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Abstract

Examples that are close to the decision boundary—that
we term hard examples, are essential to shape accurate
classifiers. Extracting confident examples has been widely
studied in the community of learning with noisy labels.
However, it remains elusive how to extract hard confident
examples from the noisy training data. In this paper, we
propose a deep learning paradigm to solve this problem,
which is built on the memorization effect of deep neural net-
works that they would first learn simple patterns, i.e., which
are defined by these shared by multiple training examples.
To extract hard confident examples that contain non-simple
patterns and are entangled with the inaccurately labeled
examples, we borrow the idea of momentum from physics.
Specifically, we alternately update the confident examples
and refine the classifier. Note that the extracted confi-
dent examples in the previous round can be exploited to
learn a better classifier and that the better classifier will
help identify better (and hard) confident examples. We
call the approach the “Momentum of Memorization” (Me-
Momentum). Empirical results on benchmark-simulated
and real-world label-noise data illustrate the effectiveness
of Me-Momentum for extracting hard confident examples,
leading to better classification performance.

1. Introduction

As training datasets are growing big while accurately la-
beling them is often expensive or sometimes even infeasi-
ble, cheap datasets with label noise are ubiquitous in many
real-world applications. Without any care, label noise will
degenerate the performance of learning algorithms, espe-
cially for those based on deep neural networks [57]. Learn-
ing with noisy labels [1] aims to reduce the side-effect of
label noise and therefore has become an important topic in
machine learning.

Existing methods for learning with noisy labels can be
divided into two categories: algorithms that result in sta-
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tistically consistent or inconsistent classifiers. Methods in
the first category intent to design classifier-consistent algo-
rithms [58, 14, 35, 7, 39, 56, 24, 54, 50, 45, 49, 20], where
classifiers learned by using the noisy data will statistically
converge to the optimal classifiers defined by clean data.
However, these methods rely heavily on the noise transition
matrix [23, 32, 51]. In real-world applications, it is hard to
learn the instance-dependent noise transition matrix [5]. To
be free of estimating the noise transition matrix, methods
in the second category employ heuristics to reduce the side-
effect of label noise [27, 25, 38, 33, 9, 8, 43, 41, 21, 19].
These methods were reported to empirically work well, es-
pecially in the setting of instance-dependent label noise.

One promising direction in the second category is to
extract examples with clean labels—confident examples—
[31, 40, 30, 6, 44, 34, 47, 48]. The idea is that compared
with the original noisy training data, the extracted exam-
ples are less noisy and thus will lead to a classifier with
better performance. Given only noisy data, state-of-the-art
methods exploit the memorization effect [57, 2] to extract
confident examples. The memorization effect will enable
deep neural networks to first learn patterns that are shared
by a majority of training examples. As clean labels are of
majority in each noisy class [29, 52], deep neural networks
would therefore first fit training data with clean labels, and
then gradually fit the examples with incorrect labels [4].
Therefore, early stopping [19, 36] and the small loss trick
[13, 10, 55] can be used to exploit confident examples.

Examples that are close to the decision boundary are
called hard examples. As illustrated in Figure 1, hard (con-
fident) examples play an important role in shaping the deci-
sion boundary. It has also been widely studied in the tradi-
tional classification problem that hard examples are essen-
tial to train accurate classifiers [42, 3, 12, 11]. Notwith-
standing the importance of hard confident examples, none
of the existing methods studies how to extract hard confi-
dent examples from noisy data. Note that extracting hard
confident examples is non-effortless. Since hard examples
are often of a small proportion and contain less discrimina-
tive information compared with the easy ones (these that are
far away from the decision boundary), they are often entan-
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Figure 1. The illustration of the influence of hard (confident) examples in classification. Circles represent positive examples while triangles
represent negative examples. Green and blue denote examples with accurate labels while red presents examples with incorrect labels.
Blank circles and triangles represent unextracted data. (a) shows an example of classification with clean data. (b) shows noisy examples,
especially those close to the decision boundary, will significantly degenerate the accuracy of the classifier. (c) shows confident examples
help learn a fairly good classifier. (d) shows that hard confident examples are essential to train an accurate classifier.

gled with inaccurately labeled examples in the procedures
of extraction.

