This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

Efficient Large Scale Inlier Voting for Geometric Vision Problems

Dror Aiger

algerd@google.com

Simon Lynen

slynen@google.com

Bernhard Zeisl

bzeisl@google.com

Jan Hosang

hosanglgoogle.com

Google Research

Abstract

Outlier rejection and, equivalently, inlier set optimiza-
tion is a key ingredient in numerous applications in com-
puter vision such as filtering point-matches in camera
pose estimation or plane and normal estimation in point
clouds. Several approaches exist, yet at large scale we
face a combinatorial explosion of possible solutions and
state-of-the-art methods like RANSAC, Hough transform,
or Branch&Bound require a minimum inlier ratio or prior
knowledge to remain practical. In fact, for problems such
as camera posing in very large scenes these approaches be-
come useless as they have exponential runtime growth.

To approach the problem, we present an efficient and
general algorithm for outlier rejection based on “intersect-
ing” k-dimensional surfaces in R*. We provide a recipe
for formulating a variety of geometric problems as find-
ing a point in R® which maximizes the number of nearby
surfaces (and thus inliers). The resulting algorithm has
linear worst-case complexity with a better runtime depen-
dency on the requested proximity of a query to its result than
competing algorithms, while not requiring domain specific
bounds. This is achieved by introducing a space decompo-
sition scheme that bounds the number of computations by
successively rounding and grouping surfaces. Our recipe
and open-source code' enables anybody to derive such fast
approaches to new problems across a wide range of do-
mains. We demonstrate the approach on several camera
posing problems with a large number of matches and low
inlier ratio, achieving state-of-the-art results at significantly
lower processing times.

1. Introduction

Whether geometric verification of point matches for ab-
solute pose, homography estimation or normal estimation
in point clouds, outlier rejection is a key ingredient in nu-
merous applications in computer vision. RANSAC [8] is a

Ihttps://github.com/google-research/
google-research/tree/master/large_scale_voting

common choice for the task as it has good quality/runtime
tradeoffs for many practical problems. RANSAC however
does not provide an optimality guarantee, requires a lower
bound on the inlier ratio and its runtime increases exponen-
tially with the outlier ratio, making it unusable for problems
with few inliers. In contrast Branch&Bound methods [3, 6]
are guaranteed to find the optimal solution, yet their worst-
case runtime equals exhaustive search in parameter space.
Their practical use depends on the quality of the bounds
which are problem specific and notoriously hard to find.

We propose an alternative approach that exhibits a linear
runtime independent of the inlier ratio and that does not re-
quire a lower bound on the fraction of inliers. We base our
work on the efficient and general algorithm for solving ge-
ometric incidence problems proposed by a subset of the au-
thors in [1]. In a nutshell the authors show that voting [23]
is equivalent to finding a point in R? which is close to as
many surfaces (and thus inliers) as possible among a given
set of k-surfaces in R%. While in [1] we proves theoreti-
cal bounds for approximate incidences, we show a general
scheme to formulate approximate incidences of surfaces in
a unified algorithm and apply it to several inlier maximiza-
tion problems. We obtain a globally optimal solution (up to
a prescribed resolution ¢) considerably faster. Our contri-
butions:

— We introduce the concept of general voting for outlier
removal and its relation to our previous work on ap-
proximate incidences in [1] to a wider computer vision
audience and demonstrate its use for camera posing,
ray intersection, and geometric model fitting.

— All approaches have linear complexity and are there-
fore applicable to very large problems that are infea-
sible with RANSAC [8]. The worst case complex-
ity (and performance in practice) is always better than
other methods (voting [! 1] and B&B [14]) for suffi-
ciently large inputs.

— We demonstrate the scalability and versatility using
a generalization of [23, 21] where we remove the re-
quirement of calibrated cameras and known gravity di-
rection, but instead solve for these unknowns.

— We compare to the state-of-the-art [6] for 6 degree-of-

3243

freedom (6DoF) camera pose estimation and show that
our approach is optimal and faster in practice. In com-
parison to [6] our surface intersection algorithm pro-
vides a tight upper bound on the score without problem
specific knowledge.

— We provide example-derivations and open-source code
which serve as a tutorial for applying [1] to a range of
outlier removal problems in computer vision.

2. The Family of General Alignment Problems

A large number of geometric vision problems can be
viewed as general alignment problems in which we aim to
bring items in set a A “close” to items in another set B by
applying a transformation from a group of allowed trans-
formations. Closeness is defined by some parameter ¢ > 0
and a distance metric, commonly the Hausdorff [12] dis-
tance between items in A and B. Note that € defines which
items we consider close enough, which is part of the prob-
lem definition — ¢ is not an approximation factor. °.

Many outlier rejection problems can be framed as such
an alignment problem. For example in structure-based lo-
calization [17, 19] A is a set of rays in 3-space in the camera
frame that we want to align with a set of 3d world points B.
In relative camera posing [9, 10] we align two sets of 3-rays
such that the maximum number of pairs are e-close. In all
of these problems, one defines the items in A and B and the
allowed transformation group and then solves an approxi-
mate geometric incidence problem.

