||22+c · (lCW (Iadv) + ld(D(Iadv))),

where lCW is the original adversarial loss term used in Car-
lini and Wagner [2], and D(Iadv) is negative of the summa-
tion of the distances between the adversarial example and

each adversarial example in the constructed nearest neigh-
bor graph, defined as:

ld(D(Iadv)) := −
∑

Dadv =

N∑
i=1

0; x(vi)∈XD

||xadv−x(vi)||; x(vi)∈XDp

where vi is a node in a constructed graph. XD and XDp

are the embeddings of the reference dataset and their cor-
responding adversarial examples, respectively. The newly
generated adversarial example Iadv is pushed to be far away
from the adversarial examples of the generated graph at
each iteration. The intuition is that, ideally, a graph consist-
ing only of benign examples is more likely to be classified
as benign, and this requires moving the white-box adversary
towards the decision boundaries of an adversary class, while
moving away from the possible nearby adversarial exam-
ples. This process requires regenerating the graph of Iadv
in each iteration of the attack, since the applied perturba-
tion affects the embedding space. We refer to this attack as
CWwb.

Figure 4 shows the t-distributed stochastic neighbor em-
beddings (t-SNE) visualization [45] of the embedding space
of CIFAR-10 benign and adversarial examples. Note that
the benign examples are grouped in ten different clusters,
each corresponding to a unique class. The white-box CWwb

attack creates adversarial examples that are very close to the
benign clusters. Such examples are significantly difficult to
detect, given their minimal (visual) perturbation.
Gray-box Setting. In this setting, the adversary is unaware
of the deployed adversarial defense, but knows the pre-
trained classifier’s parameters. For the decision boundary
attack, however, only an oracle to query the classifier for the
prediction output is provided to the adversary. Unless stated
otherwise, the threat model is assumed to be gray-box (i.e.
unaware of the implemented defense).

In the experiments, we focus on the detection of adver-
sarial examples with relatively low perturbation. In particu-
lar, we consider the following parameters for the adversar-
ial attack: PGD: δ = 0.02, step size of 0.002 with 50 itera-
tions, FGSM: δ = 0.05, CW: δ = 0.10, learning rate of 0.03,

7692

Table 3: The (AUC) of different adversarial detection approaches. Left: the performance of different adversarial detection
approaches. LID and ours are trained on the same attack evaluated on. Right: the LID and ours are trained on CW adversarial
examples, and tested on different unseen attacks. 1 Due to memory and resources constraints, AutoAttack and Square
adversarial examples are only generated for CIFAR-10 and STL-10 datasets.

Dataset Approach FGSM PGD CW AutoAttack Square Boundary CWwb FGSM PGD AutoAttack Square Boundary CWwb

CIFAR-10

DkNN [47] 61.50% 51.18% 61.46% 52.11% 59.51% 70.11% 60.37% 61.50% 51.18% 52.11% 59.51% 70.11% 60.37%
kNN [4] 61.80% 54.46% 65.25% 52.64% 73.39% 75.88% 59.75% 61.80% 54.46% 52.64% 73.39% 75.88% 59.75%
LID [38] 73.56% 67.95% 55.60% 56.25% 85.93% 99.48% 55.28% 71.15% 61.27% 55.57% 66.11% 97.01% 55.28%
Hu [33] 84.44% 58.55% 90.99% 53.54% 95.83% 90.71% 78.33% 84.44% 58.55% 53.54% 95.83% 90.71% 78.33%
LNG 99.88% 91.39% 89.74% 84.03% 98.82% 99.98% 84.38% 98.51% 63.14% 58.47% 94.71% 99.92% 84.38%

ImageNet1

DkNN [47] 89.20% 78.00% 68.80% — — 76.80% 68.80% 89.20% 78.00% — — 76.80% 68.80%
kNN [4] 51.60% 51.10% 50.70% — — 56.90% 50.50% 51.60% 51.10% — — 56.90% 50.50%
LID [38] 99.26% 98.14% 58.75% — — 100% 57.76% 90.58% 52.45% — — 96.16% 57.76%
Hu [33] 72.59% 86.00% 80.82% — — 63.20% 80.44% 72.59% 86.00% — — 63.20% 80.44%
LNG 99.53% 98.42% 86.05% — — 100% 86.49% 96.85% 89.61% — — 99.93% 86.49%

