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Figure 1. VariTex generalizes person-specific neural textures to variational textures. This allows to control both pose and expressions via
explicit 3D geometries (Fig. 3) and to sample novel identities (Fig. 5). Our method generates images under fine head pose and expression
control, while maintaining geometric consistency over a large range of these parameters (Fig. 4 and Tbl. 2).

Abstract

Deep generative models can synthesize photorealistic
images of human faces with novel identities. However, a
key challenge to the wide applicability of such techniques is
to provide independent control over semantically meaning-
ful parameters: appearance, head pose, face shape, and fa-
cial expressions. In this paper, we propose VariTex - to the
best of our knowledge the first method that learns a vari-
ational latent feature space of neural face textures, which
allows sampling of novel identities. We combine this gen-
erative model with a parametric face model and gain ex-
plicit control over head pose and facial expressions. To
generate complete images of human heads, we propose an
additive decoder that adds plausible details such as hair.
A novel training scheme enforces a pose-independent la-
tent space and in consequence, allows learning a one-to-
many mapping between latent codes and pose-conditioned
exterior regions. The resulting method can generate geo-
metrically consistent images of novel identities under fine-
grained control over head pose, face shape, and facial ex-
pressions. This facilitates a broad range of downstream
tasks, like sampling novel identities, changing the head
pose, expression transfer, and more.

1. Introduction

The ability to generate images with user-controlled pa-
rameters, such as identity-specific appearance, pose, and ex-
pressions would have many applications in computer graph-
ics and vision. Synthesizing photorealistic images of novel
human faces has recently been made possible through deep
generative adversarial networks [17, 23, 24] or variational
auto encoders [26], that learn the distribution of real faces
to generate new identities. However, such methods typically
do not provide semantic control over shape, pose, and facial
expressions. This results in undesired global appearance
changes across different generated images, for example, a
change in identity when viewing from a different angle.

In order to gain more control over the generated im-
ages, recent work conditions neural networks on explicit
3D geometries [12, 16, 25, 27, 41, 42, 43]. Promising re-
sults have been shown by first generating the 2D face im-
age from a learned latent space, and then attempting to rig
it using graphics techniques in a geometrically consistent
manner [41, 42]. This approach suffers from an inherent
disadvantage: since the image synthesis is performed in
2D space only, it is hard to enforce consistency under 3D
manipulation. Strong supervision via multi-view images or
multi-pose data from monocular videos at training time can
alleviate this to some degree. However, the inherent 2D na-
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ture of the solution prohibits a truly 3D consistent solution
for novel test poses, views, and expressions. This prob-
lem particularly manifests itself when synthesizing poses
and expressions that lie outside the distribution of the train-
ing data (Fig. 4). To increase geometric faithfulness, re-
cent work has attempted to learn the distribution of faces in
3D, for example by leveraging neural textures to represent
3D scenes in texture space [32, 43, 44]. Especially when
trained from video, rendering 3D geometry with neural tex-
tures has been shown to produce highly consistent outputs
for multiple poses and expressions, albeit at the cost of hav-
ing to learn a texture per subject.

Our work generalizes subject-specific neural tex-
tures [18, 43, 44] to variational neural textures, enabling
geometry-aware synthesis of novel identities (see Fig. 1
and 5). Neural textures represent the appearance of a 3D
surface as 2D feature maps. In contrast to prior works,
which are trained per subject, variational neural textures
do not require strong supervision in the form of multi-view
images or minutes-long video sequences as input for each
identity. Instead, they are generated by sampling from an
underlying latent distribution of neural face textures. Im-
portantly, this latent space is learned in a self-supervised
scheme from monocular RGB images without requiring any
annotations. We use a parametric face model [1] in combi-
nation with a differentiable renderer to provide fine-grained
control over face shape, head pose, and facial expression.
This is sufficient to generate face interiors that preserve a
subject’s identity across pose and expression, but does not
model other important details, such as ears, hair, and the
mouth interior. To attain complete images of human heads,
we propose a pose-aware additive decoder that generates
features for visually plausible details (e.g., facial hair). We
devise a novel training regime that allows the additive de-
coder to learn a one-to-many mapping and in consequence
to generate the exterior face region conditioned on different
head poses from the same latent code (see Fig. 1).

