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Abstract

We present DocFormer - a multi-modal transformer
based architecture for the task of Visual Document Un-
derstanding (VDU). VDU is a challenging problem which
aims to understand documents in their varied formats
(forms, receipts etc.) and layouts. In addition, DocFormer
is pre-trained in an unsupervised fashion using carefully
designed tasks which encourage multi-modal interaction.
DocFormer uses text, vision and spatial features and com-
bines them using a novel multi-modal self-attention layer.
DocFormer also shares learned spatial embeddings across
modalities which makes it easy for the model to correlate
text to visual tokens and vice versa. DocFormer is eval-
uated on 4 different datasets each with strong baselines.
DocFormer achieves state-of-the-art results on all of them,
sometimes beating models 4x its size (in no. of parameters).

1. Introduction

The task of Visual Document Understanding (VDU)
aims at understanding digital documents either born as
PDF’s or as images. VDU focuses on varied document re-
lated tasks like entity grouping, sequence labeling, docu-
ment classification. While modern OCR engines [33] have
become good at predicting text from documents, VDU of-
ten requires understanding both the structure and layout of
documents. The use of text or even text and spatial features
alone is not sufficient for this purpose. For the best results,
one needs to exploit the text, spatial features and the image.
One way to exploit all these features is using transformer
models [4, 14, 51]. Transformers have recently been used
for VDU [25, 54, 55]. These models differ in how the unsu-
pervised pre-training is done, the way self-attention is mod-
ified for the VDU domain or how they fuse modalities (text
and/or image and spatial). There have been text only [14],
text plus spatial features only [25, 54] approaches for VDU.
However, the holy-grail is to fuse all three modalities (text,

Figure 1: Snippet of a Document: Various VDU tasks on this
document may include labeling each text token into fixed classes
or grouping tokens into a semantic class and finding relationships
between tokens e.g. (“DATE PREPARED” � Key and “1/29/74”
� Value) or classifying the document into different categories.
Note a document could have “other” text e.g. “C-5” which the
model should ignore or classify as “other” depending on the task.

visual and spatial features). This is desirable since there is
some information in text that visual features miss out (lan-
guage semantics), and there is some information in visual
features that text misses out (text font and visual layout for
example).

Multi-modal training in general is difficult since one has
to map a piece of text to an arbitrary span of visual con-
tent. For example in Figure 1, “ITEM 1” needs to be
mapped to the visual region. Said a different way, text de-
scribes semantic high-level concept(s) e.g. the word “per-
son” whereas visual features map to the pixels (of a person)
in the image. It is not easy to enforce feature correlation
across modalities from text←−→ image. We term this issue as
cross-modality feature correlation and reference it later to
show how DocFormer presents an approach to address this.

DocFormer follows the now common, pre-training and
fine-tuning strategy. DocFormer incorporates a novel multi-
modal self-attention with shared spatial embeddings in an
encoder only transformer architecture. In addition, we pro-
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pose three pre-training tasks of which two are novel un-
supervised multi-modal tasks: learning-to-reconstruct and
multi-modal masked language modeling task. Details are
provided in Section 3. To the best of our knowledge, this is
the first approach for doing VDU which does not use bulky
pre-trained object-detection networks for visual feature ex-
traction. DocFormer instead uses plain ResNet50 [21] fea-
tures along with shared spatial (between text and image)
embeddings which not only saves memory but also makes
it easy for DocFormer to correlate text, visual features via
spatial features. DocFormer is trained end-to-end with the
visual branch trained from scratch. We now highlight the
contributions of our paper:

• A novel multi-modal attention layer capable of fusing
text, vision and spatial features in a document.

• Three unsupervised pre-training tasks which encour-
age multi-modal feature collaboration. Two of these
are novel unsupervised multi-modal tasks: learning-
to-reconstruct task and a multi-modal masked lan-
guage modeling task.

• DocFormer is end-to-end trainable and it does not rely
on a pre-trained object detection network for visual
features simplifying its architecture. On four varied
downstream VDU tasks, DocFormer achieves state of
the art results. On some tasks it out-performs large
variants of other transformer almost 4x its size (in the
number of parameters). In addition, DocFormer does
not use custom OCR unlike some of the recent papers
[55, 25].

2. Background
Document understanding methods in the literature have

used various combinations of image, spatial and text fea-
tures in order to understand and extract information from
structurally rich documents such as forms [18, 57, 12], ta-
bles [44, 56, 24], receipts [27, 26] and invoices [35, 42, 37].
Finding the optimal way to combine these multi-modal fea-
tures is an active area of research.

Grid based methods [29, 13] were proposed for invoice
images where text pixels are encoded using character or
word vector representations and classified into field types
such as Invoice Number, Date, Vendor Name and Address
etc. using a convolutional neural network.