STL-10

DkNN [47] 60.66% 59.33% 57.49% 60.77% 50.10% 62.93% 62.00% 60.66% 59.33% 60.77% 50.10% 62.93% 62.00%
kNN [4] 59.40% 58.60% 65.40% 55.27% 65.15% 59.80% 58.43% 59.40% 58.60% 55.27% 65.15% 59.80% 58.43%
LID [38] 80.84% 74.12% 60.87% 73.44% 73.78% 99.86% 60.26% 69.59% 56.06% 55.80% 62.98% 100% 60.26%
Hu [33] 57.86% 86.45% 81.07% 64.01% 80.64% 59.74% 63.33% 57.86% 86.45% 64.01% 80.64% 59.74% 63.33%
LNG 99.40% 99.35% 93.95% 99.37% 82.20% 100% 91.13% 88.08% 69.20% 68.49% 90.32% 100% 91.13%

50%

60%

70%

80%

90%

100%

1% 2% 3% 4% 5% 6% 7% 8% 9% 10%De
te

ct
io

n
Ac

cu
ra

cy

Perturbation

Ours-LNG DNN CNN

Figure 5: The AUC (%) performance of the GNNs-based
discriminator compared to the convolutional and deep neu-
ral networks-based discriminators for different FGSM per-
turbation rates (δ ∈ [0.01,0.1]), using the LNG-based graph
on CIFAR-10 dataset.

and 50 iterations, AutoAttack: δ = 8
255 , Square: δ = 8

255 ,
Boundary: δ = 0.10 with 100 iterations. We select the
smallest perturbation (δ) that still achieves more than 50%
attack success rate on the original model. While adversar-
ial examples generated with low perturbation have a lower
attack success rate, their detection is significantly challeng-
ing. Figure 5 shows the performance of the graph-based dis-
criminator, trained on k-NNG generated graphs, in detect-
ing FGSM-generated adversarial examples for different per-
turbation rates (δ). The proposed approach is benchmarked
against a convolutional neural network (CNN)-based dis-
criminator trained using adversarial training, and a fully-
connected layer-based discriminator (DNN) that directly
works on the input image and its embedding [39]. Both
DNN and CNN-based methods converge to the same point
because they use the same embedding information. Note
that their performance is worse than LNG because they do
not use dynamic relations in the embedding neighborhood.

(a) FGSM. (b) AutoAttack.

Figure 6: The ROC-AUC of FGSM and AutoAttack on
STL-10 dataset using perturbation size (δ) of 8

255 and 3
255 .

4.3. Comparison with state-of-the-art

Detecting known attacks: Table 3 (left) compares the
performance of the proposed method on detecting adversar-
ial examples generated using known attacks with four state-
of-the-art adversarial example detection approaches: DkNN
[47], kNN [4], LID [38] and Hu et al. [33], on three datasets,
CIFAR-10, STL-10, and ImageNet. The results are reported
using area under the ROC curve metric (AUC). The LID and
the proposed detection method are trained and tested using
the same adversarial attack methods, except for CWwb at-
tack, where the detector is trained on the traditional CW at-
tack. We report the performance of the graph discriminator
trained using the Latent Neighborhood Graph (LNG) and
the k-Nearest-Neighbor Graph (k-NNG). Experimental re-
sults demonstrate that the proposed approach outperforms
state-of-the-art adversarial example detection methods on
both datasets. The performance benefit is especially signif-
icant in the detection of white-box (CWwb) attack, where
adversarial and benign space are deeply interleaved with
each other (as illustrated in Figure 4). This is because our
algorithm generates a highly discriminative neighborhood
graph based on the input example’s local manifold struc-
ture, and hence it is able to distinguish between adversarial

7693

Table 4: The (AUC) performance (%) of our approach using
clean vs. adversarially augmented (Adv.) reference sets.