We propose VariTex: Variational Neural Face Textures –
a method to sample novel identities and synthesize consis-
tent faces in multiple poses and expressions (Fig. 1 and 3).

We demonstrate state-of-the-art (SoA) photo-realistic re-
sults for geometric control (Fig. 3), novel identity image
synthesis (Fig. 5), and novel pose synthesis (Fig. 1 and 4).
Our method achieves higher visual identity-consistency
than related work (Fig. 4). Quantitatively, we compare em-
bedding distances between frontal and posed faces via a
SoA face recognition network [11] (Tbl. 2). Finally, we
conduct a user study (Sec. 5.3), where participants rate con-
sistency for posed faces and overall photo-realism.

In summary, we make the following contributions:

1. VariTex, the first method for learning a variational la-
tent feature space for neural face textures - allowing to
sample novel identities.

2. Combining the generative power of learned facial tex-
tures with the explicit control of a parametric face
model enables fine-grained control over facial expres-
sions, head pose, face shape, and appearance.

3. We synthesize plausible outputs for difficult regions
where no 3D geometries are available (e.g., hair, ears,
and the mouth interior).

4. We show that our method is more identity consistent
under geometric transformations.

2. Related Work
We briefly review related work on image synthesis of

human faces, particularly those that leverage differentiable
rendering and neural textures.

Method Pose-independent Sampling
texture novel identities

UV-GAN [9] RGB ×
DNR [44] neural ×
NVP [43] neural ×
ConfigNet [27] × ✓
GIF [16] × ✓
DiscoFaceGAN [12] × ✓
Ours neural ✓

Table 1. Overview of most closely related methods. Texture-
rendering based methods are not designed to sample new iden-
tities [9, 43, 44]. More generic synthesis methods [12, 16, 27]
suffer from inconsistency under large pose variations (Fig. 4 and
Tbl. 2) because they do not provide texture-level control over the
face region. We propose a framework based on variational neural
textures that can do both.

High-quality Face Synthesis. Most modern methods for
synthesizing natural images leverage generative adversar-
ial networks (GAN) [17] or variational auto-encoders [26].
These methods have achieved a high level of photoreal-
ism [2, 7, 8, 23, 24, 31, 34, 46]. Typically such methods
learn to map from a low dimensional latent space to the dis-
tribution of 2D face images using convolutional neural net-
works. However, these latent spaces often entangle appear-
ance and geometry [23, 24], making novel pose or expres-
sion synthesis extremely difficult. Recent works started dis-
entangling the latent space and adding more and more con-
trol [4, 12, 14, 16, 22, 27, 39, 41, 42], for example, by learn-
ing disentanglement via statistical face models [1] as strong
priors [12, 16]. Neural radiance fields [30] have shown to
render faces of very high quality [13, 19, 33]. However,
their generative variants [3, 36] still lack control over ex-
pressions. In summary, generative modeling of photorealis-
tic faces with artistic control remains a difficult challenge.

Differentiable Rendering. An alternative way to disentan-
gle appearance from geometry and pose by design is learn-
ing appearance in a UV space [9, 18, 29, 32, 38, 43, 44].
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Traditional computer graphics rendering pipelines require
highly detailed 3D geometries, which are very expensive
to obtain. Recently, Thies et al. proposed deferred neu-
ral rendering [44]. Deferred neural rendering showed how
deep neural networks can compensate imperfect 3D geome-
tries and render highly photo-realistic imagery. Key com-
ponents of these methods are neural textures. Instead of
using traditional textures in a pre-defined color space, they
leveraged the power of neural features as a description of
texture. As a difference to related works based on neural
textures [32, 44], our model is fully generative and allows
sampling of new identities. Thies et al. [44] train person-
specific models and Raj et al. [32] optimize person-specific
textures from videos. Our model is trained from monocular
images alone.