Any hypothetical match — a correspondence between
an object in A and an object in B — defines a general sur-
face that is embedded in the ambient d-space of transfor-
mations. Therefore, we can solve the outlier rejection in
linear time in the number of hypothetical matches by a vot-
ing scheme: surfaces are “c-intersected” in the d-space to
locate the point close to most surfaces. This point repre-
sents the solution to the alignment problem.

3. Proximity and Incidences using Surfaces

Our work is based on the findings of [1] and we introduce
their approach and notation using 2D line fitting as a toy
example. The authors formulate the maximum incidence
problem as one of reporting points in R? that are close to
the maximal number of k-dimensional surfaces. Each sur-
face 0 € S is given in parametric form where the first k
coordinates x = (x1,...,xy) are the surface parameters.
Specifically, each o is defined in terms of ¢ essential pa-
rameters t = (t1,...,t¢), and d — k additional free additive
parameters f = (fx11,..., f4), one free parameter for each

2Qur algorithm is globally optimal (up to a prescribed resolution if
we want linear time) and for simplicity we set the resolution to be also
€ throughout the paper

dependent coordinate.® The surface o is parameterized by t
and f (we then denote o as oy ¢) and defined by

FO) . RF x R — R(E—F)

9]
Tj = Fj(o) (x;t) + fj,

forj=k+1,...,d.
Without loss of generality the voting space is scaled to
be the unit cube [0, 1]¢ to simplify runtime complexity ex-
pressions. Unbounded parameters are either still bounded
in practice or can be transformed in the problem parameter-
ization as is common in B&B (e.g. cos(#) for line fitting).
For the toy example of 2D line fitting, we are given a
set of points in 2D to which we want to fit a 2D line: We
want to find the line that is e-close to the maximum number
of points. In order to formulate this problem within our
surface proximity scheme we use standard duality [2] which
maps points to lines and lines to points. This allows us to
find a point in 2D which is e-close to the maximum number
of points instead. Each input point is mapped into a k =
1 dimensional surface (a line) embedded in the R?=2 line
parameter space. The surface equation in this case is

x2:a~x1+b:F2(a)(:r1;a)+b,)

where the only essential parameter is the slope t = (a) and
the only free parameter is the offset f = (b). Consequently,
the point in dual space R?=2 with the most close surfaces
corresponds to the line parameters (in the primal space) that
fit the input points best.*

3.1. A Naive Voting Solution

Once we formulate a problem as a general surface con-
sensus problem, we obtain a naive Algorithm 1:

Iterate the first k£ dimensions of the voting space on an
e-grid and compute the dependent variables (xy41, ..., 4)
for each surface in an 3¢ neighborhood box around each
grid vertex. That is, for each vertex we collect all nearby
surfaces at most € apart from each other. Then use the de-
pendent variable range to cast votes in the voting space. For
higher dimensional spaces this enumeration becomes costly,
since the algorithm is independent of the actual structure
of the surfaces and always takes O(n/c*) time for n k-
dimensional surfaces.

3.2. Efficient Canonized Generalized Voting

Algorithm 2 is our generalized voting procedure based
on the work in [I]. We propose a coarse-to-fine scheme

3We separate essential from free parameters in notation, since they will
be handled differently in the algorithm that follows.

4Technically, we introduce some error, since duality preserves only ver-
tical distances between lines and points, not Euclidean distances. We keep
the error bounded by separating lines into two groups: lines with slope
a’ € [—1,1] and lines with the inverse slope a’ = 1/a = [—1,1], re-
sulting in the two voting spaces (z1,x2) and (z2,x1) that have a 1-to-1
correspondence for each point in the space. When searching a maximum,
we have to consider the sum of both spaces.

3244

Algorithm 1: Naive Voting

Data: S: surfaces, B: box in [0, 1]%, e: distance
Result: Point in B (among all e-grid points) with
the maximum of e-close surfaces.

for all s € S do

for all k-dimensional e-cells in B do
Compute the d — k dependent variables

using the surface equations.
Tally a vote for the d-tuple and add s into
the set of inliers corresponding to it.
/* The d-tuple is the concatenation of the
k-tuple and the dependent d — k-tuple */
end

end
return The center of the cell with maximum votes
and its corresponding set of intersecting surfaces.

that decomposes the search space to significantly improve
the runtime complexity. We round surfaces so that we
can group similar surfaces for joint processing, without
affecting the outcome of the computation. This canon-
ization means that in every recursive step of the algo-
rithm (similar to levels in an octree decomposition) there
are approximately the same number of surfaces to pro-
cess. The consequence is a worst case runtime complexity
of O(n + polylog(1/e) /ct+d-F) (see Theorem 4.4 in [1]) or
O(n + 1/e*+4-*) ignoring log factors. For sufficiently large
n generalized voting is thus always asymptotically faster
than naive voting because of the multiplicative influence of
n on the approximation cost in naive voting.