BERT [14] is a transformer-encoder [51] based neural
network that has been shown to work well on language
understanding tasks. LayoutLM [54] modified the BERT
architecture by adding 2D spatial coordinate embeddings
along with 1D position and text token embeddings. They
also added visual features for each word token, obtained us-
ing a Faster-RCNN and its bounding box coordinates.
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Figure 2: Conceptual Comparisons of Transformer Multi-Modal
Encoder Architectures: The mechanisms differ in how the
modalities are combined. Type A) Joint Multi-Modal: like
VL-BERT[46], LayoutLMv2[55], VisualBERT [32], MMBT[30],
UNITER [8] Type B) Two-stream Multi-Modal: CLIP[40],
VilBERT[36], Type C) Single-stream Multi-Modal, Type D)
Ours: Discrete Multi-modal. e.g. DocFormer . Note: in each
transformer layer, each input modality is self-attended separately.
Best viewed in color.

LayoutLM was pre-trained on 11 million unlabeled
pages and was then finetuned on several document under-
standing tasks - form processing, classification and receipt
processing. This idea of pre-training on large datasets and
then finetuning on several related downstream tasks is also
seen in general vision and language understanding work
[46, 36, 30, 32] etc. Figure 2 shows a comparison of multi-
modal transformer encoder architectures.

Recently, LayoutLMv2 [55] improved over LayoutLM
by changing the way visual features are input to the model
- treating them as separate tokens as opposed to adding vi-
sual features to the corresponding text tokens. Further, ad-
ditional pre-training tasks were explored to make use of un-
labeled document data.

BROS [26] also uses a BERT based encoder, with a
graph-based classifier based on SPADE [28], which is used
to predict entity relations between text tokens in a docu-
ment. They also use 2D spatial embeddings added along
with text tokens and evaluate their network on forms, re-
ceipts document images. Multi-modal transformer encoder-
decoder architectures based on T5 [41] have been proposed
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recently. Tanaka et al. propose Layout-T5 [48] for a ques-
tion answering task on a database of web article document
images whereas Powalski et al. propose TILT [39] combin-
ing convolutional features with the T5 architecture to per-
form various downstream document understanding tasks.

3. Approach
Conceptual Overview: We first present a conceptual

overview of architectures used in Transformer Encoder
Multi-Modal training, illustrated in Figure 2. (a) Joint
Multi-Modal: VL-BERT [46], LayoutLMv2 [55], Visu-
alBERT [32], MMBT [30]: In this type of architecture,
vision and text are concatenated into one long sequence
which makes transformers self-attention hard due to the
cross-modality feature correlation referenced in the intro-
duction. (b) Two-Stream Multi-Modal CLIP [40], Vil-
BERT [36]: It is a plus that each modality is a separate
branch which allows one to use an arbitrary model for each
branch. However, text and image interact only at the end
which is not ideal. It might be better to do early fusion. (c)
Single-stream Multi-Modal: treats vision features also as
tokens (just like language) and adds them with other fea-
tures. Combining visual features with language tokens this
way (simple addition) is unnatural as vision and language
features are different types of data. (d) Discrete Multi-
Modal: In this paper, DocFormer unties visual, text and
spatial features. i.e. spatial and visual features are passed as
residual connections to each transformer layer. We do this
because spatial and visual dependencies might differ across
layers. In each transformer layer, visual and language fea-
tures separately undergo self-attention with shared spatial
features. In order to pre-train DocFormer we use a subset
of 5 million pages from the IIT-CDIP document collection
[31] for pre-training. In order to do multi-modal VDU, we
first extract OCR, which gives us text and corresponding
word-level bounding boxes for each document. We next de-
scribe the model-architecture, followed by the pre-training
tasks.

3.1. Model Architecture

DocFormer is an encoder-only transformer architecture.
It also has a CNN backbone for visual feature extraction.
All components are trained end-to-end. DocFormer en-
forces deep multi-modal interaction in transformer layers
using novel multi-modal self-attention. We describe how
three modality features (visual, language and spatial) are
prepared before feeding them into transformer layers.

Visual features: Let v ∈ R3×h×w be the image of a doc-
ument, which we feed through a ResNet50 convolutional
neural network fcnn(θ, v). We extract lower-resolution vi-
sual embedding at layer 4 i.e. vl4 ∈ Rc×hl×wl . Typical
values at this stage are c = 2048 and hl = h

32 , wl = w
32

(c = number of channels and hl and wl are the height and

width of the features). The transformer encoder expects a
flattened sequence as input of d dimension. So we first ap-
ply a 1 × 1 convolution to reduce the channels c to d. We
then flatten the ResNet features to (d, hl × wl) and use a
linear transformation layer to further convert it to (d, N )
where d = 768, N = 512. Therefore, we represent the
visual embedding as V = linear(conv1×1(fcnn(θ, v))).