Dataset Approach Adv. FGSM PGD CW Boundary CWwb

CIFAR-10
k-NNG × 97.38 54.29 86.45 99.92 74.84

� 99.54 85.78 89.63 99.89 81.44

LNG × 99.24 85.62 89.91 99.96 80.77
� 99.88 91.39 89.74 99.98 84.38

ImageNet
k-NNG × 97.25 90.78 50.49 99.91 51.56

� 99.58 98.36 79.03 100 77.01

LNG × 99.40 94.98 81.24 99.99 81.64
� 99.53 98.42 86.05 100 86.49

and benign examples with high accuracy. Similar perfor-
mance benefit is observed in case of FGSM and Autoattacks
on STL-10 dataset (see Figure 6).

Detecting unseen attacks: In this experiment, we com-
pare the robustness of the proposed method against unseen
adversarial attacks to state-of-the-art adversarial detection
methods. Each adversarial example detection method is
trained using CW attack, and evaluated on other attacks.
The results are shown in Table 3 (right). The proposed ap-
proach outperforms other methods by a significant margin
on different attack configurations.

4.4. Ablation Study

The objective of this experiment is to compare the per-
formance of k-NNG and LNG with and without using ad-
versarial examples from the reference dataset. The results
are shown in Table 4 for CIFAR-10 and ImageNet. The
edge estimation process used to construct the LNG im-
proves the overall performance of the proposed detection
method. Significant performance improvement is also ob-
served when using reference adversarial examples as it re-
sults in better estimation of the neighborhood of the input
image. The reported improvement due to the use of ad-
versarial examples (over 20% in some cases) is especially
beneficial in detecting stronger attacks (PGD, and CW).

4.5. Impact of Graph Topology

The objective of this experiment is to investigate the
impact of graph topology on detection performance. The
following graph types are compared: i) the original k-
nearest neighbor-based graph (k-NNG, as described in sec-
tion 3.2.1), ii) graph with no connections between nodes
(NC), iii) graph with connections between all nodes (AC),
iv) the k-NNG where the center node is connected to all
nodes in the neighborhood (CC), and v) the proposed la-
tent neighborhood graph (LNG) where the input node is
connected to all nodes with estimated edges between the
neighborhood nodes. Table 5 presents the performance of
the detector trained on each graph for CIFAR-10, and Ima-
geNet datasets, where the discriminator is trained and eval-
uated on the same attack configuration. Overall, connect-
ing the center node with neighbor nodes helped aggregate

Table 5: The (AUC) performance (%) of using different
connections configurations in the neighborhood graph. NC:
no connections between nodes, AC: all connected graph,
CC: only the center node is connected to all nodes.

Dataset Approach FGSM PGD CW Boundary CWwb

CIFAR-10

k-NNG 99.54 85.78 89.63 99.89 81.44
NC 99.72 87.21 87.53 99.81 81.60
AC 99.83 87.72 90.67 99.83 80.43
CC 99.72 88.67 91.51 99.94 82.92
LNG 99.88 91.39 89.74 99.98 84.38

ImageNet

k-NNG 99.58 98.36 79.03 100 77.01
NC 99.70 98.51 77.42 100 74.99
AC 99.66 98.35 79.74 100 78.15
CC 99.66 98.23 78.19 100 75.59
LNG 99.53 98.42 86.05 100 86.49

the neighborhood information towards the input example,
which improves the performance. By connecting the neigh-
borhood nodes adaptively, LNG provides better context for
graph discriminator.

4.6. Graph Detection: Time Comparison

For LNG method, on average, the detection process of
each image takes 1.55 and 1.53 seconds for CIFAR-10 and
ImageNet datasets, respectively. The time includes (i) em-
bedding extraction, (ii) neighborhood retrieval, (iii) LNG
construction, and (iv) graph detection. This is significantly
lower in comparison to Hu et al. [33], which requires an
average of 14.05 and 5.66 seconds to extract the combined
characteristics from CIFAR-10 and ImageNet dataset, re-
spectively.

5. Conclusion

Detection of adversarial examples, particularly gener-
ated using unseen adversarial attacks, is a challenging secu-
rity problem for deployed deep neural network classifiers.
In this work, we propose the first graph-based adversarial
example detection method that generates latent neighbor-
hood graphs in the embedding space of a pre-trained clas-
sifier to detect adversarial examples. The proposed method
achieves state-of-the-art adversarial example detection per-
formance against various white- and gray-box adversarial
attacks on three benchmark datasets. We also show the
effectiveness of the proposed approach on unseen attacks,
where training our approach using a strong adversarial at-
tack (CW) enables robust detection of adversarial examples
generated using other attacks.
Acknowledgement. The work of D. Mohaisen and the val-
idating and reporting work of this publication by A. Abus-
naina was supported in part by NRF under the 2016 grant
2016K1A1A2912757. The system design was done when
A. Abusnaina was an intern at Visa research.