Algorithm 2: Efficient Generalized Voting

Data: S: surfaces, B: box in [0, 1]¢, ¢: distance
Result: Point in B (among all e-grid points) with
the maximum of e-close surfaces.
Function SurfaceConsensus (S, B, €) :
if Diam(B) < ¢ then
| return (B, S) /* B, is the center of B */
end
Canonize all surfaces S (for B) to a new set S...
Subdivide B to 2¢ sub-boxes, B;.
For each sub-box B;, find a subset S, C S of
surfaces that intersect it.
for all S., do
(pi,1;) = SurfaceConsensus (S, B;,
€)
/* p;: apoint in By, I;: the set of inliers */
end
return (p, = argmax, ||, Iy)

3.2.1 Algorithm and Implementation

Given an outlier removal problem, the first step is to formu-
late surfaces with a parametric representation as in Eq. (1).

From constraints to general voting. We start with a set
of constraints, each of which implicitly defines a surface
embedded in R? (by the points that satisfy the constraint).
The surface may have only £ < d dimensions, meaning that
given x1, ..., Tk, we can compute the other x4, ...x4. To
use our framework, we have to provide two functions:

1. A predicate that returns whether a given surface inter-
sects a box in RY.

2. A function F(?)(x,t) + f that computes the d — k de-
pendent variables, given the other & variables.

In the example of 2D line fitting, Eq. (2), every 2D point
(z1,x2) defines a line in voting space and with k = 1, we
have a d — k = 1 dimensional surface embedded in the
2D ambient space. Function (1) computes whether ax; + b
intersects the given box B and function (2) is z2 = ax; +b.

Canonization. Most Branch&Bound algorithms subdivide
the parameter space, discarding branches early based on
computed scores. In 3D, a common such subdivision is the
octree; in the following we will call the subdivision scheme
an octree, independent of the actual dimensionality. A key
ingredient that makes our generalized voting algorithm effi-
cient is Canonization; a surface rounding process we apply
before recursing to the next level of the octree. Surfaces
which are close to each other in the current box are rounded
and grouped into the same surface, thus bounding the over-
all number of surfaces.

Each surface ot ¢ is rounded carefully to o5 g to not
change intersections on the finest level of the octree:

[(Fj(x;t) +£5) — (Fi(x;8) +g5)| <e j=k+1,...d

where ¢ is the “target closeness” introduced in Section 2.
Due to this bound, the surface rounding does not change the
optimization result, while significantly reducing the number
of surfaces to process. During canonization we keep track
of merged surfaces to recover the original surfaces (the set
of inliers) after finding the maximum.

Due to the depth of the octree, we round each surface at
most log 1/ times, each time introducing a rounding error
c that is defined by the Lipschitz constant, a bound on the
surface gradient. So the error we can tolerate in one round-
ing step is &/ = m. Using this constant, [1] derives
rounding rules for the surface parameters: Round free pa-
rameters to multiples of €’ /(¢ + 1) and essential parameters to
multiples of €’ /(¢ + 1)s where 0 is the diameter of the current
box of the octree. See [1] for additional detail.

3245

Subbox during the decomposition

Canonical surface: zo =a’z1 +b0]
-

-7 ¢<€

— - Input surface: xo = axy +b

-

v

(0,0)
Figure 1: Canonization where the surface is a line in 2D,
which is intersected with a 2D box in the search quadtree.

Figure 1 shows the rounding process for the case of a 2D
surface given by o = ax; + b and a box B. Note that our
goal is to find a surface which is close to the input surface
within the box B. We first round the essential parameter a to
a’ which moves the line away from the box, so we translate
it by changing b and then rounding it to b’. The key result is
that the number of canonical surfaces in B is upper bounded
independent of the number of input surfaces.

In practice, &' determines the runtime upper bound and
the best parameter can vary among coordinates such that we
tune constants per parameter (e.g. different £’ for a and b in
the line fitting example).

General surface-box intersection algorithm for any sur-
face and box: Suppose the surface o is given as a poly-
nomial equation F'(z1,x2,23) = 0 and that the box is
B = [0,1]3. If we assume o is connected, then o inter-
sects B if either (1) o is fully contained in B, or (2) it
intersects some face, or (3) it intersects some edge. To
test for case (1), pick an arbitrary point on o and test if it
lies in B. If o is not connected, repeat this for one point
in each connected component. Cases (2) and (3) are han-
dled recursively: for (2), intersect each face with the 2D
plane, e.g. with F'(z1,22,0) = 0, by checking a point on
(each connected component of) the surface and each edge
of the face. For (3) we have a univariate polynomial, e.g.
F(z1,0,0) = 0, and we need to test if it has a root in [0, 1].

This intersection algorithm can become slow for many
dimensions but we found that using a subset of the condi-
tions is a good approximation in practice.