Language features: Let t be the text extracted via
OCR from a document image. In order to generate
language embeddings, we first tokenize text t using a
word-piece tokenizer [53] to get ttok, this is then fed
through a trainable embedding layer Wt. ttok looks like
[CLS], ttok1 , ttok2 , . . . , ttokn where n = 511. If the num-
ber of tokens in a page is > 511, we ignore the rest. For a
document with fewer than 511 tokens, we pad the sequence
with a special [PAD] token and we ignore the [PAD] to-
kens during self-attention computation. We ensure that the
text embedding, T = Wt(ttok), is of the same shape as the
visual embedding V . Following prior art [55], we initialize
Wt with LayoutLMv1 [54] pre-trained weights.

Spatial Features: For each word k in the
text, we also get bounding box coordinates
bk = (x1, y1, x2, y2, x3, y3, x4, y4). 2D spatial coor-
dinates bk provide additional context to the model about
the location of a word in relation to the entire document.
This helps the model make better sense of the content.
For each word, we encode the top-left and bottom-right
coordinates using separate layers W x and W y for x and
y-coordinates respectively. We also encode more spatial
features: bounding box height h, width w, the Euclidean
distance from each corner of a bounding box to the
corresponding corner in the bounding box to its right and
the distance between centroids of the bounding boxes, e.g.
Arel = {Ak+1

num−Ak
num};A ∈ (x, y);num ∈ (1, 2, 3, 4, c),

where c is the center of the bounding box. Since trans-
former layers are permutation-invariant, we also use
absolute 1D positional encodings P abs. We create separate
spatial embeddings for visual Vs and language Ts features
since spatial dependency could be modality specific.
Final spatial embeddings are obtained by summing up
all intermediate embeddings. All spatial embeddings are
trainable.

Vs = W x
v (x1, x3, w,A

x
rel)+

W y
v (y1, y3, h, A

y
rel) + P abs

v (1)

Ts = W x
t (x1, x3, w,A

x
rel)+

W y
t (y1, y3, h, A

y
rel) + P abs

t (2)

Multi-Modal Self-Attention Layer: We now describe
in detail our novel multi-modal self-attention layer. Con-
sider a transformer encoder fenc(η, V , Vs, T , Ts), where η
are trainable parameters of the transformer, V , Vs, T and
Ts are visual, visual-spatial, language and language-spatial
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features respectively, and are obtained as described previ-
ously. Transformer fenc outputs a multi-modal feature rep-
resentation M of the same shape d = 768, N = 512 as each
of the input features.

Self-attention, i.e., scaled dot-product attention as intro-
duced in [51], for a single head is defined as querying a
dictionary with key-value pairs. i.e. in a transformer layer l
and ith input token in a feature length of L.

M
l

i =

L∑
j=1

exp (αij)∑n
j′=1 exp (αij′)

(
xl
jW

V,l
)

(3)

where αij is defined as self-attention which is computed
as (attention in layer l between tokens xi and xj).

αij =
1√
d

(
xl
iW

Q,l
) (

xl
jW

K,l
)T

(4)

Here, d is the dimension of the hidden representation,
WQ,l,WK,l ∈ Rd×dK , and WV ∈ Rd×dV are learned pa-
rameter matrices which are not shared among layers or at-
tention heads. Without loss of generality, we remove the
dependency on layer l and get a simplified view of Eq. 4 as:

αij =
(
xiW

Q
)
·
(
xjW

K
)T

(5)

We modify this attention formulation for the multi-
modal VDU task. DocFormer tries to infuse the following
inductive bias into self-attention formulation: for most VDU
tasks, local features are more important than global ones.
We modify Eq. 5, to add relative features. Specifically, the
attention distribution for visual features is:

αv
ij = (xv

iW
Q
v )(xv

jW
K
v )T︸ ︷︷ ︸

key-query attn.

+ (xv
iW

Q
v aij)︸ ︷︷ ︸

query 1D relative attn.

+

(xv
jW

K
v aij)︸ ︷︷ ︸

key 1D relative attn.

+(VsW
Q
s )(VsW

K
s )︸ ︷︷ ︸

visual spatial attn.

