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Abstract

In this paper, we propose the first minimal solutions for
estimating the semi-generalized homography given a per-
spective and a generalized camera. The proposed solvers
use five 2D-2D image point correspondences induced by a
scene plane. One group of solvers assumes the perspective
camera to be fully calibrated, while the other estimates the
unknown focal length together with the absolute pose pa-
rameters. This setup is particularly important in structure-
from-motion and visual localization pipelines, where a new
camera is localized in each step with respect to a set of
known cameras and 2D-3D correspondences might not be
available. Thanks to a clever parametrization and the elim-
ination ideal method, our solvers only need to solve a uni-
variate polynomial of degree five or three, respectively a
system of polynomial equations in two variables. All pro-
posed solvers are stable and efficient as demonstrated by a
number of synthetic and real-world experiments.

1. Introduction

Estimating the homography between two cameras observ-
ing a planar scene is a crucial problem in computer vision
with applications, e.g., in structure-from-motion (SfM) [44,
46,51,56], localization [7,39,41], visual odometry [33,34],
camera calibration [45, 57], and image retrieval [37, 55].
It is one of the oldest camera geometry problems with
many solutions including the well-known normalized di-
rect linear transform (DLT) method [20] for estimating
the homography from a minimum of four point correspon-
dences; the minimal solutions based on affine [3, 24] or
SIFT correspondences [2, 4]; solutions assuming known
gravity direction [15, 43] or cameras with radial distor-
tion [8, 11, 17, 20, 22, 27]. All above-mentioned algorithms
assume that both cameras satisfy the central perspective

Figure 1. An illustration of the problem configuration.

projection model (potentially, with radial distortion), i.e.,
they assume that both cameras have a single center of pro-
jection. Surprisingly, the problem of estimating a homogra-
phy has not been studied for generalized cameras.

A generalized camera [38] is a camera that captures
some arbitrary set of rays and does not adhere to the central
perspective projection model. Such a camera model is prac-
tical and appears, e.g., in applications that exploit multi-
camera configurations, like stereo-pairs, SfM [58], or in lo-
calization pipelines [47,54]. Such pipelines often are based
on sequences of images, where there might be a set of cam-
eras with known poses and we are given a new image which
is to be registered to a generalized camera composed of the
known perspective ones. Estimating the camera pose, w.r.t.
the generalized camera, in such situations often leads to re-
sults superior, in terms of accuracy, to considering only pair-
wise epipolar geometries, especially thanks to a larger field-
of-view of the generalized camera [50]. Also, it has the ad-
vantage of recovering the absolute pose [58], i.e., the scale
of the translation, which is a severe deficiency of epipolar
geometry-based relative pose estimation.

While the problem of estimating the absolute pose of a
generalized camera can be solved very efficiently [28], i.e.,
there exists a solution that solves only 3 quadratic equa-
tions in 3 unknowns and runs in a few µs, the problem of
estimating the relative pose of two generalized cameras is
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significantly more complex [49]. This problem results in a
system of 15 polynomial equations, each of degree 6, with
64 solutions. The final solver based on the Gröbner basis
method [49] is infeasible for real-time applications.

In [58], the authors considered a semi-generalized epipo-
lar geometry problem, i.e., the problem of estimating the
relative pose together with the scale of the translation be-
tween one perspective and one generalized camera from
2D-2D correspondences. In this paper, four minimal solvers
were presented, i.e., E5+1 and E4+2 for calibrated pinhole
cameras, and Ef6+1 and Ef5+2 for pinhole cameras with
unknown focal length. Here, 4+2 denotes a configuration
where four point correspondences come from one camera
Gi of the generalized cameraG and the remaining two from
one or two other cameras. The authors showed the applica-
bility of the proposed E4+2 and Ef5+2 solvers for incremen-
tal SfM in the absence of 2D-3D point correspondences.
However, the E4+2 and Ef5+2 solvers perform operations
on large matrices and, thus, are impractical for real-time
applications, with running times of 1.2ms and 13.6ms, re-
spectively. The E5+1 and Ef6+1 solvers are based on the ex-
isting efficient five-point E5 [35] and the six point E6f [10]
relative pose methods. These solvers actually do not ben-
efit from the generalized camera setup, except that one ad-
ditional point correspondence is used to estimate the scale
of the translation. Moreover, the E5+1 and Ef6+1 solvers
require 5 (6 for unknown focal length) point correspon-
dences to be detected by the same camera. This criterion
may be problematic in the absence of enough inlier point
matches. Note that [58] does not solve all possible con-
figurations of point correspondences that can appear in the
semi-generalized setup due to the complicated systems of
polynomial equations. Further, [58] cannot handle gener-
alized cameras with more than three cameras and having
fewer than four correspondences with all cameras.