Neural Textures for Faces. Previous methods using neural
textures [43, 44] learn a person-specific texture from multi-
view images or videos. Given enough data of a target per-
son, they enable realistic animation of the facial expressions
seen during training. The high expression fidelity and im-
age quality comes at the cost of tightly coupling neural tex-
tures and rendering, which requires training a network per
person. Furthermore, training neural textures per scene re-
quires multiple views or minute-long sequences of the target
person. An interesting challenge in the evolution of neu-
ral textures is to generalize them to single images and to
novel identities. To this end, we frame the problem as a
variational neural texture generation task, followed by a
texture-to-image translation task. This generalizes the tex-
ture and image generator to unseen identities, gives fine-
grained control over head pose and facial expression and the
generated images remain consistent under the manipulation
of these parameters.

3. VariTex: Variational Neural Textures
3.1. Overview

We tackle the problem of controlled novel identity syn-
thesis for faces, with the goal to disentangle appearance
from pose and expression. To do so, we generalize person-
specific neural textures [43, 44] to variational neural tex-
tures by learning a distribution over identities that can map
to a neural texture space. This allows generating an infi-
nite number of neural textures that can be mapped on face
geometries with arbitrary poses and expressions.

At the core of our method is a neural texture decoder that
is trained in a self-supervised manner via neural rendering.
The decoder learns to generate neural textures that follow
a predefined layout given by the UV parameterization of a
3D morphable face model [15], followed by a projection
into image space and rendering as an RGB image.

Intuitively, our network can render extreme poses despite
being trained on largely frontal imagery, because the neural

texture projection provides spatially aligned features. Such
neural rendering networks have been shown to generalize to
poses unseen during training [44].

3.2. Problem Statement

Our goal is to learn a generator Gθ that produces face im-
ages Î and foreground masks M̂ from a latent description
for identity z ∈ Rdz and control signals for shape α ∈ Rdα ,
expression β ∈ Rdβ and head pose R ∈ SO(3). Given a
code for an identity z and a corresponding shape α, the
generator should synthesize consistent images that preserve
facial identity across different expressions β and poses R.
Equation 1 summarizes our problem statement:

(Î,M̂) = Gθ(z,α,β,R). (1)

The distribution over z is learned from a large collection of
monocular face images. Shape α and expression β are the
coefficients of a PCA-based 3D morphable face model [1],
learned from a collection of 3D scans [15]. The pose R is a
3D rotation matrix.

While we also train an image-to-latent-space encoder,
we emphasize that this is more of a side effect. Our pri-
mary goal is to learn latent space from which novel identi-
ties can be sampled and rendered under geometric control,
as opposed to generating novel views of existing identities.

3.3. Architecture Overview

Fig. 2 summarizes our method. During training, we
use monocular RGB images to learn the underlying space
of face appearance. This is done in the variational auto-
encoder (VAE) framework [26], where an encoder learns to
map input face images to parameters of a normal distribu-
tion. These parameters can then be sampled to generate a
latent code which is interpreted by the VariTex generator
Gθ. We describe our training scheme in Sec. 3.5.

Unlike a traditional decoder of a VAE [26], The Vari-
Tex Generator synthesizes face images in a geometry-aware
manner. We use a parametric face model with consistent
topology to map the 3D geometry of any face to a 2D tex-
ture layout. This 2D texture space serves as the domain over
which feature maps for novel identities can be generated.
The face model is then used to re-project the generated neu-
ral textures from this layout to the output image space under
any desired pose and expression. We describe this process
in greater detail in Sec. 3.4.

The texture layout can only handle regions of the face
geometry that are present in the face model. We use an addi-
tional network—the additive decoder—to generate features
for the exterior regions, such as hair, ears, and the mouth
interior.

Finally, a neural renderer converts the neural features
into an RGB image and a plausible foreground mask. The
full generation process is described in detail in Sec. 3.4.
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Figure 2. The objective of our pipeline is to learn a generator Gθ that can synthesize face images with arbitrary novel identities whose
expressions and pose can be controlled using face model parameters α,β, and R (Fig. 3). During training, we use unlabeled monocular
RGB images (I) to learn a smooth latent space N (µz,Σz) of natural face appearance using a variational encoder. A latent code z
sampled from this space is then decoded to a novel face image. At test time, we draw samples to generate novel face images (Fig. 5). Our
variationally generated neural textures can also be stylistically interpolated to generate intermediate identities (supplementary material).