(6)

Here, xv denotes visual features, WK
v ,WQ

v denote learn-
able matrices for key, query visual embeddings respectively.
WK

s ,WQ
s denote learnable matrices for key, query spatial

embeddings respectively. aij is 1D relative position embed-
ding between tokens i, j i.e. aij = W rel

j−i where W rel learns
how token i attends to j. We clip the relative attention so
DocFormer gives more importance to local features. We get
a similar equation for language attention αt

ij :

αt
ij = (xiW

Q
t )(xjW

K
t )T + (xiW

Q
t aij) +

(xjW
K
t aij) + (TsW

Q
s )(TsW

K
s ) (7)

Here, x is the output of the previous encoder layer, or
word embedding layer if l = 1. An important aspect of Eq.
6 and Eq. 7 is that we share spatial weights in each layer. i.e.
the spatial attention weights (WQ

s ,WK
s ) are shared across

vision and language. This helps the model correlate features
across modalities.

Using the visual self-attention computed using Eq. 6 in
Eq. 3, gets us spatially aware, self-attended visual features
V̂l. Similarly using Eq. 7 in Eq. 3, gets us language features
T̂l. The multi-modal feature output is given by M l = V̂l +
T̂l. It should be noted that for layers l > 1, features x
in Eq. 7 are multi-modal because we combine visual and
language features at the output of layer l−1. The final M12

is consumed by downstream linear layers.
Why do multi-modal attention this way? We untie the

visual and spatial information and pass them to each layer
of transformer. We posit that making visual and spatial in-
formation accessible across layers acts as an information
residual connection [22, 52] and is beneficial for generat-
ing superior multi-modal feature representation hence better
addressing the issue of cross-modality feature correlation.
This is verified in our experiments (Section 4), where we
show that DocFormer obtains state-of-the-art performance
even when compared to models having four times the num-
ber of the parameters in some cases. Further, sharing spatial
weights across modalities in each layer gives DocFormer an
opportunity to learn cross-modal spatial interactions while
also reducing the number of parameters. In Sec. 4, we show
that DocFormer is the smallest amongst its class of models,
yet it is able to show superior performance. Code in supple.

Run-time Complexity: The run-time complexity of
DocFormer is of the same order as that of the original self-
attention model [51] (for details see supplemental material)

3.2. Pre-training

The ability to design new and effective unsupervised pre-
training strategies is still an open problem. Our pre-training
process involves passing the document image, its extracted
OCR text, and its corresponding spatial features. All pre-
training tasks were designed such that the network needs the
collaboration of both visual and language features, thereby
truly learning a superior representation than training with
only one of the modalities. See Figure 3 for a high-level
overview of the pre-training tasks.

Multi-Modal Masked Language Modeling (MM-
MLM): This is a modification of the original masked lan-
guage modeling (MLM) pre-text task introduced in BERT
[14], and may be thought of as a text de-noising task i.e. for
a text sequence t, a corrupted sequence is generated t̃. The
transformer encoder predicts t̂ and is trained with an ob-
jective to reconstruct entire sequence. In our case, we use a
multi-modal feature embedding M for reconstruction of the
text sequence. In prior art [55, 54], for a masked text token,
the corresponding visual region was also masked to prevent
“cheating”. Instead, we intentionally do not mask visual re-
gions corresponding to [MASK] text. This is to encourage
visual features to supplement text features and thus mini-
mize the text reconstruction loss. The masking percentage
is the same as originally proposed [14]. Cross-entropy loss
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is used for this task (LMM−MLM ).
Learn To Reconstruct (LTR): In this novel pre-text

task, we do the image version of the MM-MLM task, i.e.
we do an image reconstruction task. The multi-modal fea-
ture predicted by DocFormer is passed through a shallow
decoder to reconstruct the image (the same dimension as
the input image). In this case this task is similar to an
auto-encoder image reconstruction but with multi-modal
features. The intuition is that in the presence of both im-
age and text features, the image reconstruction would need
the collaboration of both modalities. We employ a smooth-
L1 loss between the reconstructed image and original input
image (LLTR).

Text Describes Image (TDI): In this task, we try to
teach the network if a given piece of text describes a doc-
ument image. For this, we pool the multi-modal features
using a linear layer to predict a binary answer. This task
differs from the above two tasks in that this task infuses
the global pooled features into the network (as opposed to
MM-MLM and LTR focusing purely on local features). In a
batch, 80% of the time the correct text and image are paired,
for the remaining 20% the wrong image is paired with the
text. A binary cross-entropy loss (LTDI ) is used for this
task. Since the 20% negative pair scenario interferes with
the LTR task (for a text ←−→ image pair mismatch the pair
reconstruction loss would be high), the LTR loss is ignored
for cases where there is a mismatch.

The final pre-training loss Lpt = λLMM−MLM +
βLLTR + γLTDI . In practice λ = 5, β = 1 and γ = 5.
DocFormer is pre-trained for 5 epochs, then we remove all
three task heads. We add one linear projection head and
fine-tune all components of the model for all downstream
tasks.