3.3. Theoretical Analysis of Related Work

To the best of our knowledge three alternatives to our algo-
rithm exist, for which we compare asymptotic runtime.

RANSAC [&] is the most common approach to solve

outlier rejection problems. The RANSAC complexity is
0] (m) for a lower bound b on the fraction of inliers,

a minimal set size k needed to define a possible solution and
n input constraints. This is linear in n only when b is a con-
stant and even then it grows quickly when b is decreasing,
making RANSAC unattractive for large scale problems.

Hough based methods [1 1, 7] exist in many variants, but
all share a term with polynomial runtime complexity in
which all sets of points (each of minimal size k) are tra-
versed. For each subset we vote for the parameters defined
by the subset, taking O(n*) time to find the parameters with
the maximum number of votes. Alternatively for each sin-
gle point p one can enumerate all bins in the Hough space
corresponding to parameters of models passing through (or
close) to p. This takes O(n/c*) where s is the dimension of
the Hough surface. A randomized version of Hough voting
is applicable, if a lower bound on the number of inliers ex-
ists, though, it introduces the same limitation as RANSAC.

Branch&Bound [14] methods have been considered and
implemented for a large number of optimization problems,
including the family we consider here [3, 16, 5, 9, 10].
They are optimal up to an error bound defined by the small-
est box that terminates the process (say of size € assuming
w.l.o.g. that the space is [0, 1]¢). The practical runtime of
Branch&Bound can be low but is highly dependent on the
structure of the surfaces and the quality of the bounds which
are notoriously hard to find. The worst case runtime is
O(n/e*) (ignoring the log factor), where k depends on the
dimension of the problem, and is thus similar to the naive
enumeration of cells. Recently, the 6DOF posing prob-
lem was solved without correspondences using B&B [6],
against which we evaluate in Section 5. The worst case
of [6] is O(u=3n~%nm) for m 3d points, n 2d points and
1, are tolerance parameters similar to our €. This aligns
with the naive method, as nm is the number of matches.

Our generalized voting approach is asymptotically and
in practice faster and more general than these alternatives
while being easy to implement.

4. Applications

In the following, we enumerate a list of typical outlier
rejection problems in geometric computer vision and we
show how each one of them can be reduced to the incidence
problem and solved efficiently using our method. We de-
liberately do not compare to the numerous state of the art
methods across all applications, but rather want to empha-
size the generality of our approach.

3246

General Voting . y T T T T T
General B&B
g | RANSAC
>
E
S 6
§
2 o4
£
2 L
e . =

4 8 16 32 64 128 256 512 1024 2048 4096
Number of points (*1000)

Figure 2: Runtime comparison for line fitting with various

inlier fractions: solid 1%, dotted 2%, dashed 4%.

4.1. Fitting Hyperplanes in d-space

Model fitting is a well investigated problem, where the
goal is to report the hyperplane e-close to most points. It is
commonly solved using RANSAC or Hough voting [20, 7,

]. Tt is also solved using a primal-dual method in [1].

In order to apply our general method, we first use the
point-hyperplane duality [2]. Points are transformed to hy-
perplanes and vice versa, preserving the vertical distance
between points and planes. If we keep hyperplanes in ap-
propriate orientation this algebraic distance (the d coordi-
nate) is a good approximation to the Euclidean distance we
want to minimize. We then search for the point that is close
to the maximum number of hyperplanes and transform it
back via duality to obtain the best fitting hyperplane. For
example the parameterization in 3D is the standard plane
equation:

Tq = ag + Z‘itlla:iai. 3)

with/ =d — 1,k = d — 1 in R and the runtime is O(n +
%‘%(1/5)) compared to O(n/e?~1) in the naive method.
The d-dimensional algorithm is then better for any n > 1/¢

(for any fixed d).

Evaluation We evaluate the runtime for the 2D case by
comparing B&B and Ransac to our method where we im-
plemented the problem specific surface definition and the
intersection predicate. “General B&B” refers to our general
method with all its ingredients except canonization. The
test data consists of uniformly sampled outlier points in the
unit cube and inlier points sampled along a fixed line with
additive Gaussian noise with standard deviation 0.1. We
experiment with an increasing number of points and differ-
ent inlier fractions, which we provide to RANSAC. Fig. 2
shows how RANSAC’s runtime strongly depends on the
inlier fraction and our method compares preferably as the
number of points grows. B&B is slowest, since the uniform
outliers hit the worst case of the algorithm. In all cases,
accurate line parameters were found using £ = 0.002.

4.2. Absolute Camera Posing Problems

Related work [23, 21, 1] defines the surfaces for posing
calibrated cameras with known gravity direction, resulting
in a 4 DoF problem. Here, we derive surfaces for higher
DoF that are difficult to handle by naive voting due to the
dimensionality. Let w = (w1, ws,ws3) be a point in R?
and (¢, 7) a point in the normalized image plane. The triple
(w, &, n) is a correspondence ¢ and we show its transforma-
tion into a surface o.. See Table 1 for runtime complexities.