3.4. VariTex Generator

This section describes the components of the VariTex
generator. The generator consists of two decoders and a
Feature2Image rendering network. The decoders produce a
neural description of the desired output—the neural feature
image. The Feature2Image network turns these features into
an RGB image and a corresponding foreground mask.

The generator allows a) to generate new identities by
sampling latent codes z and shape coefficients α, and b)
to manipulate expression β and pose R.

The latent code for identity z ∈ R256 can be sampled
from a learned distribution N (µz,Σz) or extracted from a
reference image. It is split into two halves: zface ∈ R128

for the face interior region, and zadditive ∈ R128 for the re-
gions outside the face model (e.g., hair). The latent code for
the face zface is converted by the face texture decoder into
the face regions provided by the 3D model. The latent code
for the rest of the head zadditive is processed into features
for the rest of the face by the additive decoder.

The coefficients for shape α and expression β can be
sampled from a distribution extracted from reference im-
ages via 3D model fitting [15], or specified manually, which
allows artistic control.

Face Texture Decoder. The face texture decoder is a modi-
fied ResNet-18 [20] where we expand the latent code zface
to spatial feature maps and stack them along the channel di-
mension. The feature maps are processed in a series of up-
sampling and residual blocks to the desired texture dimen-
sions. The output is a pose and shape independent multi-

dimensional feature map in UV space, which we call neural
texture. We provide the detailed architecture in the supple-
mentary material.

UV Rendering and Texture Sampling. In order to project
the texture onto the image plane, we use a 3D morphable
face model with a UV parameterization [15]. Given model
coefficients for shape α, expression β, and a rotation matrix
R, we compute the posed mesh. We then project the UV pa-
rameterization to image space following the standard com-
puter graphics pipeline and use it to sample features from
the neural face texture. The output of this step is a neural
face feature image Fface.

Additive Decoder. The face texture decoder yields a neural
texture for the face region only. The additive decoder adds
features for the regions missing in the face model, e.g., the
hair or mouth interior. This is a very challenging task be-
cause the shape and appearance of the added regions should
be consistent even for extreme head poses. The additive de-
coder should therefore be invariant to pose-dependent fea-
tures in the latent code. Please refer to Sec. 3.5 and the
supplementary material for more details.

We condition the additive decoder on both the latent de-
scription of identity zadditive and the neural face feature
image Fface. The latent code zadditive is expanded to a
spatial feature map (similar to the face texture decoder) and
upscaled in a series of ResNet layers [20]. In each block, we
concatenate the rescaled face feature image as conditioning
on geometry and pose.

The output of the additive texture decoder is an additive
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feature image Fadditive that is pixel-aligned given a pose,
shape, expression, and identity.

Feature2Image Network. The last step of the VariTex
Generator pipeline is to convert the feature images Fface

and Fadditive to an RGB output image. The Feature2Image
network translates the stacked feature images into an RGB
image and a foreground mask. Similar to [43, 44], the Fea-
ture2Image network is a U-Net [35].

3.5. Training

In contrast to existing methods that require strong super-
vision in the form of multi-view images or videos, we train
only on unpaired monocular RGB images.

Encoder. During training, we learn a latent space z ∼
N (µz,Σz). A ResNet-18 [20] encoder takes a foreground-
masked RGB image and predicts the mean µz ∈ R256 and
diagonal covariance Σz ∈ R256×256, from which we sam-
ple a latent code z ∈ R256 and process it further as de-
scribed in Sec. 3.4.

Augmentation Scheme. While the parametric face model
allows for geometry-consistent synthesis for the face in-
terior region, doing the same for the face exterior, where
no 3D geometry is available, is much more challenging.
A Variational Auto Encoder [26] trained by reconstruction
would simply learn to copy such regions (e.g., hair) into the
same spatial location even under different poses.

To solve this problem, we employ an augmentation
scheme to map our input image I to a transformed out-
put image A(I). The mapping A consists of random affine
transforms: in-plane rotation, translation, scaling, and flip-
ping. As a result, the additive decoder is guided to learn
a one-to-many mapping—the same latent code zadditive
must yield different additive feature images, which is de-
termined by the pose and geometry from the face feature
image. Please see Fig. 2 for a visual example and the sup-
plementary for more details.