In this paper, by alternately updating the confident ex-
amples and refining the classifier, we propose a deep learn-
ing paradigm that is able to extract hard confident examples
from the noisy training data, leading to better classification
performance. Specifically, the idea is similar to the usage of
momentum from physics. As stated in the statistical learn-
ing theory, with better training data, a better classifier can
be obtained [28]. We can then think of the classifier as a
particle traveling through the hypothesis space, getting ac-
celeration from the confident data. Classifiers with better
performance can be achieved by properly exploiting the pre-
viously extracted confident examples. This is similar to the
momentum trick used in optimization that previous gradi-
ent information can be used to escape local minimum and
achieve fast convergence rates [37]'. At a high level, the
proposed method is built on the memorization effect of deep
neural networks and on the intuition that better confident ex-
amples will result in a better classifier and that a better clas-
sifier will identify better confident examples (and hard con-
fident examples). The proposed method is therefore called
the Momentum of Memorization (Me-Momentum).

We conduct experiments to show the effectiveness of
the proposed Me-Momentum on noisy versions of MNIST,
CIFARI0, CIFARI00, and a real-world label noise dataset
ClothingIM. Specifically, on MNIST and CIFAR, we gen-
erate class-dependent and instance-dependent label noise
and visualize the extracted hard confident examples, which
justifies why Me-Momentum consistently outperforms the
baseline methods.

2. Me-Momentum

In this section, by specifying the proposed method of
momentum of memorization (Me-Momentum; summarized
in Algorithm 1), we would like to detail how to accom-
plish extracting hard confident examples and boosting the

'In optimisation, the parameter vector can be thought of as a particle
traveling through the parameter space, getting acceleration from the gradi-
ent of the loss. The momentum trick demonstrated that the gradient in the
previous update can help escape local minimum and achieve fast conver-
gence rates.

classification performance. At a high level, by alternately
updating the confident examples and refining the classifier,
Me-Momentum fulfills a positive cycle that better confident
examples will result in a better classifier and that a better
classifier will identify better confident examples. Specifi-
cally, Me-Momentum has two loops, i.e., an inner loop and
an outer loop. In the inner loop, Me-Momentum alternates
update of the confident examples and the classifier (Steps 2
and 3). However, the inner loop continually refines a clas-
sifier and thus depends heavily on the initialization of the
classifier (Step 1). It may lead to the memorization of noisy
labels and the inferiority of sample-selection bias. To han-
dle this problem, the outer loop re-initializes the classifier
(Step 5) while it maintains the previously extracted confi-
dent examples.

There are some points to be clarified for the proposed
Algorithm 1:

Q1. How to initialize a good classifier in Step 1?
Q2. How to extract confident examples in Step 2?

Q3. How to validate the learned classifiers in Steps 3 and 5
without a clean validation set?

Q4. What are hard confident examples?
Q5. Why can hard confident examples be extracted?
Q6. Why the proposed method is called Me-Momentum?

To answer the first question, we would like to mention
that the aim of the initialization in Step 1 is to initialize a
good classifier for the positive cycle: a better classifier will
identify better confident examples and better confident ex-
amples will result in a better classifier. A good candidate
should have a fairly high classification accuracy, e.g., higher
than random guessing. Otherwise, the positive cycle cannot
be invoked. Fortunately, the initialization can be made by
exploiting the memorization effect of deep neural networks
that would first fit clean data [2, 57]. Note that this mem-
orization effect is independent of training optimization or
network backbones [2]. Specifically, we use the early stop-
ping trick. For easy understanding, we would like to intro-
duce a definition of high-peak. A noisy validation accuracy
at the ¢-th epoch is called an ¢-th high-peak if it achieves

9313



the highest accuracy in the epoch range {1, ...,7}. Assume
the ¢-th and j-th high-peaks occur next to each other, hav-
ing noisy validation accuracies of a and b, respectively. The
training early stops if (b—a)/(j—i) < 7, where 7 is a hyper-
parameter. In the experiments, we set 7 = 0.1, which em-
pirically works well across all datasets. In Section 3.4, we
compare the difference between the early stopping method
and the traditional validation method. We also study the
sensitivity of the hyper-parameter.

The answer to the second question is closely related to
the memorization effect. Note that the classifier initialized
in Step 1 would fit the clean data well but not the incor-
rectly labeled data because of the memorization effect and
early stopping. Therefore, we can treat the training exam-
ples whose noisy labels are identical to the ones predicted
by the classifier obtained in Step 1 as confident examples.
This also applies for the classifiers in Step 3 to extract con-
fident examples, which are iteratively trained by employing
the updated confident data. Note that there are some other
feasible methods to extract confident examples, e.g., extract
those who have a large class posterior.