4.2.1 Unknown focal length, but known gravity direc-
tion (5DoF)

To solve this problem we search for (x,vy,z2,k, f) € R®
where (z,y, z) is the camera position, £ = tan6 with 0
denoting the remaining camera orientation around gravity,
and f is the focal length. Each such point, models a possi-
ble pose and focal length of the camera. A correspondence
c is parameterized by the triple (w, &,) and defines a 3-
dimensional algebraic surface o.. It is the surface of all
camera poses and focal lengths that see w at image coor-
dinates (£f,nf). We can derive the following parametric
representation of o, expressing z and « as functions of x,y
and f (Please see [1, Sec. 2.2] for the derivation).
(w2 —y) = &f (w1 —)

"7 (=) + €f(ws —y) @

z=ws —nf/(w —)2 + (w2 — y)?)

Our goal is to find the point (z,y, 2, k, f) that is e-close
to the maximal number of surfaces. In other words the ray
from the camera center ¢ to w goes approximately (define
by ¢) through (£ f,nf) in the image plane.

In the case of our 3-surfaces in 5-space, the parameter ws
is free, and we introduce a second artificial free parameter
into equation 4 for k. We have ¢ = 4 essential parame-
ters: wi,ws,E, and n. With d = 5 and k = 3, Algorithm 2
obtains worst case complexity O(n + %%U/E)). Naive
voting takes O(n/e3) time so that the general technique is
asymptotically better for any n > 1/&3 (ignoring poly log-
arithmic factors).

4.2.2 Unknown focal length (7DoF)

We use (z,y,z, ¢, f) as the 7-tuple of unknowns that
we aim to solve for, where ¢ is a 3-vector describing
the minimal rotation parameterization (e.g. angle-axis).
Given the standard general 3 x 4 projection matrix P =
diag(f, f,1) [R(¢) t] the world point w projects to

3 w friw +)

Al P<1> fleaw +y) |, (6)
1 rsw + 2

3247

Posing problem Known focal Known gravity

Generalized voting Naive voting

General faster than naive for

4DoF [1] v v O(n+1/€6) O(n/e?) n>1/e*
5DoF - v O (n+1/e% O(n/e?) n>1/e
6DoF v - O(n+1/€) O(n/eh) n>1/e?
7DoF - - O(n+1/e") O(n/e®) n>1/e?
5DOF (radial camera) - - O (n+1/¢%) O(n/e*) n>1/e
Table 1: Complexity analysis for the camera posing formulations of Sec. 4.2. O(n+1/f(¢)) := O(n+polylog(1/e)/ f(¢)).

where r; denote the it row of the rotation matrix. This

reveals constraints
0= f(riw+2x) — &(rsw + 2) o
0= f(raw+y) —n(rsw + z)

which allows to parameterize x and y as a a function of
f, ¢, z for each correspondence (w, &, n) according to
x=&(rsw+2)/f —riw
y=n(rsw+ z)/f —raw.
With d = 7,/ = 5,k = 5 the naive rendering takes

O(n/e%) while general voting takes O(n + %W)
which is better for any n > 1/¢2.

®)

4.2.3 Calibrated camera (6DoF)

This is identical to the 7 DoF case where we set f = 1.
With d = 6,¢ = 5,k = 4, naive rendering takes O(n/c?)
while generalized voting takes O(n + %%‘1/5))
DoF case which is better for any n > 1/¢3.

as for 7

4.2.4 Unknown focal length using a radial camera
model (5DoF)

The previous formulation for the 6DoF pose plus focal
length case requires a 7-dimensional voting space. As an al-
ternative we propose to leverage a radial camera model [22]
which is known to work well for pose estimation with un-
known focal length [4, 15]. The approach factors the pose
estimation in two consecutive steps where the first relies on
line-to-point correspondences and solves for all parameters
except the focal length and the camera motion along the op-
tical axis. A second upgrade step solves for the remaining
parameters using a least squares fit. For outlier removal we
focus on the first step and therefore are looking for a 5-tuple
(z,y, ¢). The 2 x 4 radial camera projection matrix is

P= |:r1 _y:| (9)

Iro x

and we have [w', 1](np1 —&p2) = 0, where py, p2 are the
rows of P. We then obtain o, where we parameterize x as
a function of y, ¢:

z=n(raw —y)/§ —raw. (10)

We have d = 5,/ = 5,k = 4 and the algorithm takes
O(n + %5(1/6)) time, compared to O(n/e*) with naive
voting, the general algorithm being faster for any n > 1/¢2.

4.2.5 Evaluation

Localizing an uncalibrated camera with a known axis of ro-
tation is a common problem in computer vision. Both the
problem dimensionality and the number of unknowns are
well suited to demonstrate the general use of our method.
Therefore, we focus on the 5 DoF problem described in
Section 4.2.1 here and compare the runtimes of our gen-
eralized voting approach to naive voting, Branch&Bound,
and RANSAC.