Objective Function. Each training sample consists of a
foreground-masked training image I , its affine transformed
version A(I), the ground-truth segmentation mask M be-
longing to A(I), and their corresponding reconstructions Î
and M̂ . We denote the spatial dimensions as H and W .

For self-supervised reconstruction, we employ a photo-
metric L2 loss term and a perceptual loss term LV GG:

L2 =∥Î −A(I)∥22,

LV GG =
∑
j

vj∥ϕV GGj
(Î)− ϕV GGj

(A(I))∥1, (2)

where the function ϕV GGj (·) extracts the j-th feature map
from a pretrained VGG network [10, 40], and vj are the
weights per feature map (listed in the supplementary).

In order to learn correct foreground masks, we supervise
with a cross entropy loss term LM :

LM =− 1

HW

H∑
i

W∑
j

Mij logM̂ij

+ (1−Mij)(1− logM̂ij).

(3)

We smooth the latent space with a Kullback-Leibler reg-
ularization term:

LKL = DKL (q(z|I)||p(z)) , (4)

where q(z|I) is the distribution predicted by the encoder
and p(z) is a standard Gaussian distribution [26].

To encourage realism, we employ a two-scale patch dis-
criminator D [31] with feature matching. The adversarial
generator loss term is

Ladv =(1−D(Î))2

+
∑
j

||ϕDj
(Î)− ϕDj

(A(I))||1, (5)

where the function ϕDj
(·) extracts the j-th feature map

from the discriminator network.
The final losses for the generator and discriminator are:

LGenerator =λ2L2 + λV GGLV GG + λMLM

+ λKLLKL + λadvLadv,

LDiscriminator =λadv
1

2

[
D(Î)2 + (1−D(A(I)))

2
]
.

(6)

We empirically choose λ2 = λM = λadv = 1, λV GG =
2, and λKL = 0.1. For more training details and hyperpa-
rameters, please refer to the supplementary material.

4. Experimental Setup

Data and Preprocessing. We train our method on face im-
ages from the Flickr-Faces-HQ dataset (FFHQ) [23]. For
training, we fit the Basel Face Model [15] offline. In nine
cases, the model fitting fails (< 0.02% of all images). We
remove those images from the training set and end up with
59, 991 training and 10, 000 test samples, following the rec-
ommended splits. We visualize the removed images in the
supplementary material.

We aim to generate images with their corresponding
foreground masks. To get pseudo-ground-truth, we train
a state-of-the-art face segmentation network [5, 6] on
CelebAMask-HQ [28] and predict the segmentation maps
offline. Please refer to the supplementary material for de-
tails.

Identity Consistency Metric. To evaluate identity consis-
tency, we compute a similarity score from the embeddings
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Figure 3. Rendering two identities under expression and pose con-
trol. Column 1 starts with a neutral pose and expression. Columns
2 and 3 change expression and pose via the graphical control unit
(Fig. 2). For columns 4 and 5, we render the face with expres-
sion and pose from real reference images. The top row shows the
corresponding face meshes and reference images.

of a state-of-the-art face recognition network [11]. For each
related method, we render 3,000 identities with frontal head
pose and compute their embeddings [11]. We then re-pose
the same identities to various degrees and compute the co-
sine similarity between the normalized embeddings. As a
reference for the reader, we provide similarities of a real-
world multi-view dataset [45]. The real-world dataset con-
tains faces with a slightly non-frontal pose (about ±7◦),
hence, we use the average embedding of the two most
frontal faces for the frontal pose.

5. Results and Discussion
This section discusses our results for controlled face syn-

thesis. In Sec. 5.1, we show qualitative results for rendering
different geometries and poses (Fig. 3) and sampling novel
identities (Fig. 5). In Section 5.2, we compare both qualita-
tively (Fig. 4) and quantitatively (Tbl. 2) with related work.
In Sections 5.3 and 5.4, we conduct a user and an ablation
study. In Section 5.5, we discuss limitations and future
work.