In Step 3, we aim to learn a better classifier compared
with the one in the previous round. This can be achieved be-
cause of two reasons: (1) we initialize the network with the
parameters of the classifier learned in the previous round;
(2) we have a better set of confident examples as the training
sample. This starts the positive cycle that better confident
examples will result in a better classifier and that a better
classifier will identify better confident examples. The third
question is essential for identifying the classifiers in the cy-
cle. Note that the accurately labeled examples are always
assumed to be dominant in each class in the community
of learning with noisy labels [29, 23, 10]. Otherwise, the
true class label cannot be identified by only exploiting the
noisy data. This assumption implies that the performance
on the noisy validation set (split from the noisy training set)
and these on test set are positively correlated. The noisy
validation set could be used as a surrogate to validate the
classifiers if no clean validation set is available. We there-
fore validate the classifiers in Steps 3 and 5 with the highest
noisy validation accuracies during the training. Empirical
results show that it works well.

To answer the fourth question, we define the hard ex-
amples by exploiting the memorization effect of deep neu-
ral networks, i.e., deep neural networks first fit the majority
(or easy) patterns and then the minority (or hard) patterns.
Specifically, hard examples are those which contain minor-
ity (or hard) patterns. Note that hard patterns are usually
entangled with incorrect labels.

Following the previous question, we answer the fifth
question. By simply exploiting the memorization effect, ex-
tracting confident examples with hard patterns is difficult.
However, by using the proposed Me-Momentum method,

we could extract hard examples. Due to the memorization
effect of deep neural networks, the model first fits the simple
patterns, i.e., examples with simple features, some of which
also have hard features. Then deep neural networks can
learn hard patterns from the fitted examples, which makes it
possible for deep neural networks to extract hard confident
examples from those examples entangled with incorrect la-
bels. A visualization is shown in Figure 3.

To answer the sixth question, we would like to first men-
tion that the proposed method heavily relies on the memo-
rization effect of deep neural networks. Specifically, in Step
1, a classifier is initialized by exploiting the memorization
effect via early stopping, which is used to identity confident
examples. Later, the classifier and confident examples are
iteratively refined and updated, respectively, which is the
positive cycle we have mentioned before. Note that this cy-
cle also depends on the memorization effect to update con-
fident examples and refine classifiers. Our method is named
as momentum of memorization (Me-Momentum) because it
uses the trick of momentum to better exploit the memoriza-
tion effect. Specifically, we can think of the classifier as a
particle traveling through the hypothesis space, getting ac-
celeration from the updated extracted confident data. We
exploit the previously extracted confident examples to help
learn a better classifier, training the network by using the
confident examples extracted in the previous round. The
impact of the confident examples will increase as we con-
tinue extracting more confident examples.

Relation to existing work: The strategy of alternatively
optimizing the classifier and updating the training examples
is not new for dealing with label noise. For example, Joint
Optim [38], Co-teaching [10, 55], and SELF [30] are similar
to ours. Specifically, Joint Optim and Co-teaching update
the classifier with one step of stochastic gradient descent
while SELF and the proposed method refine the classifier to
be optimal with respect to the extracted confident examples.
However, existing methods have not focused on extracting
hard confident examples and thus are substantially different
from this paper because they neglected the importance of
avoiding the accumulated error caused by the single initial-
ization of the classifier and the sample-selection bias. Ex-
periments (e.g., Figures 2 and 3) show that Me-Momentum
with the outer loop part (i.e., re-initialization of the clas-
sifier) contributes significantly to extracting hard confident
examples and achieving high label precision.