In this paper, we study a similar setup as [58], i.e., one
perspective and one generalized camera. However, we as-
sume that these cameras observe a planar scene, see Fig. 1.
We present the first minimal solutions for estimating the
pose between a perspective and a generalized camera from
2D-2D correspondences induced by a plane, i.e., the first
minimal solutions for the so-called semi-generalized ho-
mography. The proposed solvers use five 2D-2D image
point correspondences and assume either a calibrated or a
perspective camera with unknown focal length. This setup
is particularly important in SfM and localization, where a
new camera is localized with respect to a set of known ones
and 2D-3D correspondences might not be available, e.g.,
due to memory restrictions or to avoid matching features
between individual cameras in the generalized camera.
The main contributions of the paper are as follows: 1) A
theoretical analysis of the new semi-generalized homog-
raphy problem for calibrated and partially calibrated cam-

eras and a formulation of the problem as a system of linear
equations in twelve unknowns.
2) Derivation of new constraints for the semi-generalized
homography using the elimination ideal theory [29].
3) A class of efficient minimal solvers for calibrated cam-
eras, sH52, sH53, sH54, sH4.52 and sH4.53 that only need
to solve a 5th (3rd) degree univariate polynomial, a linear
system, or a system of equations in two unknowns.
4) Two new efficient minimal solvers for partially cali-
brated cameras sH5f2 and sH5f3 that need to solve a uni-
variate polynomial of degree five (three).
5) Our solvers do not need 3D points or 2D-2D matches be-
tween individual cameras from the generalized camera and
cover all scenarios where it is possible to estimate the scale.
6) Compared to [58], our solvers cover all pos-
sible minimal configurations of point corre-
spondences as well as numbers of cameras in
the generalized camera. Code is available at
github.com/snehalbhayani/SemiGeneralizedHomography.

2. Problem Formulation

First, we set up notations and conventions that we will
follow for the rest of the paper. Let P denote the per-
spective camera, while the generalized camera is denoted
as G. We assume that the generalized camera G is fully
calibrated, and it consists of a set of perspective cameras
{G1,G2, . . .Gk}. For the pinhole camera P , we consider
two different cases, i.e., the case where P is fully cali-
brated, and the case when its calibration matrix is of the
form K = diag(f, f, 1) with unknown focal length f .

In the following text, we will consider several different
coordinate systems, i.e., the global coordinate system, the
local coordinate system of the perspective camera P , and
local coordinate systems of perspective cameras Gi. Let RGi ,
tGi and RP, tP denote the rotations and translations required
to align local the coordinate systems of Gi respectively P ,
to the global coordinate system. Without loss of general-
ity, we can assume that the global coordinate system coin-
cides with the local coordinate system of G1, i.e., RG1 = I

and tG1 = [0, 0, 0]>. Sometimes we will call this system
the local coordinate system of the generalized camera G.
Therefore, the global coordinate system, the local coordi-
nate system of G1, and the local coordinate system of G are
interchangeable. We will use the upper index to denote the
coordinate system. For example, XP ∈ R3 and XG ∈ R3

are the coordinates of the point X in the local coordinate
system of P and the local coordinate system of G, respec-
tively, and it holds that XG = RPX

P + tP.
Our objective is to estimate the rotation R ∈ SO(3) and

translation t ∈ R3 between the perspective camera P and
the generalized camera G, i.e., the rotation and translation
that align the local coordinate system ofP to that of G. Note
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that, since the local coordinate system of G coincides with
the global coordinate system, R = RP and t = tP.

For the estimation of R and t, we will use 2D-2D cor-
respondences detected between P and the cameras in G.
We assume that these point correspondences are projections
of co-planar 3D points Xj satisfying: n>Xj + d = 0,
where n ∈ R3 denotes the normal of the scene plane π
and d denotes the plane intercept. Note that the same plane
can be defined by the normal ñ = n/d and the equation
ñ>Xj + 1 = 0.

2.1. Semi-Generalized Homography

Consider a 3D point Xj observed by the perspective cam-
era P and the camera Gi, i.e., the i-th constituent perspec-
tive camera from the generalized camera G. Let us denote
the image points detected in P and Gi as pj = [xj , yj , 1]

>

and gij = [xGi
j , yGi

j , 1]>, respectively. With this notation,
the coordinates of the 3D point Xj in the local coordinate
system of P can be expressed as

XP
j = αjK

−1pj , (1)

where K is the calibration matrix of the camera P and αj

represents the depth of the point Xj in P . A similar rela-
tionship holds for the coordinates of the 3D point Xj in the
local coordinate system of Gi,

XGi
j = βijK

−1
Gi

gij , (2)

where KGi
is the calibration matrix of the camera Gi and βij

represents the depth of the point Xj in Gi.
To obtain the relationship between XP

j and XGi
j , we have

to transform them into the same coordinate system, i.e., in
this case the global coordinate system. This gives us the
following constraint

αjRK
−1pj + t = βijRGi

K−1Gi
gij + tGi

. (3)

Note that here we use the fact that R = RP and t = tP. Since
in our case RGi , tGi and K−1Gi

are known, we will, for better
readability, substitute qij = RGi

K−1Gi
gij and obtain

αjRK
−1pj + t = βijqij + tGi

. (4)