4. Experiments
For all experiments, we fine-tune on the training set and

report numbers on the corresponding test/validation dataset.
No dataset specific hyper-parameter tuning was done. We
treat this as a plus and our reported numbers could be higher
if dataset specific fine-tuning was done. For all downstream
tasks, we use the official provided annotations unless other-
wise stated. A common theme amongst these datasets is the
relatively small amount of training data (most with <1000
samples). We posit that pre-training is much more helpful
in such scenarios and helps measure the generalization ca-
pability of DocFormer .

Notations: Tables 1, 2, 3, 4, use the following notation.
T: Text features, S: spatial features. I: image features. Bold
indicates SOTA. Underline indicates second best. † denotes
the use of Encoder + Decoder transformer layers. ∗ signifies
approximate estimation.

Implementation details: We summarize details for pre-
training and fine-tuning in Table 1 in supplemental. We em-
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Figure 3: DocFormer pre-training methodology. High level
overview. Note: First bounding box token corresponding to
[CLS], is meant for entire page coordinates.

phasize the importance of warm-up steps and learning rate
scale. We found that these settings have a non-trivial impact
on pre-training result as well as downstream task perfor-
mance. We used Pytorch [38] and the Huggingface library
[50].

Models: We employ the commonly used terminology
for transformer encoder models - base with 12 transformer
layers (768 hidden state and 12 attention heads) and large
with 24 transformer layers (1024 hidden state and 16 at-
tention heads). We show that DocFormer -base gets SOTA
for three of the 4 tasks beating even large models and for
the 4th task is close to a large model. In addition to the
multi-modal DocFormer , we also present a text and spatial
DocFormer by pre-training DocFormer multi-modally but
fine-tuning with only text and spatial features. We do this to
show the flexibility of our model and show that during pre-
training visual features were infused into DocFormer lead-
ing it to do better than pure text and spatial models.

4.1. Sequence Labeling Task

FUNSD [17] dataset is a form understanding task. It
contains 199 noisy documents (149 train, 50 test) which
are scanned and annotated. We focus on the semantic
entity-labeling task (i.e., group tokens which belong to the
same class). We measure entity-level performance using
F1 score shown in Table 1. DocFormer -base achieves
83.34% F1 score which is better than comparable models:
LayoutLMv2-base (+0.58), BROS (+2.13), LayoutLMv1-
base (+4.07). Story repeats for DocFormer -large inspite of
it trained only with 5M pages.

FUNSD performance vs Pre-training samples: We
also measure the performance of DocFormer -base with in-
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Model #param (M) Precision Recall F1
methods based on only text / (text + spatial) features:

BERT-base [14] 109 54.69 61.71 60.26
RoBERTa-base [34] 125 63.49 69.75 66.48
UniLMv2-base [3] 125 63.49 69.75 66.48
LayoutLMv1-base [54] 113 76.12 81.55 78.66
BROS-base [25] 139 80.56 81.88 81.21

BERT-large [14] 340 61.13 70.85 65.63
RoBERTa-large [34] 355 67.80 73.91 70.72
UniLMv2-large [3] 355 67.80 73.91 70.72
LayoutLMv1-large [54] 343 75.36 80.61 77.89

methods based on image + text + spatial features:

LayoutLMv1-base [54] 160 76.77 81.95 79.27
LayoutLMv2-base [55] 200 80.29 85.39 82.76
LayoutLMv2-large [55] 426 83.24 85.19 84.20

DocFormer-base (T+S) 149 77.63 83.69 80.54
DocFormer-base (I+T+S) 183 80.76 86.09 83.34
DocFormer-large (T+S) 536 81.33 85.44 83.33
DocFormer-large (I+T+S) 536 82.29 86.94 84.55

Table 1: FUNSD comparison: DocFormer does better than mod-
els its size and compares well with even larger models

Figure 4: Amount of Pre-training
matters: x-axis is the number of pre-
training samples needed. y-axis is the
F1-score on FUNSD task. DocFormer
-base gets 83.34 after pre-training on
only 5M pages and outperforms cur-
rent SOTA LayoutLMv2-base’s 82.76
which was pretrained on more than 2x
more data.

creasing number of pre-training samples. As seen in Fig-
ure 4, our base model achieves state-of-the-art performance
of 83.34 F1-score in-spite of being pre-trained with only
5M documents. Previous SOTA needed more than 2x pre-
training documents (11M) to achieve (82.76). Also Doc-
Former converges faster.