Me-Momentum is similar to curriculum learning as it
also learns from easy to difficult. However, curriculum
learning needs a predefined curriculum (sample weight-
ing scheme), e.g., assigning big/small weights for confi-
dent/noisy data. If the curriculum is not available, some
clean data is required to learn a mentornet to provide a cur-
riculum [13] or a latent variable could be introduced by self-
paced learning [16] to learn a curriculum. Differently, Me-
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Algorithm 1 Me-Momentum

Input: Noisy training data, noisy validation data, iteration number Nigner and Noyeer;

Output: Extracted confident examples and the classifier;

1: Initialize a classifier fy by using the noisy training data and early stopping; //memorization effect

fori=1,..., Nyyer do
for j =1,..., Niper do
2: Update the extracted confident examples;

3: Obtain the classifier f;;

end
5: Re-initialize a classifier fj;

end

/fi.e., the training examples whose noisy labels are identical to the ones predicted by f;_1

/finitialize the network by using the parameters of f;_; and train it by employing confident examples; the classifier
f; will be chosen with the highest noisy validation accuracy throughout the training procedure
4: Break and output f;_; if the highest validation accuracy is non-increasing in the loop;

/lrandomly initialize the network and train it by using confident examples; the classifier f; will be chosen with the
highest noisy validation accuracy throughout the training procedure
6: Break and output f;_; if the highest validation accuracy is non-increasing in the loop;

Momentum is only based on noisy data and does not explic-
itly learn a curriculum. Me-Momentum also has a similar
flavor to active learning which tends to choose and label
hard examples to learn from at each iteration. However, for
active learning, no label information is available before the
data is chosen while Me-Momentum has noisy labels and
needs to consider the side-effect of label noise.

3. Experiments

Datasets: To verify the effectiveness of the proposed
method, we do experiments on datasets with both synthetic
and real-world label noise. Specifically, we manually cor-
rupt MNIST [17], CIFARIO, and CIFAR100 [15] with class-
dependent label noise and instance-dependent label noise.
We detail how to generate class-dependent and instance-
dependent label noise in Appendix 1. We employ the real-
world noisy dataset ClothingIM [52]. These datasets have
been widely used in studies with noisy labels [10, 38, 51].

For MNIST, CIFARI0, and CIFARI100, we leave out 10%
of the noisy training data as noisy validation data. Cloth-
ingIM contains one million noisy training images, which
are crawled from shopping websites, labeling by surround-
ing text. Almost all existing work uses the 14k clean vali-
dation data in their experiments. To verify the robustness of
the proposed method, we also employ noisy validation data
in our experiments. Specifically, 100k noisy data are ran-
domly left as noisy validation data and the remaining 900k
noisy data as the training data.

Baselines: Me-Momentum is compared against the fol-
lowing state-of-the-art approaches. (1) Statistically consis-
tent methods: Forward [32], T-revision [51], and DMI [53];
(2) Statistically inconsistent methods: MentorNet [13], Co-
teaching [10], Joint Optim [38], SELF [30], CDR [46], Di-

videMix [18], ELR+ [22] where MentorNet, Co-teaching,
SELF, and DivideMix use the idea of extracting confident
examples by employing the small loss trick. Note that Di-
videMix and ELR+ employ a semi-supervised approach for
unconfident examples, which gives them an advantage for
synthetic datasets whose numbers of confident examples are
limited. Therefore, we only compare our method with them
on real-world datasets.

Network structure and optimization: All the meth-
ods are implemented by PyTorch v1.5. For the experiments
on MNIST, CIFARIO, and CIFARI00, we set Niyer = 20,
Nouter = 3, 100 epochs for each inner loop and follow the
settings of T-revision [51]. Specifically, LeNet-5, ResNet-
18, and ResNet-34 networks are used for MNIST, CIFARI10,
and CIFARI00 respectively. We use SGD with momentum
0.9, weight decay 104, batch size 128, and an initial learn-
ing rate of 1072, divided by 10 after the 40-th epoch and
80-th epoch respectively (we fix the learning rate of 1072
for the early stopping method). Data augmentation is used
with horizontal random flips and 32 x 32 random crops after
padding 4 pixels on each side.

For ClothingIM, a ResNet-50 is used. To show the ef-
fectiveness of the proposed method, we do experiments by
randomly initializing the network and pre-training it by em-
ploying ImageNet, respectively. As the noisy training sam-
ple contains a large number of examples, we set Nipper = 6
and Nyyer = 3 and 5 epochs for each inner loop. We
use SGD with momentum 0.9, weight decay 103, batch
size 32, with a learning rate of 5 x 102, and divided it
by 10 at the 3-rd and 5-th round in the inner loop. For
each outer loop, the model will be randomly re-initialized
(or replaced by a pre-trained one). The learning rate will
be reset to 5 x 1073, For data augmentation, all images
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Figure 2. We call one update of the classifier and the extracted confident examples as one round. We illustrate how the label precision of
the extracted confident examples, the number of the extracted confident examples, and the classification accuracy of the classifier trained
by using the extracted confident examples change during the training of Me-Momentum. We have three distinct peaks in these figures
because we have set Nower = 3 and the classifiers are re-initialized in the outer loop. The dash lines in the second row indicate the number

of clean labels in the noisy training data.

