
Aligning Subtitles in Sign Language Videos

Hannah Bull1* Triantafyllos Afouras2∗ Gül Varol2,3
Samuel Albanie2,4 Liliane Momeni2 Andrew Zisserman2

1 LISN, Univ Paris-Saclay, CNRS, France
2 Visual Geometry Group, University of Oxford, UK
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Figure 1: Subtitle alignment: We study the task of aligning subtitles to continuous signing in sign language interpreted TV broadcast
data. The subtitles in such settings usually correspond to and are aligned with the audio content (top: audio subtitles, Saudio) but are
unaligned with the accompanying signing (bottom: Ground Truth annotation of the signing corresponding to the subtitle, Sgt). This
is a very challenging task as (i) the order of subtitles varies between spoken and sign languages, (ii) the duration of a subtitle differs
considerably between signing and speech, and (iii) the signing corresponds to a translation of the speech as opposed to a transcription.

Abstract

The goal of this work is to temporally align asyn-
chronous subtitles in sign language videos. In particular,
we focus on sign-language interpreted TV broadcast data
comprising (i) a video of continuous signing, and (ii) subti-
tles corresponding to the audio content. Previous work ex-
ploiting such weakly-aligned data only considered finding
keyword-sign correspondences, whereas we aim to localise
a complete subtitle text in continuous signing. We propose
a Transformer architecture tailored for this task, which we
train on manually annotated alignments covering over 15K
subtitles that span 17.7 hours of video. We use BERT subti-
tle embeddings and CNN video representations learned for
sign recognition to encode the two signals, which interact
through a series of attention layers. Our model outputs
frame-level predictions, i.e., for each video frame, whether
it belongs to the queried subtitle or not. Through extensive
evaluations, we show substantial improvements over exist-
ing alignment baselines that do not make use of subtitle text

*Equal contribution

embeddings for learning. Our automatic alignment model
opens up possibilities for advancing machine translation
of sign languages via providing continuously synchronized
video-text data.

1. Introduction
Sign languages constitute a key form of communication

for Deaf communities [50]. Our goal in this paper is to
temporally localise subtitles in continuous signing video.
Automatic alignment of subtitle text to signing content has
great potential for a wide range of applications including
assistive tools for education and translation, indexing of
sign language video corpora, efficient subtitling technology
for signing vloggers1, and automatic construction of large-
scale sign language datasets that support computer vision
and linguistic research.

Despite recent advances in computer vision, machine

1Unlike spoken vlogs that benefit from automatic closed captioning on
sites such as YouTube, signing vlog creators who wish to provide written
subtitles must both translate and align their subtitles manually.
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translation between continuous signing and written lan-
guage remains largely unsolved [6]. Recent works [11, 12]
have shown promising translation results, but to date these
have been achieved only in constrained settings where con-
tinuous signing is manually pre-segmented into clips, with
each clip associated to a written sentence from a limited vo-
cabulary. Two key bottlenecks for scaling up translation
to continuous signing depicting unconstrained vocabularies
are (i) the segmentation of signing into sentence-like units,
and (ii) the availability of large-scale sign language training
data.

Manual alignment of subtitles to sign language video is
tedious – an expert fluent in sign language takes approxi-
mately 10-15 hours to align subtitles to 1 hour of continu-
ous sign language video. In this work, we focus on the task
of aligning a particular known subtitle within a given tem-
poral signing window. We explore this task in the context of
sign language interpreted TV broadcast footage – a readily
available and large-scale source of data – where the subti-
tles are synchronised with the audio, but the corresponding
sign language translations are largely unaligned due to dif-
ferences between spoken and sign languages as well as lags
from the live interpretation.