5.1. Qualitative Results

Controlling Geometry and Pose. VariTex can sample
novel identities and produce consistent images for different
geometries and poses. Fig. 3 shows sequential edits on two
identities. We start at a frontal pose and a neutral expres-
sion (column 1). We use the graphical control unit (Fig. 2)
to change expression and pose (columns 2 and 3). The top
row shows the corresponding face mesh. It is also possible
to extract the parameters of the graphical control unit from
reference images (columns 4 and 5). Our method maintains
high identity consistency across manipulations.

Sampling and Identity Mixing. While previous works are
limited to person-specific face textures [43, 44], VariTex can
generate textures for novel identities by sampling in a latent
space (Fig. 2). In Fig. 5, we sample new variants zj ∼
N(µzj ,Σzj ) for identities j from the test set. VariTex can
also interpolate between two latent codes. We show such
examples in the supplementary document and video.

5.2. Identity Consistency

A key benefit of using textured 3D geometries is that they
allow highly consistent renderings even for extreme head
poses. Our method leverages the strict mapping from tex-
ture to image space (Sec. 3.4). This facilitates the rendering
of the identity-specific facial appearance for extreme poses,
despite a dataset with mostly frontal faces. We visualize
the head pose distribution of the training set and out-of-
distribution samples in the supplementary.

We visually compare identity consistency in Fig. 4. Re-
lated works [12, 16, 27, 41] achieve highly consistent and
photo-realistic results for frontal faces and poses up to 30◦

(pitch) and 15◦ (yaw). For more extreme poses, they tend
to show severe artifacts [12, 16, 41] or blurred results [27].

For StyleRig [41], we exclusively show qualitative re-
sults because only a handful sample images were available
to us. For the other methods [12, 16, 27] we generate 3000
samples and conduct a quantitative comparison by comput-
ing a similarity score using the identity consistency metric
(Sec. 4). Tbl. 2 lists the resulting similarity scores (higher is
better). Our method achieves the highest similarities, except
for one of the evaluated poses.

5.3. User Study

We conduct a perceptual user-study comparing our
method with three state-of-the-art techniques for controlled
face image synthesis [12, 16, 27] along two dimensions:

1. The general quality of photorealism produced by the
methods for images posed at random variations in the
range of [−45◦, 45◦] from the frontal pose. Partici-
pants answered the following question for 20 randomly
chosen image pairs: Of the two images, which looks
more like a real person?

2. Identity consistency for triplets of images of the same
identity synthesized at 3 different poses: frontal pose,
-45◦ and 45◦ degrees along the yaw and pitch axis.
Each user was shown 10 randomly chosen pairs of
such triplet images generated by ours and the related
works. We asked: Which set represents the same per-
son more consistently?

The survey consisted of 128 participants. Our method is
on par in terms of photorealism, and clearly outperforms
competing baselines for identity consistency criteria. In the
following, we report the user study results for pairwise com-
parisons of each related work against ours.
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Figure 4. Comparison with related work. GIF [16], ConfigNet [27], and DiscoFaceGAN (DFG) [12] achieve impressive visual quality
for re-posing faces, but only up to 15◦ from the frontal pose. StyleRig [41] renders photorealistic outputs, but is unable to render strong
pose variations and instead falls back to a smaller pose variation value, for example as seen in the +45◦ case. Our technique is capable of
synthesizing more extreme poses while maintaining high identity consistency with the frontal image.

Method Similarity yaw ↔ Similarity pitch ↕
-45◦ -30◦ -15◦ 0◦ 15◦ 30◦ 45◦ -45◦ -30◦ -15◦ 0◦ 15◦ 30◦ 45◦

[27] 0.208 0.509 0.790 - 0.795 0.515 0.257 ≤ 0 0.014 0.459 - 0.476 0.095 ≤ 0
[16] 0.133 0.264 0.485 - 0.487 0.257 0.117 0.039 0.164 0.400 - 0.448 0.191 0.095
[12] 0.530 0.690 0.866 - 0.863 0.675 0.521 0.270 0.461 0.781 - 0.826 0.581 0.388

Ours 0.568 0.729 0.874 - 0.873 0.732 0.585 0.416 0.611 0.821 - 0.817 0.611 0.420
Ref [45] 0.855 0.845 0.726 - 0.790 0.773 0.779 0.719 0.725 0.753 - 0.797 0.805 0.782

Table 2. Identity consistency for different head poses. We compare 3,000 frontal faces (0◦) with randomly sampled expressions with their
respective posed variants. The scores indicate the similarity calculated as the dot product between normalized embeddings from a state-of-
the-art face recognition network [11] (higher is better). The bottom row (Ref ) is a reference to a real-world multi-view dataset [45]. For a
visual comparison, please refer to Fig. 4.