The 3D point Xj is lying on the plane π, i.e., XP
j should

satisfy (ñP)>XP
j + 1 = 0, where ñP ∈ R3 is the normal

of the plane π in the local coordinate system of P . For
simplicity, in the rest of the text, we will omit the upper
index P in ñP. The depth αj in (1) can be then expressed
using the normal ñ as

αj =
−1

ñ>K−1 ~pj
. (5)

Let us consider a 3 × 3 homography matrix H of the form
H = R− tñ>. By substituting (5) into (4) we obtain

αjHK
−1pj = βijqij + tGi

. (6)

Eq. (6) is the basic semi-generalized homography con-
straint. The depths βij can be easily eliminated from this
constraint (6) by multiplying it with the skew-symmetric
matrix [qj]× from the left side, resulting in

[qij ]×(αjHK
−1pj − tGi

) = 0 . (7)

Let us denote G = HK−1. By dividing (7) with αj and us-
ing (5), we obtain the equations

[qij ]×(Gpj + (m>pj)tGi) = 0 , (8)

where m = K−1ñ. Note that we are able to eliminate the
unknown depths αj from (7), and to derive simple linear
constraints (8) for the semi-generalized homography thanks
to the special parameterization (5), based on the normal
ñP expressed in the coordinate system of P . Each 2D-2D
correspondence pj ↔ qij gives us three equations of the
form (8), from which only two are linearly independent.

2.2. Semi-Generalized Homography Constraints

Besides the constraints (8) induced by a 2D-2D correspon-
dence pj ↔ qij , there are other ones arising from the
form of the matrix G. The constraints (8) are linear in
the 12 unknowns, i.e., elements of the matrix G and the
vector m. However, G and m are not independent since
G = HK−1 = RK−1 − tm>. Moreover, the rotation ma-
trix R ∈ SO(3) introduces additional constraints. All these
constraints, i.e., constraints originating from the form

G− RK−1 + tm> = 0, R>R = RR> = I3×3 , (9)

can be used to define an ideal I ⊂ C [ε] [14], where ε con-
tains 9 unknowns from G, 9 from R, 3 from t, 3 from m
and the inverse of the focal length w = 1

f . Now we can
use the elimination ideal technique [29] to eliminate 9 un-
knowns of R, 3 of t, and w from this ideal. I.e., we compute
an elimination ideal I1 that will contain only polynomials
in 12 unknowns from G and m. Eq. (9) does not include the
constraint det(R) = 1, as it does not change I1, whose gen-
erators are the same for G and−G, i.e., both R, t and−R,−t
are valid solutions. This ambiguity is resolved at a later
stage when decomposing the homography matrix H. The
elimination ideal I1 can be computed offline using some al-
gebraic geometry software like Macaulay 2 [19]. We found
that such an elimination ideal is generated by 4 polynomi-
als (three of degree 3 and one of degree 4) in 12 unknowns.
Similarly, for the calibrated case, i.e., K = I there are 10
such generators of I1. For more details on elimination ide-
als we refer to [14, 29].

These 10 new constraints (4 for the unknown focal length
case) in 12 unknowns from G and m together with the linear
equations (8) in these unknowns can be used to solve for R, t
(and f ). After a null-space re-parameterization of G and m
using the linear equations (8) for 5 point matches, we can
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transform these equations to 10 (4) polynomial equations
in 2 unknowns, respectively 3 unknowns for the 4.5 point
matches required for the calibrated case. Such systems can
be solved, e.g., using the automatic generator of Gröbner
basis solvers [25, 31] and they return up to 16 (calibrated),
respectively 6 (unknown f ), real solutions to G and m. For
details on solvers sizes see the supp. material (SM).

In order to make the solvers more efficient, we introduce
an additional change of variables by assuming that one of
the elements of G is non-zero, e.g., g33 6= 0. This as-
sumption can introduce a degeneracy. However, such a de-
generacy is not crucial in practical applications and can be
avoided as discussed in [13]. Moreover, our change of coor-
dinate system used for the calibrated solver directly avoids
this degeneracy. The situation for the focal length case is
discussed in more detail in the SM.

With this assumption, we introduce new variables g′kl =
gkl

g33
, for ∀kl 6= 33 and m′k = mk

g33
, k = 1, 2, 3, where gkl are

elements from the kth row and lth column of the matrix G

and mk are elements of the vector m. The variable change
is also applied to the 10 (4) generators of I1, defining a new
ideal I ′1. Using again the elimination ideal technique [29],
we can eliminate g33 from the ideal I ′1, leading to a new
ideal I ′2. For the calibrated case, the ideal I ′2 is generated by
five polynomials ei, each of degree 5, in the 8+3 unknowns,
g′kl for ∀kl 6= 33 and m′k, k = 1, 2, 3. For the unknown fo-
cal length case, it is generated by only a single polynomial e
of degree five. More details on the form of the generators of
the elimination ideals I1 and I ′2 for both the cases, together
with the input code for Macaulay2 used to compute these
generators, is provided in the SM. Note that the derivation
of these 5th degree constraints as well as the above men-
tioned generators of I1 is crucial for the efficiency of the
final solvers. Without using the elimination ideal tricks,
one would need to work directly with the parameterization
of G using the rotation matrix, leading to complex systems
of polynomial equations in many unknowns and with huge
solvers. Next we show how to solve these equations for a
calibrated P and then for the case when the focal length of
P is unknown.