are resized to 256 x 256, horizontal random flipped, and
256 x 256 random cropped with padding 32 pixels on each
side. Note that due to the page limit, some complemen-
tary experiments to Sections 3.1 and 3.2 and the comparison
with SELF are put in Appendix 2. The code is available at
https://github.com/tmllab/Me-Momentum.

3.1. Verify Momentum of Memorization

In Section 2, we discussed that Me-Momentum is im-
plemented by fulfilling the positive cycle that better con-
fident examples will result in a better classifier and that a
better classifier will identify better confident examples. In
this subsection, we will empirically verify this positive cy-
cle, which can be done on the synthetic datasets as we have
their ground-truth labels.

In Figure 2, we can see that in the inner loops (e.g.,
rounds 0-5, rounds 6-9, and rounds 10-12 in the first col-
umn of figures represent three inner loops respectively), the
classification accuracy generally increases (note that the fig-
ures are not smooth because the classifiers are tested on the
unseen test data) and the number of extracted confident ex-

amples clearly increases (although their label precision de-
creases slightly). We can also see that in the outer loops
(e.g., rounds 0, 6, and 10 in the first column of the figures
consist of an outer loop), the classification accuracy clearly
increases and the label precision of the extracted confi-
dent examples clearly increases (although the number of
extracted confident examples decreases slightly). This im-
plies that compared with previous classifiers and extracted
confident examples, better ones are obtained, which empiri-
cally justifies the positive cycle. Note that the classification
accuracy in the outer loop is low because the models are
re-initialized.

Figure 2 also shows the importance of the outer loop of
Me-Momentum. We can see that the label precision of the
extracted confident examples slightly decreases in the inner
loops. This is because the deep model gradually memorizes
the noisy labels as we continually refine it. This issue can
be handled by re-initializing the deep model in the outer
loop. Specifically, we can see from Figure 2 that by re-
initializing the model in the outer loop, the label precision
of the extracted confident examples increases significantly.
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Figure 3. Visualization of the extracted confident examples. The first and third columns are about the confident data extracted in the first
run of the inner loop; while the second and the fourth columns are about the confident data extracted in the outer loop. Specifically, green
dots represent the data selected in the first round. Blue and red dots represent the newly extracted data in the middle and the end rounds
respectively. Large figures for CIFARI00 are provided in the supplementary material.

Table 1. Means and standard deviations of classification accuracy on MNIST

Flipping-Rate | Cross-Entropy | MentorNet | Co-teaching | Forward | Joint Optim DMI T-revision CDR Ours
Sym-20% 97.88% 96.57% 97.22% 98.22% 98.58% 98.92% 98.91% 98.76% | 98.94%
+0.27% +0.18% +0.18% +0.08% +0.15% +0.11% | +£0.04% | £0.07% | +0.13%
Sym-40% 97.41% 96.16% 94.64% 96.71% 98.12% 98.63% | 98.42% 98.40% | 98.66%
+0.18% +0.49% +0.33% +0.16% +0.06% +0.11% | £0.47% | £00.17% | £0.07%
Inst-20% 97.61% 94.66% 95.37% 95.89% 98.10% 98.75% | 97.12% 98.18% | 98.96%
+0.28% +0.35% +0.08% +0.12% +0.14% +0.11% | £0.09% | £0.09% | +0.06%
Inst-40% 92.93% 88.51% 90.06% 88.95% 92.00% 97.58% | 94.89% 93.43% | 98.11%
+0.81% +0.36% +0.81% +2.47% +1.39% +0.82% | +£0.66% | +1.12% | £0.35%
Table 2. Means and standard deviations of classification accuracy on CIFARIO
Flipping-Rate | Cross-Entropy | MentorNet | Co-teaching | Forward | Joint Optim DMI T-revision CDR Ours
Sym-20% 85.00% 80.49% 87.16% 85.63% 89.70% 88.18% 89.63% 89.68% | 91.44%
+0.43% +0.11% +0.52% +0.11% +0.36% +0.13% | +0.33% | £0.38% | +0.33%
Sym-40% 79.59% 77.48% 83.59% 74.30% 87.79% 83.98% | 86.81% | 86.13% | 88.39%
+1.31% +3.45% +0.28% +0.26% +0.20% +0.48% | +0.21% | £0.44% | £0.34%
Inst-20% 85.92% 79.12% 86.54% 85.29% 89.69% 89.14% | 90.46% | 90.24% | 90.86%
+1.09% +0.42% +0.11% +0.38% +0.42% +0.36% | £0.13% | £0.39% | +£0.21%
Inst-40% 79.91% 70.27% 80.98% 74.72% 82.62% 84.78% | 85.37% | 83.07% | 86.66%
+1.41% +1.52% +0.39% +3.24% +0.57% +1.97% | £3.36% | £1.33% | £0.91%
Although the number of the extracted confident examples classification accuracy of the classifiers trained on the ex-
decreases, the overall quality of the extracted confident ex- tracted confident data. Note that the low data quality in the
amples is increasing as evidenced by the increase of the first run of the inner loop also justifies that a single deep
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Table 3. Means and standard deviations of classification accuracy on CIFARI00