Subtitle alignment to continuous signing remains a very
challenging task. First, sign languages have grammatical
structures that vary considerably from those of spoken lan-
guages [50], and as a result the ordering of words within
a subtitle as well as the subtitles themselves is often not
maintained in the signing (see Fig. 1). Second, the dura-
tion of a subtitle varies considerably between signing and
speech due to differences in speed and grammar. Third, the
signing corresponds to a translation of the speech that ap-
pears in the subtitles as opposed to a transcription: there is
no direct one-to-one mapping between subtitle words and
signs produced by interpreters, and entire subtitles may not
be signed.

Previous work exploiting such weakly-aligned data has
mainly focused on finding sparse correspondences between
keywords in the subtitle and individual signs [3, 39, 53], as
opposed to localising the start and end times of a complete
subtitle text in continuous signing. Though, as we show, lo-
calising isolated signs identified by keyword spotting never-
theless forms a useful pretraining task for full subtitle align-
ment. Most closely related to our work, Bull et al. [9] con-
sider the task of segmenting a continuous signing video into
subtitle units purely based on body keypoints. In fact, sim-
ilarly to speech which can be segmented based on prosodic
cues such as pauses, sign sentence boundaries can to an ex-
tent be detected through visual cues such as lowering the
hands, head movement, pauses, and facial expressions [24].
However, as shown in our evaluations in Sec. 4, such ap-
proaches based on prosody-only perform poorly in our set-
ting, where subtitles do not necessarily correspond to com-
plete sign sentences with clear visual boundaries.

In this paper, we instead propose to use the subtitle text
as an additional signal for better alignment. We make the
following three contributions: (1) we show that encoding
the subtitle text as input to the alignment model significantly
improves the temporal localisation quality as opposed to
only relying on visual cues to segment continuous sign lan-
guage videos into subtitle units; (2) we design a novel for-
mulation for the subtitle alignment task based on Trans-
formers; and (3) we present a comprehensive study ablating
our design choices and provide promising results for this
new task when evaluating on unseen signers and content.

2. Related Work

For a recent comprehensive survey about sign language
recognition and translation, see [32]. Here, we review rele-
vant works on temporal localisation at the levels of individ-
ual signs and sequences, in addition to more general tempo-
ral alignment methods from the literature.

Temporal localisation of individual signs. A rich body
of work has considered the task of localising sparse sign
instances in continuous signing, often referred to as “sign
spotting”. Early efforts using signing gloves [37] were fol-
lowed by methods employing hand-crafted visual features
to represent the hands, face and motion that were integrated
with CRFs [58, 59], HMMs [46] and HSP Trees [42]. Sev-
eral studies have sought to employ subtitles as weak super-
vision for learning to localise and classify signs, using apri-
ori mining [18] and multiple-instance learning [7, 8, 43].
More recent work has leveraged cues such as mouthings [3]
and visual dictionaries [39] and by making use of deep neu-
ral network features with sliding window classifiers [36]
and attention learned via a proxy translation task [53]. In
deviation from these works, our objective is to localise com-
plete subtitle units, rather than individual signs.

Temporal localisation of sign sequences. The alignment
of subtitles to continuous signing was considered in creative
early work by combining cues from multiple sparse corre-
spondences [23], but under the assumption that ordering of
words in subtitles are preserved in the signing (which does
not hold in our problem setting). Other sequence-level sign
language temporal localisation tasks that have received at-
tention in the literature include category-agnostic sign seg-
mentation [22, 44], active signer detection [5, 17, 40, 49]
and diarisation [2, 26, 27]—each considers a temporal gran-
ularity that differs from subtitle units. Most closely related
to our work, Bull et al. [9] employ a keypoint-based model
to segment continuous signing into sentence-like units with-
out knowledge of the written subtitles during inference. Our
approach relaxes this assumption and considers instead the
practical scenario in which we assume access to the written
subtitle to be aligned. We compare our approach with theirs
in Sec. 4.
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Figure 2: SAT model overview: We input to our model (i) token embeddings of the subtitle text we wish to align, (ii) a sequence of video
features extracted from a continuous sign language video segment and (iii) the shifted temporal boundaries of the audio-aligned subtitle,
Sprior . Using these inputs, the model outputs a vector of values between 0 and 1 of length T . Its first and last values above a threshold τ
delimit the predicted temporal boundaries for the query subtitle. The location of the subtitle with respect to the window is represented in
dashed yellow.