2.3. Calibrated Camera Solvers

In this case, we can assume that K = I3×3, leading to
G = H = R − tñ>. Here, we have 9 DOF, 3 for each
R, t and ñ. Each point correspondence leads to 2 linearly
independent homogeneous constraints of the form (8) and
thus 4.5 correspondences are sufficient to solve this prob-
lem. However we still need to sample 5 point correspon-
dences, pj ↔ qij , j = 1, . . . 5, resulting in 10 constraints.

There are two ways to deal with this over-constrained
formulation: 1) use all 10 constraints from the 5 point cor-
respondences and only one constraint from the 5 generators
ei of the ideal I ′2. 2) use 9 constraints by considering only

4.5 point correspondences, and instead use all 5 constraints
ei on the G matrix1. The first approach results in solvers
sH52 and sH53 that have to find the roots of a univariate
polynomial. The second approach leads to solvers sH4.52

and sH4.53 that have to solve a system of 5 equations in 2
unknowns. The 4.5 point solvers are slightly slower than
the 5 point solvers. However, since they use all constraints
on G, they result in a correctly decomposable homography
and therefore smaller errors in the presence of noise. These
solvers are described in detail in the SM. Next we describe
the 5 point solvers, sH52 and sH53.

Without loss of generality (w.l.o.g.), we assume that the
first point correspondence is observed in camera G1, i.e., i =
1 where tG1

= [0, 0, 0]>, and pre-rotate the local coordinate
systems of P and G1 such that p1 = [0, 0, 1]> and q11 =
[0, 0, 1]>. This simplifies the equations and after substitut-
ing into (8), we have g13 = 0, g23 = 0. Moreover, we can
safely assume g33 6= 0 and divide these equations by g33,
transforming them into non-homogeneous equations in 9
unknowns, ε′ = {g′11, g′12, g′21, g′22, g′31, g′32,m′1,m′2,m′3}.
The remaining 4 point correspondences lead to 8 linearly
independent equations that can be written in matrix form

Cb = 0 , (10)

where C is a 8× 10 coefficient matrix and b is a 10× 1 vec-
torized form of the set of ε′ ∪ {1}. Next, we consider three
cases based on the maximum number of correspondences
coming from one camera Gi.
sH52 solver: In this case no more than 2 correspondences
come from the same camera Gi. Hence the matrix C in (10)
has a two dimensional null-space {b1,b2}. A solution to b
can be obtained as a linear combination b = γ1b1 + γ2b2.
Using b10 = 1, we can express γ2 as a linear polynomial
in γ1. Hence the variables in ε′ can be parameterized as
linear polynomials of γ1. This parameterization can be sub-
stituted into the generators of the ideal I ′2 for the calibrated
case. This leads to 5 univariate polynomials ei(γ1), each of
degree 5. We choose one of these polynomials, which we
solve using Sturm sequences [21]. This results in up to five
real solutions to ε′.

Next, we extract solutions to g33. Writing G = H =
R − tm>, we obtain a set of polynomial constraints. By
variable elimination and substitutions, we obtain 1 solution
to g33, unique up to a sign, which is fixed by constraining
the solution of the plane vector n so that the corresponding
3D point in P is in the front of the camera. Solutions to G

as well as m can be extracted from the solutions to ε′ and
g33. We then decompose H such that det(R) = 1 to obtain
a set of relative poses R and t. Note that the constraints ei
that were not used to obtain the solutions can be used to
eliminate infeasible solutions.

1Note that the x- and y-coordinates of all 5 correspondences are used.
However, one constraint from (8) originating from the matches is omitted.
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E5+1 E4+2 Ef6+1 Ef5+2 P3P+N P5Pf+N sH52 sH4.52 sH53 sH4.53 sH54 sH5f2 sH5f3

Ref [58] [58] [58] [58]
Focal X X X X X
# pt 6 6 7 7 6 8 5 4.5 5 4.5 5 5 5
# sol 10 40 10 50 4 4 5 16 3 12 1 5 3

Complexity

G-J/LU 10× 20 73× 113 11× 20 378× 428 5× 8 8× 10 11× 27 8× 10 23× 35 8× 9 8× 10 8× 10
Eigen 40× 40 9× 9 50× 50 3× 3 16× 16 12× 12
Sturm 10 5 3 5 3
QR 5× 9 5× 8

Table 1. Comparison of the proposed solvers (gray) vs. the state-of-the-art.