For photorealism, 10% of the participants voted in favour
of ConfigNet [27], 35% preferred GIF [16] and 50% chose
DiscoFaceGAN [12]. For identity consistency, 0% of the
participants preferred ConfigNet or GIF against VariTex;
8% of participants preferred DiscoFaceGAN. We provide
results on other poses a random selection of example im-

ages from the survey in the supplementary document.

5.4. Ablation Study

We analyze the effect of neural textures in an ablation
study. We simulate a traditional RGB texture by limiting
the texture to 3 dimensions and imposing an additional con-
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Figure 5. Sampling new identities. Each row samples from the
learned latent distribution to generate variants of an identity. Note
that the expression and pose are highly consistent.

Variant FID↓ Consistency (yaw) ↑
3-dim texture with LRGB 54.27 0.712 ± 0.123
3-dim texture w/o LRGB 47.87 0.684 ± 0.132
16-dim with LRGB 37.96 0.724 ± 0.119
16-dim w/o LRGB (Ours) 34.35 0.727 ± 0.121

Table 3. Ablation study. We compare photorealism (FID [21, 37])
and identity consistency for neural vs. RGB textures. A higher
dimensional neural texture can yield photorealistic outputs, while
also maintaining high consistency. We provide detailed ablation
results and visual examples in the supplementary material.

straint to make the texture resemble a classical RGB texture:
LRGB = 1

3

∑3
c=1 ||Fc −A(Ic)||22.

The variable F denotes the feature image (Fig. 2) and
A(I) denotes the masked affine transformed training image
(as described in Sec. 3.5). The subscript c = 1, ..., 3 repre-
sents the three RGB channels.

We train four combinations: a) a 3-dimensional tex-
ture with LRGB , b) a 3-dimensional neural texture with-
out LRGB , c) a 16-dimensional texture with LRGB and d)
a 16-dimensional neural texture without LRGB (ours).

Table 3 compares photorealism (FID [21, 37]) and
identity consistency over the head poses (as described in
Sec. 5.2). The consistency scores are the mean and the
corresponding standard deviations over all poses. Please
note that FID is computed on images masked to the
foreground—the values are not directly comparable to re-
lated works that use backgrounds. Tree dimensional tex-
tures yield lower consistency and the generated images
show artifacts—mostly visible in difficult regions, like eyes.
The results indicate that our network benefits from the
higher expressiveness of neural textures. The FID score
shows that high-dimensional textures improve realism. In

the supplementary material, we provide additional results
and further ablations.

5.5. Limitations and Future Work

The proposed architecture allows going outside the train-
ing distribution. However, we observe a significant decrease
in performance at very extreme poses beyond 60◦. Further-
more, rigid objects inside the face get distorted by the per-
spective projection, e.g., when re-posing a face with glasses.
We demonstrate examples for both cases in the supplemen-
tary material.

Possible extension to this work could generate complete
images including backgrounds and torsos, and further dis-
entangle the latent identity space.

6. Conclusion

We introduce VariTex—a generative model of neural
face textures. The VariTex framework affords sampling
novel identities while controlling both pose and geometry.
Previous works excelled at either task individually; our
framework generates novel identities and renders them
in a significantly larger range of controlled poses and
expressions. Our method achieves this by learning to syn-
thesize an arbitrary pose-independent neural texture from
a latent code, sampled from a distribution that is learned
in a fully self-supervised scheme from monocular face
images. The neural texture is then rendered to an image
with any desired pose and expression. Our method also
consistently generates the challenging face exterior regions
such as hair, ears, and mouth-interiors. We demonstrate the
capabilities of our method through qualitative, quantitative,
and perceptual analysis. We also identify the limitations
and discuss the various possibilities emerging from this line
of work.
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