Continuous sign language recognition. Hybrid models
coupling CNNs with HMMs [33, 34], attention mecha-
nisms [31] and CTC losses [10, 16] have been studied for
continuous sign language recognition, with recent exten-
sions to sequence-to-sequence models [11] and Transform-
ers [12, 35] to tackle the task of sign language translation.
These models produce either implicit or explicit alignments
over a signing sequence corresponding to a sentence. How-
ever, these approaches have only been demonstrated to work
on pre-segmented sentences of signing [11].
Aligning bodies of text to video. The Dynamic Time
Warping (DTW) algorithm [41] has been applied to the
problem of aligning sequences of movies to transcripts [21,
45] and plots synopses [51] using cues such as character
recognition and subtitle content. It has also been success-
fully applied to the problem of aligning generic text de-
scriptions against untrimmed video [4]. While effective,
these methods require the preservation of sequence order-
ing across modalities, which does not hold in our problem
setting. We nevertheless show in Sec. 3 how DTW can
be used as a secondary stage of processing that resolves
conflicting local alignments on the re-ordered subtitle pre-
diction timings via a global objective. The fixed ordering
assumption is relaxed by the work of [52], which aligns
book chapters to video scenes. Their approach, however,
which works through matching sparse character identifica-
tions against specific shots, is not applicable in our setting
where shot boundaries do not provide a natural segmenta-
tion of the signing content.
Natural language grounding in videos. Our work is also
related to the task of natural language grounding, which
aims to locate a temporal segment within an untrimmed
video sequence corresponding to a given natural language
query. Existing methods have considered two-stage pro-
pose and rank approaches [25, 30, 38, 56], iterative ground-
ing agents trained with reinforcement learning [29, 55] and

single-stage regression models [15, 28, 60, 61]. Our pro-
posed subtitle alignment task differs from natural language
grounding in three ways: (i) The signing content is more
fine-grained—the visual appearance of a signing sequence
remains very similar across frames, necessitating nuanced
recognition of body dynamics; (ii) Differently from lan-
guage grounding, each subtitle to be aligned comes with its
own reference location, providing an instance-specific prior
over the start time and duration. As we show in Sec. 4, our
effective use of this reference is important to achieving good
performance, and our model is specifically designed to take
advantage of this cue; (iii) Subtitles occupy mutually exclu-
sive temporal regions, a property that we further exploit to
improve alignment quality, but that does not hold in general
for natural language grounding.

3. Method

In this section, we describe our Transformer-based sub-
title alignment model operating on a single subtitle and a
short video segment (Sec. 3.1), our pretraining on sparse
sign spottings (Sec. 3.2), and our final step that glob-
ally adjusts multiple subtitles in a long video using DTW
(Sec. 3.3).

Problem formulation. As inputs to the model, we pro-
vide (i) token embeddings of the subtitle text we wish to
align to signing, (ii) a sequence of video features extracted
from a continuous sign language video segment, as well as
(iii) prior estimates of the temporal boundaries for the given
query, which we refer to as Sprior. The latter is provided
as an approximate location and duration cue of the signing-
aligned subtitle. Using these inputs, we predict a binary
vector of the same length as the video features, where a con-
secutive sequence of 1s denotes the temporal location of the
subtitle.
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3.1. Subtitle Aligner Transformer