sH53 solver: If there are 3 2D-2D point correspondences
from the same camera Gi, the situation is a bit different. Let
us assume, w.l.o.g., that the points qi2 and qi3 are observed
in camera G1, i.e., i = 1. This is the same camera that
observed the point q11. The remaining two points can be
observed by one camera Gj 6= G1 or by two different cam-
eras Gj 6= Gk 6= G1. In this case, G-J elimination of the
matrix C in (10) leads to a matrix of a special form[

I6×6 06×2 06×1 c6×1
02×6 I2×2 d2×1 e2×1

]
b = 0 , (11)

where the indices of the matrices and vec-
tors indicate their sizes. Since b =
[g′11, g

′
12, g

′
21, g

′
22, g

′
31, g

′
32,m

′
1,m

′
2,m

′
3, 1]

>, the first
six rows of (11) directly give us a solution to g′kl. The
last two rows can be used to express m′1,m

′
2 as a linear

function of m′3. Substituting this parameterization into the
generators of I ′2 yields five univariate polynomials, each of
degree three. We can obtain up to three real solutions to ε′

by solving one of these polynomials. The remaining steps
are similar to the sH52 solver.

sH54 solver: In this case, 4 points come from the same
camera Gi. Let us assume, w.l.o.g., that the points qi2, qi3

and qi4 are observed in camera G1, i.e., i = 1 and the
fifth point q25 is observed by camera G2 6= G1. We esti-
mate the semi-generalized homography G by considering it
as standard homography estimation problem from 4 point
correspondences [20]. Decomposing G = R− tm> we ob-
tain the rotation matrix R and the translation vector t up to
scale. This scale can be computed from the constraint of the
form (4), induced by the fifth correspondence p5 ↔ q25, as

scale =
t>G2

[Rp5]×q25

t>[Rp5]×q25
. (12)

2.4. Unknown Focal Length Solvers

In this case, we assume an unknown focal length f in the
calibration matrix K = diag(f, f, 1). Therefore we have 10
DOF and we need five full 2D-2D correspondences to solve
this problem. Based on the maximum number of correspon-
dences coming from one camera Gi, we have two solvers:
one where there are up to 2 points from the same camera,

sH5f2, and one where there are 3 points from the same cam-
era, sH5f3. These solvers solve univariate polynomials of
degree 5, respectively 3, and they follow similar steps as
those of the calibrated solvers sH52 and sH53. For more de-
tails on these solvers see the SM. Note that for the case of
4 points coming from the same camera Gi, one additional
correspondence from camera Gj will not add sufficient con-
straints to recover both the unknown focal length and the
unknown scale, which is proved in the SM.

3. Experiments

This section studies the performance of the proposed
solvers, sH52, sH53, sH4.52, sH4.53, sH54, sH5f2, and
sH5f3, both on synthetic and real-world images. For com-
parison, we use four state-of-the-art minimal solvers for es-
timating the semi-generalized epipolar geometry [58], i.e.,
the E5+1, E4+2, Ef6+1, and Ef5+2 solvers. Note, that for
the experiments where we do not need the scale of the trans-
lation, E5+1 reduces to the well-known 5pt solver E5 [35]
and the Ef6+1 problem reduces to the one-sided focal length
6pt solver E6f [10]. In such experiments we also consider
the 4pt homography solver H4 [20]. We excluded the Ef5+2

solver from real experiments since it was too slow when
used on large datasets inside RANSAC [16]. For a fair
comparison, we further consider P3P/P5Pf +N solvers de-
signed for our semi-generalized homography setup: we first
use three correspondences between two calibrated general-
ized cameras Gi and Gj to estimate the normal n and inter-
cept d of the observed plane π. The plane is then used to
lift 3/5 2D-2D matches between the perspective camera P
and arbitrary cameras in the generalized camera G to 2D-3D
correspondences. Finally, the pose of the perspective cam-
era is computed using the P3P [36] or P5Pf [26] solvers2.
Note that these P3P/P5Pf+N solvers, compared to the pro-
posed solvers, require point matches between two cameras
Gi and Gj in the generalized camera. However, these corre-
spondences are used only in the first step, when estimating
the normal and plane intercept. Thus, they do not need to
be visible in P as in the standard 2D-3D pipeline. We are

2In the unknown focal length case, we use the non-minimal P5Pf solver
since the available implementations of the minimal P4Pf one were either
much slower [9] than the P5Pf solver or did not work for planar scenes [28].
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Figure 2. Top: solvers for calibrated cameras. Bottom: solvers for partially calibrated cameras: (a,e) numerical stability, (b,f) performance
in the presence of image noise, (c,g) close-to-planar scenes, (d,h) forward motion in the presence of image noise.

not aware that such solvers have been used in the literature.