7694

References
[1] N. Carlini and D. Wagner. Adversarial examples are not

easily detected: Bypassing ten detection methods. In ACM
Workshop on Artificial Intelligence and Security, 2017.

[2] N. Carlini and D. Wagner. Towards evaluating the robustness
of neural networks. In IEEE Symposium on Security and
Privacy, 2017.

[3] Adam Coates et al. An analysis of single-layer networks in
unsupervised feature learning. In The international confer-
ence on artificial intelligence and statistics, pages 215–223,
2011.

[4] A. Dubey et al. Defense against adversarial images using
web-scale nearest-neighbor search. In IEEE Conference on
Computer Vision and Pattern Recognition, CVPR, 2019.

[5] A. Krizhevsky et al. Learning multiple layers of features
from tiny images. 2009.

[6] A. Krizhevsky et al. Imagenet classification with deep con-
volutional neural networks. In 26th Annual Conference on
Neural Information Processing Systems, 2012.

[7] A. Kurakin et al. Adversarial machine learning at scale. In
5th International Conference on Learning Representations,
ICLR 2017, 2017.

[8] A. M. Nguyen et al. Deep neural networks are easily fooled:
High confidence predictions for unrecognizable images. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion, CVPR, 2015.

[9] Angelo Sotgiu et al. Deep neural rejection against adversar-
ial examples. EURASIP J. Inf. Secur., 2020:5, 2020.

[10] A. Voulodimos et al. Deep learning for computer vision:
A brief review. Comput. Intell. Neurosci., 2018:7068349:1–
7068349:13, 2018.

[11] C. Szegedy et al. Intriguing properties of neural networks. In
2nd International Conference on Learning Representations,
ICLR, 2014.

[12] D. Bahdanau et al. Neural machine translation by jointly
learning to align and translate. In 3rd International Confer-
ence on Learning Representations, ICLR, 2015.

[13] F. Schroff et al. Facenet: A unified embedding for face
recognition and clustering. In IEEE Conference on Com-
puter Vision and Pattern Recognition, CVPR, pages 815–
823. IEEE Computer Society, 2015.

[14] F. Tramèr et al. Ensemble adversarial training: Attacks and
defenses. CoRR, 2017.

[15] G. Cohen et al. Detecting adversarial samples using influ-
ence functions and nearest neighbors. In IEEE Conference
on Computer Vision and Pattern Recognition, 2020.

[16] G. Hinton et al. Deep neural networks for acoustic mod-
eling in speech recognition: The shared views of four re-
search groups. IEEE Signal processing magazine, 29(6):82–
97, 2012.

[17] G. Huang et al. Densely connected convolutional networks.
In IEEE conference on computer vision and pattern recogni-
tion, 2017.

[18] Hasan Ferit Eniser et al. RAID: randomized adversarial-
input detection for neural networks. CoRR, abs/2002.02776,
2020.

[19] I. J. Goodfellow et al. Explaining and harnessing adversar-
ial examples. In 3rd International Conference on Learning
Representations, ICLR, 2015.

[20] J.H. Metzen et al. On detecting adversarial perturbations. In
5th International Conference on Learning Representations,
ICLR, 2017.

[21] J. Svoboda et al. Peernets: Exploiting peer wisdom against
adversarial attacks. arXiv preprint arXiv:1806.00088, 2018.

[22] J. Tenenbaum et al. A global geometric framework for non-
linear dimensionality reduction. science, 290(5500):2319–
2323, 2000.

[23] K. Lee et al. A simple unified framework for detecting out-
of-distribution samples and adversarial attacks. In Advances
in Neural Information Processing Systems, NeurIPS 2018,
3-8 December 2018, Montréal, Canada., pages 7167–7177,
2018.