The core of our model is a Transformer [54], as shown
in Fig. 2, which we refer to as Subtitle Aligner Transformer
(SAT). In contrast to the common approach of feeding video
frames as input to the encoder [13, 19], we input the video
frames to the decoder side in order for the model to learn the
association between the frame-level features and the output
vector of the same duration. We first describe the structure
of the Transformer, and then the text and video feature ex-
traction. Additional implementation details are provided in
App. Sec. B.
Encoder. The input to the encoder is a sequence of text
embeddings corresponding to the subtitle we wish to align.
Positional encodings are not used on the encoder side of the
Transformer since the text embeddings (see below) already
contain positional information. The encoder is a stack of
Transformer layers, each containing a multi-head attention
mechanism followed by a feedforward network and embed-
ding dimensionalities of size dmodel.
Decoder. The decoder is a stack of Transformer layers that
attend on the encoded sequence.2 The input to the decoder
consists of a sequence of video features encoding the vi-
sual signing information from the video, as well as a binary
vector representing a prior estimate of the location of the
signing-aligned subtitle (Sprior). Positional encodings are
added to the decoder input in order for the model to ex-
ploit the temporal ordering of the signing. The final layer of
the model is a linear layer with a sigmoid activation which
outputs T predictions in the range [0, 1] one for each video
frame. Values of this output vector, Spred, that are above
a threshold τ correspond to the predicted temporal location
of the queried subtitle text.
Text features. Each subtitle is encoded using a BERT [20]
model, pretrained on a large text corpus with a masked
language modelling task, to produce a sequence of 768-
dimensional vectors, one for each token in the sentence.
To match the input dimension of the encoder Transformer,
these embeddings are first linearly projected to dmodel.
Video features. The visual features are 1024-dimensional
embeddings extracted from the I3D [14] sign classification
model made publicly available by the authors of [53]. The
features are pre-extracted over sign language video seg-
ments. A visual feature sequence of length T is used as
input to the model.
Prior position encoding. Besides the video features, the in-
put to the decoder also includes a subtitle timing estimate as
a prior position and duration cue. This prior estimate is en-
coded as a binary vector of length T , where 1 indicates that
the associated video frame is within the temporal bound-
aries of the subtitle, and 0 otherwise. The video and prior
inputs are fused via concatenation before being passed as
input to the decoder. Before the concatenation both inputs

2Note: There is no auto-regression.

are linearly projected to the same dimension. The fusion
output is finally projected to dmodel in order to be input to
the Transformer decoder.
Training objective. The model is trained with a binary
cross entropy loss between the predicted vector and the
ground truth Sgt of the signing-aligned subtitle within the
video segment:

L = − 1

T

T∑
t=1

St
gt logS

t
pred + (1− St

gt) log(1− St
pred).

3.2. Word pretraining with individual sign locations
SAT is designed for alignment of subtitles to video sign-

ing streams. However, the same architecture can be used
without any alterations to align smaller text units, e.g. sin-
gle words. Given that we have access to sparse sign annota-
tions from mouthings [3] and dictionary exemplars [39], we
can use these to initialise the model weights and incorporate
this knowledge via a potentially easier single-sign spotting
task. We obtain timings of the sparse word-level annota-
tions and assume a fixed single-second width as the precise
sign boundaries are not available. The model is then trained
to spot the single sign occurrence within a video window of
size T . In our experiments, we demonstrate the advantages
of such a pretraining strategy.

3.3. Global alignment with DTW
Our model does not take into account global information

from the length of the video (e.g. 1-hour), rather it looks
for signing associated to a given subtitle within a short tem-
poral window T (e.g. 20-seconds). Hence, there may be
overlaps between predictions for different subtitles; we re-
solve these overlap conflicts using DTW [41]. We find an
order-preserving global alignment from all elements of a se-
quence of video frames to all elements of sequence of sub-
titles, maximising the sum of sigmoid outputs of our model
in our cost function for each subtitle query.

As DTW aligns all frames in a video sequence to sub-
titles, we select all frames of the signing video which are
likely to be associated with subtitle queries. Specifically,
we select all frames associated to an output score over τdtw.
In the case where our model outputs only values below τdtw
for a particular subtitle, we instead select all frames within
the prior location Sprior.