3.1. Synthetic Scenes

We study the performance of our proposed solvers on syn-
thetically generated 3D scenes with known ground truth.
The 3D points are randomly distributed on a plane of size
10 × 10. Each 3D point is projected into up to six cameras
with realistic focal lengths. Five of these cameras represent
the generalized camera G and one camera is considered as
the camera P . The orientations and positions of the cam-
eras are selected at random such that they roughly look to-
wards the scene from a random distance, varying from 20
to 35, from the plane. The simulated images have a resolu-
tion of 1000× 1000 px. Here, we focus on the errors in the
estimated rotations R for the calibrated and unknown focal
length solvers. The rotation error is computed as the angle
in the axis-angle representation of R−1GT R, where RGT is the
ground truth and R is the estimated rotation. Plots for the
position and focal length errors can be found in the SM.

Numerical stability. We measure the numerical stability
of the solvers by evaluating 5k camera setups for planar
scenes. We compare the accuracy of the rotations estimated
by the proposed solvers sH52, sH4.52, sH53, sH4.53, and
sH54 with that of E5+1, E4+2, and P3P + N in Fig. 2(a).
Our solvers, sH52, sH53, and sH54, achieve better stability
with fewer failures (i.e., no peak on the right side). sH4.52

and sH4.53 have comparable stability as the other solvers.
Fig. 2(e) compares the numerical stability of sH5f2 and
sH5f3 with that of the solvers Ef6+1, Ef5+2, and P5Pf +N.
Note that a planar scene is a degenerate configuration for
the Ef6+1 solver, which explains the reported performance.

Image noise. Next, we test the performance of all solvers
in the presence of Gaussian noise with standard deviation σ,
added to the image points in all cameras. Fig. 2(b,f) show
the rotation error (in degrees) for solvers for calibrated (b)
as well as partially calibrated (f) cameras. Here, we depict
the results as box plots which show the 25% to 75% quan-
tile values as boxes with a horizontal line for the median.
We note that our proposed solvers sH52, sH4.52, and sH5f2
have better or comparable performance than the competing
solvers in the presence of image noise. Moreover, we ob-
serve that sH4.52 and sH4.53 are more stable than sH52 and
sH53, respectively, in the presence of image noise.

Close-to-planar scenes. We also consider the case where
the scene is close to being entirely planar by placing the
scene plane at z = 0 and sampling 3D points with vary-
ing plane-to-point distances. Fig. 2(c,g) show the rota-
tion errors for calibrated (c) and partially calibrated (g)
cameras. Our sH52 and sH4.52 solvers are more accu-
rate than P3P +N while sH5f2 has comparable stability to
P5Pf +N for close-to-planar scenes. As expected, the ac-
curacy of the proposed solvers deteriorates with the increas-
ing non-planarity of the scene. However, the errors, even for
larger non-planarity, are comparable to the errors obtained
by all general solvers in the presence of 2 px image noise.

Forward motion with image noise. Figures 2(d,h) show
the rotation error for calibrated (d) and partially calibrated
(h) cameras. Our solvers for calibrated cameras have sim-
ilar or better stability than the competing solvers. For the
unknown focal length case, our proposed solvers lead to
similar rotation estimates than the competing solvers. We
note that in case of a pure forward motion, the solver Ef5+2
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either failed or led to very unstable results. As a result of
this, we have not considered the solver Ef5+2 in the graphs.

3.2. Computational Complexity

Tab. 1 reports the computational complexity of the studied
solvers. Since we do not have equally efficient C++ im-
plementations of all solvers (some solvers are highly opti-
mized, e.g., E5 and P3P from the PoseLib [30] library, while
some do not contain any special optimization, e.g., E4+2,
Ef5+2 [58]), we compare only the most time consuming op-
erations performed by these solvers. We thus focus on the
matrix size for each critical matrix operation.

3.3. Real-World Experiments

Our solvers built on the fact that man-made environments
frequently contain planes and planar structures both indoors
and outdoors. To show the usefulness of our solvers in real
applications like visual odometry and visual localization,
we test them on general real-world data. Such general sce-
narios will of course give an advantage to our competitors,
e.g., [35], that work for planar as well as non-planar scenes.
Yet, we show that our new proposed solvers return compa-
rable pose and focal length estimates and sometimes even
outperform the state-of-the-art general solvers. As such, we
believe that our solvers can be combined with existing ones
in a hybrid RANSAC [12], where the most suitable solver
is selected for each scene in a data-dependent manner.

Localization experiment. We evaluate all variants of our
sH5 and sH4.5 solvers for calibrated cameras in the context
of visual localization. We use the subset of scenes from the
Cambridge Landmarks dataset [23] commonly used in the
literature [42]. Note that while these scenes contain one or
more dominant planes, none of them is perfectly planar.

Our sH5 and sH4.5 and the E4+2, and E5+1 solvers en-
able a particularly light-weight type of structure-less lo-
calization pipelines that do not need to store a 3D model.
Such representations can be easily maintained [53]. In con-
trast to P3P +N and SfM-on-the-fly [53], our solvers only
need matches between the pinhole image and the general-
ized camera images but not within images in the generalized
camera. This keeps feature matching to a minimum. We im-
plement such a pipeline by using DenseVLAD-based image
retrieval [52] to identify the 10 reference images most simi-
lar to a given query. The generalized camera is then defined
using the known poses of the retrieved images.