[24] K. Simonyan et al. Very deep convolutional networks for
large-scale image recognition. In 3rd International Confer-
ence on Learning Representations, ICLR, 2015.

[25] Luca Cosmo et al. Latent patient network learning for auto-
matic diagnosis. arXiv preprint arXiv:2003.13620, 2020.

[26] L. Engstrom et al. A rotation and a translation suffice: Fool-
ing cnns with simple transformations. CoRR, 2017.

[27] M. Nicolae et al. Adversarial robustness toolbox v1. 0.0.
arXiv preprint arXiv:1807.01069, 2018.

[28] M. Takeru et al. Distributional smoothing with virtual adver-
sarial training. arXiv preprint arXiv:1507.00677, 2015.

[29] N. Papernot et al. Distillation as a defense to adversarial per-
turbations against deep neural networks. In IEEE Symposium
on Security and Privacy, SP, 2016.

[30] O. Russakovsky et al. ImageNet Large Scale Visual Recog-
nition Challenge. International Journal of Computer Vision
(IJCV), 2015.

[31] P. Velickovic et al. Graph attention networks. CoRR, 2017.
[32] R. Feinman et al. Detecting adversarial samples from arti-

facts. CoRR, abs/1703.00410, 2017.
[33] S. Hu et al. A new defense against adversarial images: Turn-

ing a weakness into a strength. In Advances in Neural Infor-
mation Processing Systems 32: Annual Conference on Neu-
ral Information Processing Systems, NeurIPS, pages 1633–
1644, 2019.

[34] Shiqing Ma et al. NIC: detecting adversarial samples with
neural network invariant checking. In 26th Annual Network
and Distributed System Security Symposium, NDSS. The In-
ternet Society, 2019.

[35] U. Shaham et al. Understanding adversarial training: In-
creasing local stability of supervised models through robust
optimization. Neurocomputing, 2018.

[36] W. Xu et al. Feature squeezing: Detecting adversarial exam-
ples in deep neural networks. In 25th Annual Network and
Distributed System Security Symposium, NDSS, 2018.

[37] W. Zhang et al. Towards end-to-end speech recognition with
deep multipath convolutional neural networks. In 12th In-
ternational Conference on Intelligent Robotics and Applica-
tions ICIRA, 2019.

[38] X. Ma et al. Characterizing adversarial subspaces using local
intrinsic dimensionality. In 6th International Conference on
Learning Representations, ICLR. OpenReview.net, 2018.

7695

[39] Z. Gong et al. Adversarial and clean data are not twins.
CoRR, abs/1704.04960, 2017.

[40] K. Heet al. Deep residual learning for image recognition.
In IEEE conference on computer vision and pattern recogni-
tion, 2016.

[41] D. Hendrycks and T. G. Dietterich. Benchmarking neural
network robustness to common corruptions and surface vari-
ations. arXiv preprint arXiv:1807.01697, 2018.

[42] D. Jakubovitz and R. Giryes. Improving dnn robustness to
adversarial attacks using jacobian regularization. In Pro-
ceedings of the European Conference on Computer Vision
(ECCV), pages 514–529, 2018.

[43] Y. Kim. Convolutional neural networks for sentence classifi-
cation. In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing, EMNLP, pages
1746–1751. ACL, 2014.

[44] X. Li and F. Li. Adversarial examples detection in deep net-
works with convolutional filter statistics. In IEEE Interna-
tional Conference on Computer Vision, ICCV, 2017.

[45] L.V.D. Maaten and G. Hinton. Visualizing data using t-sne.
Journal of machine learning research, 2008.

[46] D. Meng and H. Chen. Magnet: A two-pronged defense
against adversarial examples. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communica-
tions Security, CCS, pages 135–147. ACM, 2017.

[47] N. Papernot and P. D. McDaniel. Deep k-nearest neighbors:
Towards confident, interpretable and robust deep learning.
CoRR, abs/1803.04765, 2018.

[48] C. Sitawarin and D. Wagner. Defending against adver-
sarial examples with k-nearest neighbor. arXiv preprint
arXiv:1906.09525, 2019.

[49] X. Yuanet al. Adversarial examples: Attacks and defenses
for deep learning. IEEE transactions on neural networks and
learning systems, 30(9):2805–2824, 2019.

7696