We order the subtitles by the mid-point of their predicted
temporal location. This allows the predicted subtitles to fol-
low a different order to the original subtitles, because the
order of phrases in the sign language interpretation does not
necessarily follow the order of phrases of the written En-
glish subtitles (see App. Sec. C for further details).

We construct a cost matrix of dimension (i) the number
of frames by (ii) the number of subtitles, and with entries of
1 − pij , where pij is the sigmoid output corresponding to
frame i with subtitle j as the encoder input. We apply the
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DTW algorithm to this cost matrix of aligning video frames
to subtitles. This maximises the overall sum of the sigmoid
outputs of the model under the ordering and allocation con-
straints of DTW.

If not otherwise mentioned, our full SAT model uses
DTW postprocessing.

4. Experiments
In this section, we first give implementation details

(Sec. 4.1) and describe the datasets and evaluation metrics
used in this work (Sec. 4.2). We then compare the results of
the proposed SAT model against strong baselines (Sec. 4.3)
and present a series of ablation studies (Sec. 4.4). Next,
we demonstrate the performance of our model on additional
datasets (Sec. 4.5). Finally, we provide qualitative results
and discuss limitations (Sec. 4.6).

4.1. Implementation details
Architecture. For both the encoder and the decoder we
use 2 identical Transformer layers with 2 heads and size
dmodel = 512 each.
Backbone pretraining. The I3D model is pretrained to
perform 1064-way classification across the sign spotting in-
stances with mouthings [3] and dictionary exemplars [39]
(further details can be found in [53]). The model is then
frozen and used to densely pre-extract visual features with
stride 1 over the clips of the datasets.
Prior input selection. As the prior estimate input Sprior

we use the temporal location of the audio-aligned subtitle
Saudio shifted by +3.2 seconds. This value, which we de-
note with S+

audio, corresponds to the average temporal shift
between the audio-aligned subtitles Saudio and the ground
truth subtitles Sgt in our training data (see Fig. 3a).
Search windows. During training, we randomly select a
search window of 20 seconds around the location of the
ground truth subtitle Sgt, select the densely extracted video
features for this window, and temporally subsample them
by a factor of 4. All videos are sampled at 25 FPS, there-
fore this results in T = 125 frames. During testing, we
select a search window of the same length centered around
the shifted subtitle location S+

audio. An ablation study on
the window size can be found in App. Sec. D.
Text augmentation. During training, we augment the text
query inputs randomly to reduce overfitting. For 50% of the
samples, we shuffle the word order and add or delete up to
two words.
Hyper-parameters. We set thresholds τ to 0.5, τdtw to 0.4.
Further details are provided in App. Sec. B.

4.2. Data and evaluation metrics
Statistics on the number of videos, hours, subtitles and

vocabulary of each of our training and evaluation datasets
are provided in Tab. 1. We briefly describe each dataset and
provide further details in App. Sec. A.
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Figure 3: Sgt vs. Saudio: We plot the distribution of tempo-
ral shifts between ground-truth (Sgt) and audio-aligned (Saudio)
subtitles on the training split of the BSL-1Kaligned dataset by
showing the differences in subtitle (a) start times and (b) duration.
We observe the difficulty of the subtitle alignment task: (i) there
is no fixed shift between ground-truth and audio-aligned subtitle
timings, and (ii) the subtitle duration varies between spoken and
signed languages.

#vids. #hours #subs #inst. Vocab. OOV

BSL-1Kaligned Train 20 14.4 13.8K 128.1K 8.6K \
Test 4 3.3 2.0K 18.6K 2.8K 0.7K

BSL Corpus Train 191 22.9 33.7K 261.5K 7.5K \
Val 15 1.5 2.6K 18.1K 1.8K 0.2K
Test 21 2.6 3.8K 27.3K 2.4K 0.4K

BOBSL Test 36 30.1 28.5K 248.9K 14.3K 8.9K

Table 1: Datasets: number of videos, hours, subtitles, word in-
stances, vocabulary size and number of out-of-vocabulary (OOV)
words.