We integrate our solvers into RANSAC with local op-
timization (LO-RANSAC) [32, 40]. In each iteration, we
simply randomly sample 5 matches from all matches found
with the retrieved images. We then select the most suit-
able solver for this sample, e.g., sH54 if four matches come
from the same reference image. This approach is possible
thanks to the fact that our solvers cover all possible combi-
nations of 5 point correspondences. However, this approach

is not suitable for the E4+2 and E5+1 solvers as the chance
of randomly sampling 4 or more matches from the same
reference image is very small. Instead, we first randomly
select two (E5+1) or three (E4+2)3 retrieved reference im-
ages. We then randomly select the required matches from
these images. This sampling scheme is incompatible with
RANSAC’s standard stopping criterion. For a fair com-
parison, we thus run LO-RANSAC for each solver for a
fixed number of iterations. The best model found by LO-
RANSAC is refined over all inliers (see SM for details).

As shown in Tab. 2, our solvers outperform the E4+2

solver. They are consistently among the top-2 approaches
based on mean / median position and orientation errors
and lead to the fastest RANSAC times. Averaged over all
datasets, our sH4.5 solvers lead to the same median results
as the E5+1 solver at faster run-times. The results clearly
show the usefulness of our solvers. In particular, our results
point towards an interesting research direction: our faster
solvers can be used to quickly estimate the inlier ratios for
each reference image. This can then be used for guided
sampling of image pairs for the E5+1 solver, e.g., inside a
hybrid RANSAC scheme4. This approach should deliver
the best from both types of solvers.

Tab. 2 also includes the Sift+5pt approach [59,60], which
estimates the relative pose between the query and retrieved
images based on SIFT feature matches and essential matrix
estimation. The relative poses and the known absolute poses
of the retrieved images are then used to estimate the query
pose. Our approach consistently outperforms [59, 60].

Relative pose experiments. We use the 11 sequences
of the KITTI benchmark [18] that are provided with
the ground truth trajectories (23, 190 image pairs). In
KITTI, the scenes are captured by two front-facing cam-
eras mounted to a moving vehicle. We consider the camera
pair as the generalized one and estimate the relative pose
between this camera and the left image of the next frame.

As robust estimator, we use GC-RANSAC [5] that ap-
plies two different solvers: (a) one for estimating the pose
from a minimal sample and (b) one for fitting to a larger-
than-minimal sample when polishing the model parameters
on a set of inliers. We included the compared solvers in step
(a). For step (b), we applied numerical optimization [1],
minimizing the Sampson distance when estimating the es-
sential matrix, and a re-projection error when estimating
the homography. Moreover, we test recovering the pose by
combining the essential matrix from E4+2 and multiple ho-
mographies [6] either from H4 or the proposed sH53. The
resulting pose is found by decomposing the essential ma-
trix and homographies, and selecting the pose that has the

3Note that two of the three images can be identical.
4The hybrid RANSAC formulation from [12] deals with two sources

of matches and cannot be easily extended to more sources (each retrieved
reference images represents a source with its own inlier ratio).
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Figure 3. The CDFs of the rotation, translation (degrees) and position (meters) errors on 23, 190 image pairs from the KITTI dataset.
More accurate methods are closer to the top-left corner. Since most tested methods do not return the translation scale due to estimating the
relative pose, we used the scale from the ground truth path to calculate the position error. Tab. 3 shows the corresponding error values.