DocFormer performance without images: Please note
DocFormer -base T+S model which was pre-trained with
(I+T+S) but was fine-tuned on FUNSD without Images
gives F1 of 80.54 which is +1.88% higher than a Lay-
outLMv1 (78.66%) which was purely pre-trained and fine-
tuned on T+S. We hypothesize that DocFormer was infused
with visual features during pre-training and is better than
text-only pre-trained models.

4.2. Document Classification Task

For this task we use pooled features to predict a classifi-
cation label for a document. The RVL-CDIP [19] dataset
consists of 400,000 grayscale images in 16 classes, with
25,000 images per class. Overall there are 320,000 train-
ing images, 40,000 validation images, and 40,000 test im-
ages. We report performance on test and eval metric is the
overall classification accuracy. In line with prior art [55, 25]
text and layout information is extracted using Textract OCR.

DocFormer -base achieves state-of-the-art performance of
96.17%. DocFormer gives superior performance to all ex-
isting base and large transformer variants. Some models
greater than 4x in number of parameters (TILT-large, 780M
parameters gives 94.02% (-2.15% gap).

Model #param (M) Accuracy (%)
methods based on only images:

CNN ensemble [19] *60 89.80
VGG-16 [1] 138 88.33
AlexNet [49] 61 90.94
GoogLeNet [9] 13 90.70
Single Vision model [10] *140 91.11
Ensemble [10] - 92.21
InceptionResNetV2 [47] 56 92.63
LadderNet [43] - 92.77

methods based on text / (text + spatial) features:

BERT-base [14] 110 89.81
UniLMv2-base [3] 125 90.06
LayoutLMv1-base [54] 113 91.78
BROS-base † [25] 139 95.58

BERT-large [14] 340 89.92
UniLMv2-large [3] 355 90.20
LayoutLMv1-large [54] 343 91.90

methods based on image + text + spatial features:

Single Modal [11] - 93.03
Ensemble [11] - 93.07
TILT-base † [39] 230 93.50
LayoutLMv1-base [54] 160 94.42
LayoutLMv2-base [55] 200 95.25

LayoutLMv1-large [54] 390 94.43
TILT-large † [39] 780 94.02
LayoutLMv2-large [55] 426 95.65

DocFormer-base (I+T+S) 183 96.17
DocFormer-large (I+T+S) 536 95.50

Table 2: RVL-CDIP dataset [19] comparison: We report classi-
fication accuracy on the test set. DocFormer gets the highest clas-
sification accuracy and outperforms TILT-large by +2.15 which is
almost 4x its size.

4.3. Entity Extraction Task

We report performance on two different entity extraction
datasets:

CORD Dataset [45]: consists of receipts. It defines 30
fields under 4 categories. The task is to label each word to
the right field. The evaluation metric is entity-level F1. We
use the provided OCR annotations and bounding boxes for
fine-tuning (Table 3). DocFormer -base achieves 96.33%
F1 on this dataset besting all prior *-base and virtually all
*-large variants tying with TILT-large [39] which has higher
number of parameters. DocFormer -large achieves 96.99%
besting all other *-large variants achieving SOTA.

Kleister-NDA [16]: dataset consists of legal NDA doc-
uments. The task with Kleister-NDA data is to extract the
values of four fixed labels. The approach needs to learn to
ignore unrelated text. This dataset is challenging since it
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Model #param (M) Precision Recall F1
methods based on only text / (text + spatial) features:

BERT-base [14] 109 88.33 91.07 89.68
UniLMv2-base [3] 125 89.87 91.98 90.92
SPADE [28] - - - 91.50
LayoutLMv1-base [54] 113 94.37 95.08 94.72
BROS-base † [25] 139 95.58 95.14 95.36

BERT-large [14] 340 88.86 91.68 90.25
UniLMv2-large [3] 355 91.23 92.89 92.05
LayoutLMv1-large [54] 343 94.32 95.54 94.93

methods based on image + text + spatial features:

LayoutLMv2-base [55] 200 94.53 95.39 94.95
TILT-base † [39] 230 - - 95.11
LayoutLMv2-large [55] 426 95.65 96.37 96.01
TILT-large † [39] 780 - - 96.33

DocFormer-base (T+S) 149 94.82 95.07 94.95
DocFormer-base (I+T+S) 183 96.52 96.14 96.33
DocFormer-large (T+S) 502 96.46 96.14 96.30
DocFormer-large (I+T+S) 536 97.25 96.74 96.99

Table 3: CORD dataset [45] comparison. We present entity-level
Precision, Recall, F1 on test set.

has some “decoy” text, for which no label should be given.
Also, there might be more than one value given for a given
label and all values need to be extracted. In line with prior-
art we measure F1-score on validation data (since ground
truth is not provided for test data). Also we extract OCR
and apply heuristics to create train/validation ground-truth
on OCR (Table 4).