BSL-1Kaligned is a subset of BSL-1K [3], covering 24
different television programmes (food, nature, travel and
lifestyle documentaries). The subtitles were originally
aligned to the audio, but we have manually aligned them to
the signing. The unaligned subtitles (i.e. those that are syn-
chronised with the audio track, rather than the signing) dif-
fer from the signing-aligned subtitles in both start time and
duration. In particular, Fig. 3, shows that there is no fixed
shift or temporal scaling that can be consistently applied
to transform audio-synchronised subtitles to their signing-
aligned counterparts. We note that the differences exhibit
an approximately Gaussian distribution, with the exception
of an accentuated peak at 0 in Fig. 3b; we attribute this to
the fact that if the duration of the subtitle is approximately
correct, annotators tend to not further refine the boundaries.
BSL Corpus [47, 48] is a public dataset of videos of deaf
signers gathered from several regions across the UK and
accompanied by a variety of linguistic annotations. Unlike
BSL-1K, the subtitles in this dataset are aligned to signing,
and the translation direction is from sign language to En-
glish. We therefore simulate unaligned data by perturbing
the subtitle locations in our experiments.
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BOBSL is a dataset similar to BSL-1Kaligned in style and
content. For a subset of the test set of BOBSL, we manu-
ally align the original audio-aligned subtitles to the signing.
We release these annotations for research purposes. More
details are provided in App. Sec. A.
Evaluation metrics. We consider two main evaluation
metrics: (i) frame-level accuracy, and (ii) F1-score. For
the F1-score, hits and misses of subtitle alignment to sign
language video are counted under three temporal over-
lap thresholds (IoU ∈ {0.1, 0.25, 0.50}) between pre-
dicted Spred and manually aligned Sgt subtitles, denoted as
F1@.10, F1@.25, F1@.50, respectively.

4.3. Comparison to baselines

Simple temporal shift baseline (S+
audio). As a first baseline

we use the shifted audio-aligned subtitles S+
audio. Only a

third of the shifted-audio subtitles S+
audio have more than

50% overlap (IoU) with the ground truth aligned subtitles.
Prosodic cues baseline (Bull et al. [9]). We compare to
the state of the art on subtitle-unit segmentation, which is
a model based on 2D body keypoints. In contrast to our
framework, this method only uses visual prosodic cues and
does not use semantic information from the query subtitle.
It has been trained on a large-scale sign language corpus
with aligned subtitles, and the pretrained model is public.
The model consists of ST-GCN [57] and BiLSTM layers
and segments sign language video into subtitle units. How-
ever, this is a different task than alignment, i.e. segments
have no correspondence to subtitles. To obtain an associa-
tion from each predicted segment to a subtitle, we align the
shifted subtitles S+

audio to a subtitle-unit segmentation of [9]
using DTW, where the cost of alignment is the temporal dis-
tance.
Heuristic baseline based on sparse sign spottings. In-
spired by previous works that approached the alignment
task through sparse correspondences [23], we implement a
heuristic approach to align the subtitles using a combina-
tion of sign spotting and active signer detection. Sign spot-
ting, performed by [3, 39], searches in the temporal vicinity
of each audio-synchronised subtitle (the search window is
constructed by padding the original subtitle by four seconds
at each end) for individual sign instances corresponding to
words that appear in the subtitle. From these sparse sign
localisations, we perform subtitle alignment in four stages.
First, we segment the episode into sequences that contain
active signing, following [2]. Second, for any subtitle con-
taining words that were spotted in the signing (assigned a
posterior probability of 0.8 or greater by the model of [39]),
we shift the subtitle such that its centre falls on the mean
position of the spotted signs. Third, we transform all sub-
titles without spottings by affine transformations such that
they fall within the “gaps” between those subtitles that con-
tained spotted signs, while preserving ordering (we use one
such transformation per gap). Finally, we expand the dura-