King’s College Old Hospital Shop Facade St. Mary Church Avrg. all
Method pos. rot. time pos. rot. time pos. rot. time pos. rot. time pos. rot.
E5+1 [58] (100 iter.) 0.20 / 0.44 0.36 / 0.61 0.29 0.54 / 1.30 1.02 / 2.12 0.15 0.06 / 0.10 0.33 / 0.46 0.15 0.13 / 0.20 0.51 / 0.73 0.18 0.23 0.56
E4+2 [58] (100 iter.) 0.25 / 1.58 0.42 / 1.70 0.26 1.51 / 56.2 2.82 / 6.90 0.15 0.09 / 2.77 0.44 / 3.28 0.14 0.41 / 242.4 1.42 / 5.62 0.17 0.57 1.28
ours (sH5) (100 iter.) 0.22 / 0.71 0.39 / 1.20 0.20 0.88 / 2.20 1.68 / 3.98 0.08 0.09 / 0.78 0.43 / 2.23 0.08 0.25 / 2.52 0.95 / 6.50 0.11 0.36 0.86
ours (sH4.5) (100 iter.) 0.20 / 0.32 0.33 / 0.49 0.23 0.51 / 48.4 1.02 / 3.15 0.12 0.07 / 0.14 0.32 / 0.67 0.11 0.15 / 0.30 0.52 / 1.24 0.14 0.23 0.55
E5+1 [58] (1k iter.) 0.19 / 0.33 0.34 / 0.48 0.82 0.42 / 1.10 0.75 / 1.78 0.39 0.06 / 0.10 0.29 / 0.44 0.37 0.11 / 0.15 0.38 / 0.55 0.49 0.20 0.44
E4+2 [58] (1k iter.) 0.20 / 0.42 0.35 / 0.60 0.75 0.83 / 2.51 1.55 / 3.88 0.56 0.07 / 0.16 0.32 / 0.70 0.53 0.20 / 0.70 0.71 / 2.17 0.59 0.33 0.73
ours (sH5) (1k iter.) 0.20 / 0.31 0.34 / 0.48 0.33 0.46 / 1.03 0.89 / 2.47 0.16 0.06 / 0.10 0.29 / 0.45 0.16 0.13 / 0.43 0.47 / 1.35 0.20 0.21 0.50
ours (sH4.5) (1k iter.) 0.19 / 0.30 0.33 / 0.46 0.52 0.40 / 1.21 0.74 / 1.91 0.27 0.06 / 0.10 0.29 / 0.44 0.26 0.12 / 0.17 0.40 / 0.59 0.33 0.20 0.44
Sift+5Pt [59, 60] 0.48 / - 1.13 / - - 0.88 / - 1.91 / - - 0.17 / - 0.99 / - - 0.35 / - 1.58 / - - 0.47 0.88

Table 2. Localization results on Cambridge Landmarks [23]. We report the median/mean position (in meters) and rotation (in degrees)
errors, and the mean RANSAC time (in seconds). We also report the average median position and rotation error over all four scenes. We
show results for fixing the number of RANSAC iterations to 100 respectively 1000. Best and second best results are shown in red and blue.

Method εR (◦) εt (◦) εp (m) εf (px)
sH53 0.21 / 0.45 1.31 / 4.51 0.03 / 0.10 –
H4 [20] 0.52 / 1.19 2.06 / 4.34 1.33 / 1.28 –
P3P + N 0.39 / 0.91 1.84 / 6.43 0.03 / 0.10 –
E5 [48] 0.49 / 1.18 1.21 / 1.73 0.02 / 0.03 –
E4+2 [58] 0.49 / 1.19 1.28 / 2.56 0.02 / 0.03 –
E4+2 + mult. H4 0.45 / 1.15 1.24 / 2.16 0.03 / 0.04 –
E4+2 + mult. sH53 0.27 / 0.32 1.24 / 1.84 0.02 / 0.02 –
sH5f3 0.32 / 1.09 3.71 / 10.55 0.05 / 0.21 18.16 / 349.36
P5Pf + N 0.25 / 11.94 1.41 / 10.80 0.02 / 0.05 40.66 / >106

Table 3. Rotation, translation (degrees), position (meters) and fo-
cal length errors (pixels) on 23k image pairs from KITTI. Best and
second best results are shown in red and blue. Since most tested
methods do not return the scale of the translation due to estimating
the relative pose, we used the scale from the ground truth path to
calculate the position error. Fig. 3 shows the corresponding CDFs.

largest support when thresholding the re-projection error.

Tab. 3 reports the median / mean rotation, position, and
focal length errors on the 23, 190 image pairs. Fig. 3 shows
the corresponding CDFs. Since some of the tested methods,
e.g., E5, do not return the translation scale due to estimat-
ing the relative pose, we used the scale from the ground
truth path to calculate the position error. Even though the
proposed sH53 finds the most accurate rotation matrices, its
translation and position errors are marginally higher than
those of the essential matrix-based solvers. Using E4+2 and
multiple homographies from sH53, however, leads to the
most accurate poses. Amongst the solver estimating the fo-

cal length, the proposed sH5f3 solver is the most accurate
one. We did not include Ef5+2 and Ef6 since both fail when
the camera undergoes purely forward motion.

4. Conclusion
In this paper, we have considered the problem of estimating
the semi-generalized homography between a pinhole and
a generalized camera. We have proposed efficient solvers
handling both calibrated and partially calibrated pinhole
cameras with unknown focal length. Our solvers cover all
possible minimal combinations of point correspondences
between the pinhole and the generalized camera where it
is possible to recover the scale. To the best of our knowl-
edge, we are the first to solve this problem. Synthetic and
real experiments focusing on two real-world applications
show that our solvers are practically relevant. While they
may not outperform more general existing solvers, which
handle non-planar scenes, under all conditions, our results
show that our solvers are preferable in certain conditions.
Combining all these solvers into a single hybrid RANSAC
approach is thus an interesting direction for future work.
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[31] Viktor Larsson, Kalle Åström, and Magnus Oskarsson. Effi-
cient solvers for minimal problems by syzygy-based reduc-
tion. In CVPR, volume 2, page 4, 2017. 4

[32] Karel Lebeda, Juan E. Sala Matas, and Ondřej Chum. Fixing
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