Model #param (M) F1
methods based on only text / (text + spatial) features:

LAMBERT [15] - 75.7
RoBERTa [34] 125 76.7
BERT-base [14] 110 77.9
UniLMv2-base [3] 125 79.5
LayoutLMv1-base [54] 113 82.7

BERT-large [14] 340 79.1
UniLMv2-large [3] 355 81.8
LayoutLMv1-large [54] 343 83.4

methods based on image + text + spatial features:

LayoutLMv2-base [55] 200 83.3
LayoutLMv2-large [55] 426 85.2

DocFormer -base (T+S) 149 82.1
DocFormer -base (I+T+S) 183 85.8

Table 4: Kleister-NDA dataset [16] comparison: We present
entity-level Precision, Recall, F1 on validation set. DocFormer
gives the best performance, out-performing other *-large models
trained with 2.5x the learning capacity.

4.4. More Experiments

We conduct further analysis on the behavior of Doc-
Former pertaining to pre-training tasks, network structure
and spatial embedding weight sharing.

Shared or Independent Spatial embeddings? One of
the benefits of our proposed DocFormer multi-modal self-
attention architecture (Fig. 2 and Eq. 6,7) is that sharing
spatial embeddings across vision and language makes it eas-
ier for the model to learn feature-correlation across modali-
ties. We see ablation on this aspect in Table 5.

Configuration Num Params FUNSD (F1) CORD (F1)
w. shared spatial Eq. 6,7 183 M 76.9 93.36
w/o shared spatial 198 M 75.58 (-1.32) 92.51 (-0.85)

Table 5: Spatial Weight Sharing: In w/o shared spatial, vision
and language get their own spatial weights Ws.

Do our pre-training tasks help? Pretraining is essential
for low-to-medium data regimes (FUNSD and CORD). but
even for downstream tasks with a lot of training samples
(RVL-CDIP) it helps to improve performance and conver-
gence (Table 6).

Dataset Train
samples

with pre-train
then 100 epochs (F1)

w/o pre-train
100 epochs (F1)

FUNSD [17] 149 83.34 4.18
CORD [45] 800 96.33 0.54
RVL-CDIP [19] 320,000 96.17 93.95

Table 6: Effect of Pre-training

Does a deeper projection head help? So far we used a
single linear layer for downstream evaluation as is common
practice [20, 7, 5, 6, 2] to compare against prior art. Recent
publications [6, 2] in self-supervision show that a deeper
projection head with ReLU activation acts as a one-way fil-
ter to enrich the representation space. We adapt this practice
and see if a deeper projection head (fc � ReLU � Layer-
Norm � fc) can improve downstream performance. Table
7 shows that in the low-to-medium data regime adding a
more powerful projection head is harmful and could lead to
over-fitting. For the medium-to-large downstream task data
regime, adding a deeper projection head is beneficial.

Dataset Train samples Linear head (F1) Deeper head (F1)
FUNSD [17] 149 83.34 82.93 (-0.41)
CORD [45] 800 96.33 96.87 (+0.54)
RVL-CDIP [19] 320,000 96.17 96.85 (+0.68)

Table 7: Deeper Projection Head

4.5. Ablation Study

Since it takes a long time to pre-train on the entire 5M
pages and to minimize environmental impact [23], we do
all ablation experiments in Table 8 and 9 by pre-training
with only 1M documents for 5 epochs. In both Table 8 and
9, we show performance in addition to the previous row in
the table. Impact due to adding that component is shown in
brackets. We can see in Table 8 that each of our pre-training
tasks have something to contribute to the downstream task
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(a) Ground Truth (b) Text + Spatial model [54] (c) DocFormer multi-modal

Figure 5: DocFormer Qualitative Examples: From DocFormer on FUNSD test-set DocFormer 83.34 F1 vs LayoutLMv1 78.66 F1.
Legend: Red: Header-label, Blue: Question, Green: Answer. Row 1: “TARGET” is a Header-label which is very visual in nature.
DocFormer correctly classifies it whereas a text + spatial model misses such visual cues. Row 2: This is a challenging scenario. Notice the
word “Research” behind the signature. Text + spatial model gets confused and mis-classifies “Research” as Header, whereas DocFormer
figured out that “Research” is part of “Marketing Research Director” in spite of visual occlusions. Row 3: Notice “Approvals” is partially
hidden behind DATE. In spite of that DocFormer correctly labelled “APPROVALS” as Question, where as text+spatial model incorrectly
labels it as Header. Best viewed in color and digitally. Snippets are from FUNSD file 86079776 9777, 89856243, and 87125460.

performance. The contribution also seem to vary depending
on the nature of the downstream task.