Method frame-acc F1@.10 F1@.25 F1@.50

Saudio 44.67 45.82 30.51 12.57
S+
audio 60.76 71.69 60.74 36.10

Sign-spotting heuristics 61.71 69.23 59.60 36.04
Bull et al. [9] 62.14 73.93 64.25 38.16

SAT (random subtitle) 65.52 70.30 60.36 40.04
SAT w/out DTW 65.81 74.32 64.69 41.27
SAT 68.72 77.80 69.29 48.15

Table 2: Comparison to baselines: We show significant improve-
ments by training a Subtitle Aligner Transformer (SAT) over sev-
eral baselines. Moreover, providing a random subtitle as the text
input results in poor performance, demonstrating that our model
does indeed rely on token embeddings, and does not simply learn
prosodic cues to align the subtitles. We obtain a further boost by
correcting the overlaps of our predicted subtitles using DTW.

tion of subtitles locally (applying a single scaling factor to
each subtitle) in left to right ordering, such that they maxi-
mally fill the active signing segments predicted by the first
stage. We note that only 15% of the subtitles in our test set
can be confidently associated to a sign spotting, therefore
relying only on sign localisation is expected to be insuffi-
cient for subtitle alignment.

A comparison of our model to the above baselines is
given in Tab. 2. The simple temporal shift baseline and the
heuristic baseline based on sparse sign spottings perform
similarly, but are a significant improvement over the non-
shifted subtitles Saudio. Using prosodic cues through the
model of [9] results in a slight improvement over these two
baselines. Our model significantly outperforms all baselines
by exploiting the subtitle text to find the associated video
segment. Indeed, when providing random subtitle text dur-
ing training, our model is forced to rely on prosodic cues
and fails to outperform the baseline F1 scores. Using DTW
to resolve overlaps in predicted subtitles boosts our model
performance.

4.4. Ablation study

We ablate the effects of inputting the prior estimate
Sprior = S+

audio to the model, modifying the text input
to the encoder, pretraining on sign localisation, and alter-
native model formulations. Some additional ablations are
presented in App. Sec. D.
Knowledge of Sprior. We experiment with several versions
of inputs as additional information to the alignment task.
Tab. 3 summarises the results. We first observe a significant
drop in performance when Sprior is not provided (48.15 vs
30.66 F1@.50), suggesting that the position and duration of
the corresponding audio content allows an approximate lo-
calisation cue, enabling the model to refine this via a series
of attention layers. Inputting the 3.2 seconds shifted subti-
tle timings (Sprior = S+

audio) performs better than inputting
the audio-aligned subtitle timings (Sprior = Saudio). Nev-
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Additional input frame-acc F1@.10 F1@.25 F1@.50

w/out Saudio 61.37 59.03 49.35 30.66
w/ Saudio 67.81 74.69 66.53 45.10
w/ S+

audio 3.2-sec shift 68.72 77.80 69.29 48.15

w/ Saudio centre position 61.40 58.07 51.13 35.01
w/ S+

audio rand. duration 68.61 75.10 66.84 46.72

Table 3: Inputting Sprior variants: Without information on the
approximate position and duration of the subtitle, our model fails
to improve upon our baseline methods. In particular, when setting
the input Sprior to be systematically in the centre of the search
window and with the duration of Saudio, model performance is
poor. When using S+

audio in its correct location in the search win-
dow, but varying the duration randomly of up to 2s, performance
is relatively high. This suggests that position is a stronger cue than
duration.