Flipping-Rate | Cross-Entropy | MentorNet | Co-teaching | Forward | Joint Optim DMI T-revision CDR Ours
Sym-20% 57.59% 52.11% 59.28% 57.75% 64.55% 58.73% 65.40% | 66.52% | 68.03%
+2.55% +0.10% +0.47% +0.37% +0.38% +0.70% | +£1.07% | £0.24% | +£0.53%
Sym-40% 45.74% 35.12% 51.60% 38.59% 57.97% 49.81% 57.71% | 60.18% | 63.48%
+2.61% +1.13% +0.49% +1.62% +0.67% +1.22% | +0.84% | +£0.22% | £0.72%
Inst-20% 59.85% 51.73% 57.24% 58.76% 65.15% 58.05% 60.71% | 67.06% | 68.11%
+1.56% +0.17% +0.69% +0.66% +0.31% +0.20% | +£0.73% | £0.50% | £0.57%
Inst-40% 43.74% 40.90% 45.69% 44.50% 55.57% 47.36% 51.54% | 56.86% | 58.38%
+1.54% +0.45% £0.99% +0.72% +0.41% +0.68% | £091% | £0.62% | £1.28%

model initialization may lead to sample selection bias.

There are interesting observations of the proposed
method that the number of extracted confident examples is
close to the number of accurately labeled data in the train-
ing set and that the label precision of the extracted confident
examples is quite high, i.e., almost all are above 90%. This
empirically proves that Me-Momentum is powerful in ex-
tracting confident examples. In the next subsection, we will
visualize that Me-Momentum is also good at extracting hard
confident examples.

3.2. Visualize hard confident examples

To justify that Me-Momentum is able to extract hard con-
fident examples, we visualize the extracted confident exam-
ples by employing t-SNE [26]. Specifically, we show how
the confident examples are progressively extracted in the
inner and outer loops. The results are shown in Figure 3,
where green, blue, and red dots represent confident exam-
ples extracted at the beginning, middle, and end rounds of
the loops, respectively. On the datasets of MNIST and CI-
FARI0, we can clearly see that the blue and red dots are
mostly located at the boundaries of the clusters of green
dots. Although the figures of CIFARI00 are small, we can
also clearly see that there are lots of blue and red dots
which are outside of the green clusters in the second and
fourth figures. This supports and justifies our claim that
Me-Momentum is able to extract hard confident examples
(those are close to the decision boundary).

Comparing the extracted results of the first run of the in-
ner loop (the first and third columns) with those of the outer
loop (the second and fourth columns), we can find that the
cluster boundaries in the latter are more clear. This further
justifies that why better classification performance can be
obtained by re-initialization in the outer loop. Comparing
the confident examples extracted on the class-dependent la-
bel noise datasets with those on the instance-dependent la-
bel noise datasets, we can observe that the proposed method
is not sensitive to the type of label noise and can work well
on the most general instance-dependent label noise cases.

3.3. Classification accuracy

Synthetic data To evaluate the classification perfor-
mance of Me-Momentum, we first conduct experiments on

Table 4. Classification accuracy on ClothingIM.