Our evaluation data exhibits real-world, large-scale ur-
ban scenes where a set of 3D points and potential image
correspondences are given. We match real query images
against 3D points of a large SfM model. Using 7, 14, and
56 candidates in the nearest neighbor search results in prob-
lem sizes of roughly 10k, 15k, and 20k matches.

For the solution computations we consider typical space
limitations for all methods: Due to the nature of the pa-
rameterization we only consider a camera orientation with
tangent in [—1, 1], rotating the scene accordingly if needed.
We bound the spatial position to be at most 50m and the
camera height 5m from the ground truth. The focal length
is bounded within a fraction [0.6, 1.3] of the ground truth.

Figure 3 illustrates that our method is most efficient. In
order to eliminate implementation details which can change
runtimes considerably, we do not measure time but instead
count the number of dominant operations. That is the num-
ber of 5D grid cells that are touched in the naive implemen-
tation and the number of calls to the surface-box intersec-
tion predicate for our algorithm and for B&B. For RANSAC
we simplified the problem to one with known focal length
and were thus able to use a 3-point minimal solver with
early rejection to account for the known gravity direction.
We also tuned the number of iterations and inlier tolerance
to find a good pose with minimal runtime. As expected, the
gap between the methods and the improvement in the pro-
posed algorithm is increasing with the size of the input as
suggested by the asymptotic complexity.

3248

200

General Voting :

180 General B&«B ——

160 - Naive
g RANSAC p3p
S 140t
B
g 1207
£ 100 |
8 80
T 60T
£

40

20 1

————

11156 15700 18217

#matches

12
© 10 r
g —
g8
g, - I
8
=z 47
b
* o L General Voting |

General B&«B —
0 .
11156 15700 18217

#matches
Figure 3: Runtime comparison for 5 DoF camera posing:
(top) high cost of naive voting; (bottom) zoom-in on B&B
and our generalized voting.

4.3. Intersections of Rays/Lines in 3-space

The problem consists of a set of n rays in 3-space and
the grid cell size €. The task is to report all subsets of rays
intersecting any cell and with cardinality larger than some
threshold. We can formulate the general surfaces using:

z=cr+d. (11)

With ¢ = 2,k = 1,d = 3 the naive algorithm takes O(n/¢)
while the general voting takes O(n + %%(1/5)) which is
better for any n > 1/¢&3.

y=axr+b

4.4. Pointset Alignment

In this problem, A and B are sets of points in the
plane. Any hypothetical correspondence between p € A
and ¢ € B defines a surface in the 4-space of similarity
transformations (translation, rotation and scale). The linear
parametrization is:

qx :apx+bpy+c (12)
qy = _bpm + APy +d (13)
where a = scos(6),b = ssin(f), s is the scale, 6 is the

rotation and (¢, d) is the translation vector. The general sur-
face is then:

_pr + dpy — PxGx — pry

a= (14)
P2 +p}
—dp. —
b— _ Py px2 pygx +pﬁch. (15)
Pz Ty

Which is a 2-surface embedded in R* where a,b are
given as a functions of ¢, d. In this case we have two es-
sential parameters (¢, d) and we introduce two artificial new
free parameters. With / = 2,k = 2 and d = 4 with n as
the number of canonical surfaces the naive algorithm would
take O(Z) and the general voting takes O(n + 2 log 1)
which is better for any n > 6% (ignoring log factors).

5. Comparison with GOPAC [6]

Solving the 6 DoF camera posing problem without
known correspondences is hard due to the large search
space. Recently, [0] introduced a solution using a globally
optimal method based on Branch&Bound and conducted
extensive evaluations on public datasets (Data61/2D3D [18]
and Stanford 2D-3D-Semantics (2D-3D-S) [13]) against
state-of-the-art alternatives.

We evaluate our general voting on this problem, view-
ing it as a Branch&Bound search. We compare our re-
sults with [0] on the same datasets, using the GOPAC code
provided by the authors (re-run on our machine to ensure
comparability to our approach), showing that our general
algorithm is not only asymptotically better but also faster
in practice. Both our algorithm and GOPAC, are globally
optimal up to a prescribed resolution € and perform joint
inlier set maximization and correspondence search. Our
method achieves a significantly better worst case runtime of
O(n + poly(1/¢)) compared to O(npoly(1/¢)) in GOPAC.

In order to implement the 6DOF solver in our gen-
eral framework we reformulated the problem as a surface
consensus problem according to Sec. 4.2.3. Compared to
GOPAC our formulation does not use an angular error met-
ric, but is based on surface distances. However, it is possi-
ble to obtain the globally optimal solution by conservative
expansion of the cubes (to avoid missing inliers) and ver-
ify the angular projection error on the final inlier set for the
minimal cuboids.