Pre-training task FUNSD (F1) CORD (F1)
DocFormer + MLM 72.40 90.58
DocFormer + MM-MLM 73.91 (+1.51) 90.98 (+0.4)

+ Learn to Reconstruct (LTR) 74.68 (+0.77) 92.61 (+1.63)
+ Text describes Image (TDI) 76.90 (+2.23) 93.36 (+0.75)
final (DocFormer ) 76.90 93.36

Table 8: Ablation on pre-training tasks: We show the impact
of various pre-training tasks on two downstream tasks. MLM:
masked language modeling [14]. MM-MLM: multi-modal MLM
described in Section 3.

DocFormer architecture ablation: In this ablation we
look at the impact of various architectural components of
DocFormer . Depending on the down-stream task the im-
pact of the proposed multi-modal self-attention varies from
3.89% to 1.08%. This shows that the proposed architecture
has indeed learned to fuse multiple modalities.

Model / Component FUNSD (F1) CORD (F1)
Text only model (BERT-base) 61.56 89.23

+ spatial features 73.01 (+11.45) 92.28 (+3.05)
+ multi-modal self-attention 76.90 (+3.89) 93.36 (+1.08)
final (DocFormer ) 76.90 93.36

Table 9: Ablation on DocFormer Components: We show the
impact of various architectural components used in DocFormer on
two downstream tasks (FUNSD and CORD).

Qualitative Analysis: We share some qualitative exam-
ples of the predictions from DocFormer . Figure 5 shows
some sequence labeling predictions on the FUNSD dataset.
(more examples are in the supplemental).

5. Conclusion
In this work, we present DocFormer , a multi-modal end-

to-end trainable transformer based model for various Visual
Document Understanding tasks. We presented the novel
multi-modal attention and two novel vision-plus-language
pre-training tasks that allows DocFormer to learn effec-
tively without labeled supervision. We have shown experi-
mentally that DocFormer indeed learns generalized features
through its unsupervised pre-training by matching or sur-
passing existing state-of-the-art results on 4 datasets that
cover a variety of document types. We emphasize that Doc-
Former showed superior performance against strong base-
lines in-spite of being one of the smallest model (in terms
of # of parameters) in its class.

In the future, we plan to improve DocFormer’s general-
izability in multi-lingual settings as well as for more docu-
ment types such as info-graphics, maps, and web-pages.
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Rault Tim, Louf Rémi, Morgan Funtowicz, et al. Hugging-
face’s transformers: State-of-the-art natural language pro-
cessing. arXiv preprint arXiv:1910.03771, 2019.

[51] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Il-
lia Polosukhin. Attention is all you need. arXiv preprint
arXiv:1706.03762, 2017.

[52] Andreas Veit, Michael Wilber, and Serge Belongie. Resid-
ual networks behave like ensembles of relatively shallow net-
works. arXiv preprint arXiv:1605.06431, 2016.

[53] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le,
Mohammad Norouzi, Wolfgang Macherey, Maxim Krikun,
Yuan Cao, Qin Gao, Klaus Macherey, Jeff Klingner,
Apurva Shah, Melvin Johnson, Xiaobing Liu, Lukasz
Kaiser, Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto
Kazawa, Keith Stevens, George Kurian, Nishant Patil, Wei
Wang, Cliff Young, Jason Smith, Jason Riesa, Alex Rudnick,

1002



Oriol Vinyals, Greg Corrado, Macduff Hughes, and Jeffrey
Dean. Google’s neural machine translation system: Bridg-
ing the gap between human and machine translation. CoRR,
abs/1609.08144, 2016.

[54] Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei,
and Ming Zhou. Layoutlm: Pre-training of text and layout
for document image understanding. In Proceedings of the
26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 1192–1200, 2020.

[55] Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei,
Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang,
Wanxiang Che, et al. Layoutlmv2: Multi-modal pre-training
for visually-rich document understanding. arXiv preprint
arXiv:2012.14740, 2020.

[56] Xu Zhong, Jianbin Tang, and Antonio Jimeno Yepes. Pub-
laynet: largest dataset ever for document layout analysis. In
2019 International Conference on Document Analysis and
Recognition (ICDAR), pages 1015–1022. IEEE, 2019.

[57] Jun Zhou, Han Yu, Cheng Xie, Hongming Cai, and Lihong
Jiang. irmp: From printed forms to relational data model. In
2016 IEEE 18th International Conference on High Perfor-
mance Computing and Communications; IEEE 14th Inter-
national Conference on Smart City; IEEE 2nd International
Conference on Data Science and Systems (HPCC/SmartCi-
ty/DSS), pages 1394–1401. IEEE, 2016.

1003