Method \ Validation \ Accuracy
Cross Entropy Clean 69.54%
MentorNet Clean 56.77%
Co-teaching Clean 58.68%
Forward Clean 69.84%
Joint Optim Clean 72.23%
DMI Clean 72.46%
T-revision Clean 74.18%
DivideMix Clean 74.76%
ELR+ Clean 74.81%
Ours (pre-trained) Noisy 73.13%
Ours (scratch) Clean 74.75%
Ours (pre-trained) Clean 75.18%

MNIST, CIFARI0, and CIFAR100 with class-dependent and
instance-dependent label noise. Each trial is repeated five
times. The results are presented in Tables 1, 2, and 3,
respectively. Me-Momentum consistently outperforms the
baselines. Specifically, CIFARI00 is the most challenging
one among the three datasets. Me-Momentum outperforms
the baselines by a clear margin across all the settings as
shown in Table 3. Note that the performance gain in Me-
Momentum is caused by the improvement of the quality of
the extracted confident examples.

In the baselines, Co-teaching, Joint Optim, and T-
revision are the representative methods that learn robust
classifiers by extracting confident examples, refining the
noisy labels, and exploiting the noise transition matrix, re-
spectively. Note that Co-teaching keeps updating a constant
number of confident examples from the mini-batches used
in SGD. We therefore do not compare with its extracted
confident examples in Section 3.2 as our method extracts
confident examples from the whole training data at once. By
comparing the classification performance, we can clearly
see that the proposed method is much more powerful in
extracting confident examples. Note that Joint Optim and
T-revision employ all training data to train the classifiers;
while our method only employs confident examples and dis-
cards the unconfident ones. The results further justify that
Me-Momentum is able to extract high-quality confident ex-
amples. Note that the performance of Me-Momentum could
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Figure 5. Illustrative of extracting hard confident examples.

be further improved by correcting the unconfident data with
the idea of Joint Optim.

Real-world dataset We compare Me-Momentum with
baseline methods on ClothingIM in Table 4, where “pre-
trained” and “scratch” mean the network was pre-trained
by employing ImageNet and initialized randomly, respec-
tively;“clean” and “noisy” means the validation data is
clean and noisy respectively. First, it is observed that Me-
Momentum works well with noisy validation, even surpass-
ing many baselines with clean validation. For a fair compar-
ison, we also use clean validation to validate our method,
which achieves the highest test accuracy of 75.18%, bet-
ter than T-revision by 1% and Joint Optim by 2.95%. Note
that Forward and T-revision need the 50k clean data for es-
timating the transition matrix, while Me-Momentum does
not need any clean data for training. In addition, to show
the robustness of Me-Momentum, we conduct experiments
with ResNet-50 from scratch, which achieves the second
best accuracy.

3.4. Ablation study

We discuss the early stopping trick used in Step 1 of Al-
gorithm 1. The training early stops if (b —a)/(j — i) < 7,
where 7 is a hyper-parameter. In the experiments, we set

7 = 0.1, which empirically works well across all datasets.
In Figure 4, we compare the difference between the pro-
posed early stopping method and the traditional validation
method. Comparing the blue dash line with the yellow dash
line in Figure 4, we can observe that the proposed early
stopping strategy stops earlier and fits less noise, while the
traditional methods would continue to fit more data and thus
fit more noise.

We also study the sensitivity of the hyper-parameter.
Specifically, we study its sensitivity on CIFARIO by set-
ting 7 to be the values in the range {0.05, 0.07, 0.1, 0.3,
0.5}. Other settings are the same as those in this paper. The
results are presented in Figure 5. We can see that the clas-
sification performance of Me-Momentum is robust and not
sensitive to the change of the value of 7.

4. Conclusion

In this paper, we propose a method called Me-
Momentum that is able to extract hard confident examples
from noisily labeled data by exploiting the memorization
effect of deep neural networks. At a high level, it fulfills
a positive cycle that better confident examples will result
in a better classifier and that a better classifier will iden-
tify better confident examples. We have empirically veri-
fied its effectiveness by analyzing the statistics of the ex-
tracted examples, visualizing the hard confident examples,
and comparing its classification performance with state-of-
the-art baselines. In the future, we will extend our work by
utilizing and exploiting the unconfident examples, e.g., in a
semi-supervised way to further boost the performance.
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