Data61/2D3D [18] outdoor dataset: The dataset con-
sists of a 88 3D points and 11 sets of 30 bearing vectors.
Table 2 shows the localization performance and runtime
for GOPAC, our generalized voting and RANSAC. Both
Branch&Bound algorithms show comparable accuracy due
to their global optimality and we only expect a difference in
runtime. Here our algorithm is more than an order of mag-
nitude faster. Equivalent to [6] we restrict the translation
solution to a 50m x 5m X 5Hm domain along the street (as
it is known that cameras are mounted on a vehicle), and a
camera is considered successfully posed, if the rotation er-
ror is less than 0.1 radians and the normalized translation
error is less than 0.1. There is no prior knowledge here, we
have used limitations done in [6] for a fair comparison.

3249

Algorithm GOPAC GV (ours) RANSAC
Translation Error (m) 2.76 2.89 28.5
Rotation Error (deg) 2.18 0.46 179
Runtime (s) 457 27 422
Success rate (inliers) 1 1 0

Success rate (pose) 0.82 0.82 0.09

Table 2: Camera posing results (median error over the 11
queries) for Scene 1 of the Data61/2D3D dataset. Error
metrics for GOPAC are taken from [6]). Runtimes are from
single-threaded execution of C++ code, where GOPAC was
rerun on our machine.

Algorithm GOPAC GV (ours)
Translation Error (m) 0.29 0.38
Rotation Error (deg) 3.46 2.81
Runtime (s) 508 421
Success rate (inliers) 1 1

Success rate (pose) 0.77 0.77
Success rate within 60s 0.19 0.42

Table 3: Camera posing results (median error) for Area 3 of
the Stanford 2D-3D-S dataset (see Tab. 3 in [0]). Runtimes
are from running C++ code on CPU with 8-threads.

Stanford 2D-3D-Semantics [13] indoor dataset: The
dataset consists of 15 rooms of different types and 27 sets
of 50 bearing vectors. Table 3 lists our performance and
runtime comparison. Since RANSAC has polynomial run-
time in the inlier ratio, while our approach is independent of
it, we forwent more RANSAC comparisons. As the exper-
imental evaluation of [6] uses a GPU implementation we
reran both algorithms on CPU using 8 threads to ensure
comparability. In order to obtain reasonable runtimes we
set € to 0.5m and 0.1 radians, respectively for both meth-
ods. Again we expect a similar localization performance
due to the global optimality of both methods. On average
the runtime of our algorithm on this dataset is only slightly
better. As noted in Section 3.2.1, the effect of the asymptot-
ically better worst case runtime increases with the hardness
of the problem (both, in size and data distribution). There-
fore, Figure 4 depicts the (sorted) runtimes for all queries,
which illustrates that our algorithm becomes significantly
faster for the hard cases.

6. Conclusion

In this paper we introduced the concept of general vot-
ing, a powerful method for outlier rejection applicable to
a wide range of geometric computer vision problems. We
adopt the previously proposed method of approximate inci-

Runtime comparison

7000 — T
/
/
6000 /A
/
/
/
5000 + /A
—
2
E /
S 4000 / R
< -
9 3000 - / B
E /
2000 |- /]
/ P
1000 |)
___ _~GOPAC ——
- - General Voting
O - — 1 n 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
O — o o — — NN~ OO TN T Do = O
\\\\\\\\\\\\\\\\\\\\\\\\\\
O FT ANV O A0S0~ —\Ocn\O
XINLLEL TRV RERR 2D 222822 DD
ZRTI R Rl BEG e 2 ZR A

dataset/camera
Figure 4: Sorted runtimes for all queries in the Stanford
2D-3D-S dataset. Same experiment as Table 3.

dences [1] to solve for inlier maximization in multiple clas-
sical computer vision problems ranging from camera pos-
ing and ray intersection to geometric model fitting. We de-
scribed the general recipe with a simple to understand 2d-
line fitting example, but also demonstrated its applicability
to real-world problems.

Through theoretical analysis and experiments we
demonstrated that our algorithm scales better than its al-
ternatives, like RANSAC or Branch&Bound, both in terms
of complexity and real-world runtime. The experimental
data validated that our solution performs particularly well
for large problems with low inlier ratios where alternatives
require problem specific knowledge to remain applicable.

One of the key use-cases we investigated is camera pos-
ing with and without known gravity direction and focal
length, problems that cannot be solved efficiently at large
scale with previously published methods, yet that have wide
applicability in industry. To solve these cases, we intro-
duced two algorithms that are key to efficiency: canoniza-
tion of the intersected surfaces and an efficient d-box in-
tersection algorithm which we combine in a spatial subdi-
vision scheme. To demonstrate the impact of these contri-
butions we provided an extensive evaluation against a re-
cently published state-of-the art method on publicly avail-
able, large-scale indoor and outdoor datasets.

Beside solving concrete localization approaches this
work introduced the concept of general voting to the wider
computer-vision community. We aim to provide a recipe
for applying this approach to a range of problems and pub-
lish an open-source implementation of our efficient general
voting to unlock new applications and research directions.

Acknowledgements The authors would like to thank
Micha Sharir for helpful discussions concerning the general
surface-box intersection.

3250

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

[11]

(12]

(13]

[14]

[15]

(16]

Dror Aiger, Haim Kaplan, Efi Kokiopoulou, Micha Sharir,
and Bernhard Zeisl. General techniques for approximate in-
cidences and their application to the camera posing problem.
In Symposium on Computational Geometry, pages 8:1-8:14,
2019. 1,2,3,5,6,8

E. Artin. 1.4 duality and pairing. Geometric Algebra, 1957.
2,5

T. M. Breuel. Implementation techniques for geometric
branchand-bound matching methods. Comput. Vis. Image
Understanding, 90(3):258-294, 2003. 1, 4

Martin Bujnak, Zuzana Kukelova, and Tomds Pajdla. New
efficient solution to the absolute pose problem for camera

with unknown focal length and radial distortion. ACCV,
1:11-24, 1010. 6
F. Kahl C. Olsson and M. Oskarsson. Branch-and-

bound methods for euclidean registration problems. PAMI,
31(5):783-794, 2009. 4

Dylan Campbell, Lars Petersson, Laurent Kneip, and Hong-
dong Li. Globally-optimal inlier set maximisation for camera
pose and correspondence estimation. PAMI, 42(2):328-342,
2020. 1,2,4,7,8

R. O. Duda and P. E. Hart. Use of the hough transformation
to detect lines and curves in pictures. Comm. ACM, 15:11—
15,1972. 4,5

Martin A Fischler and Robert C Bolles. Random sample
consensus: a paradigm for model fitting with applications to
image analysis and automated cartography. Communications
of the ACM, 24(6):381-395, 1981. 1,4

Johan Fredriksson, Viktor Larsson, Carl Olsson, Olof En-
qvist, and Fredrik Kahl. Efficient algorithms for robust esti-
mation of relative translation. Image Vis. Comput., 52:114—
124,2016. 2,4

Johan Fredriksson, Viktor Larsson, Carl Olsson, and Fredrik
Kahl. Optimal relative pose with unknown correspondences.
CVPR, 52:1728-1736, 2016. 2, 4

P.V.C. Hough. Method and means for recognizing complex
patterns. U.S. Patent 3,069,654, 1962. 1,4,5

D. P. Huttenlocher and K. Kedem. Computing the minimum
hausdorff distance for point sets under translation. In Sym-
posium on Computational Geometry, pages 340-349, 1990.
2

A. R. Zamir 1. Armeni, A. Sax and S. Savarese. Joint
2d-3dsemantic data for indoor scene understanding.
In ArXiv e-prints, Feb. 2017. [Online]. Available:
http://adsabs.harvard.edu/abs/2017arXiv170201105A,
2017. 7,8

A.H. Land and A. G. Doig. An automatic method of solving
discrete programming problems. Econometrica: J. Econo-
metric Soc., 28:497-520, 1960. 1, 4

Viktor Larsson, Torsten Sattler, Zuzana Kukelova, and Marc
Pollefeys. Revisiting radial distortion absolute pose. ICCV,
1:1062-1071, 2019. 6

H. Li and R. Hartley. The 3d-3d registration problem revis-
ited. Proc. IEEE Int. Conf. Comput. Vis, pages 1-8, 2007.
4

(17]

(18]

(19]

(20]

(21]

(22]

(23]

3251

Yunpeng Li, Noah Snavely, Dan Huttenlocher, and Pascal
Fua. Worldwide pose estimation using 3d point clouds.
In European conference on computer vision, pages 15-29.
Springer, 2012. 2

M. Salzmann S. T. Namin, M. Najafi and L. Petersson. A
multimodal graphical model for scene analysis. In Winter
Conf. Appl. Comput. Vis., page 1006-1013, 2015. 7

Torsten Sattler, Will Maddern, Carl Toft, Akihiko Torii,
Lars Hammarstrand, Erik Stenborg, Daniel Safari, Masatoshi
Okutomi, Marc Pollefeys, Josef Sivic, et al. Benchmark-
ing 6dof outdoor visual localization in changing conditions.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 8601-8610, 2018. 2

Linda Shapiro and George Stockman. Computer vision.
Prentice-Hall, Inc., 2001. 5

Linus Svédrm, Olof Enqvist, Fredrik Kahl, and Magnus Os-
karsson. City-scale localization for cameras with known ver-
tical direction. PAMI, 39(7):1455-1461, 2016. 1,5

SriRam Thirthala and Marc Pollefeys. Radial multi-focal
tensors - applications to omnidirectional camera calibration.
1JCV, 96(2):195-211, 2012. 6

Bernhard Zeisl, Torsten Sattler, and Marc Pollefeys. Cam-
era pose voting for large-scale image-based localization. In
ICCV, pages 2704-2712, 2015. 1,5