Method frame-acc F1@.10 F1@.25 F1@.50

w/o augmentations 67.35 75.72 66.85 45.31
w/ augmentations 68.72 77.80 69.29 48.15
w/ aug. + positional enc. 68.21 74.89 67.14 46.36
w/ aug. sentence emb. 66.18 72.99 63.71 41.71

Table 4: Text ablations: Our best model uses word embeddings
without positional encodings as well as text augmentations dur-
ing training (shuffling words in 50% of the subtitles, adding and
deleting up to 2 words).

ertheless, our model still performs well when the average
subtitle lag is unknown and the audio-aligned subtitle tim-
ings are used. Moreover, we carry out two additional ex-
periments to investigate whether this cue is more important
for providing a position prior or a duration prior. First, we
always input the subtitle timing centred with respect to the
search window. The poor performance of this model sug-
gests the importance of the position. Second, we preserve
the shifted location, but randomly change the input subtitle
duration at training time by up to 2s. This slightly reduces
the performance, therefore we infer that duration cues are
less essential for the model than location cues.
Effect of text input to the encoder. We perform a se-
ries of ablations regarding the text encoding, including: no
text augmentations, adding extra positional encodings to the
BERT text features (as described in App. Sec. B.), and using
the sentence embedding only (the output embedding corre-
sponding to the BERT “CLS” token) instead of the sequence
of individual token embeddings. Tab. 4 presents the results
on BSL-1Kaligned with these text ablations. Augmenting
the subtitle text improves performance, while adding extra
positional encodings or using the sentence embedding de-
grades performance.
Effect of sign localisation pretraining. As explained in
Sec. 3.2, we initially pretrain our model for temporal lo-
calisation of individual signs on a large set of word-video
training pairs. In Tab. 5, we measure the effect of this pre-
training and conclude that it provides a good initialisation

Pretraining frame-acc F1@.10 F1@.25 F1@.50

w/o word pretraining 67.26 76.18 66.19 42.47
w/ word pretraining 68.72 77.80 69.29 48.15

Table 5: Pretraining for sign localisation: By pretraining our
model to locate individual words within a given temporal window,
we boost performance of subtitle alignment.

Prior input Loss frame-acc F1@.10 F1@.25 F1@.50

shift/scale shift/scale regress. 59.23 70.55 59.00 33.71
start/end start/end regress. 60.04 72.20 60.41 34.33
start/end binary classif. 60.48 74.05 62.75 35.07
binary binary classif. (SAT) 68.72 77.80 69.29 48.15

Table 6: Model formulation: We present an ablation where we
experiment with a DETR-style Transformer model [13]. Video
features are inputs to the Transformer encoder, and the subtitle
query is fed to the Transformer decoder. Moreover, on the decoder
side, we input either the start and end times or the shift and scale
of the shifted subtitles S+

audio relative to the temporal window, and
use a regression model to predict the true values. This model fails
to produce satisfactory results. Changing the regression model to
a classification one by instead predicting a binary vector of length
T (as in the SAT model) results in a small improvement; however
SAT outperforms all the alternative models with a large margin.

for finetuning on long subtitles.
Model formulation. We consider an alternative version of
the Transformer model, inspired by the DETR model in [13]
for object detection in images. This model inputs image
features into the Transformer encoder and text query into
the Transformer decoder. Similarly, we input the sign lan-
guage video features into the Transformer encoder. On the
decoder side, we input the subtitle text features as well as
either (i) the start and end times or (ii) the shift and scale of
the shifted subtitles S+

audio relative to the temporal window.
We then consider the problem of subtitle alignment as a re-
gression problem, and aim to predict (i) the start and end
times or (ii) the shift and scale of the subtitle relative to the
temporal window. As a further ablation, we also consider
the same model architecture (with subtitle features and the
start and end times as decoder input), but outputting a fixed
binary vector of length T , which we train with a binary clas-
sification objective (as in SAT).

The results in Tab. 6 suggest that our proposed approach
with video features as input to the Transformer decoder en-
ables significantly better learning, perhaps by providing a
one-to-one mapping between video inputs and the frame-
wise outputs. Another possible explanation for our pro-
posed model’s superiority is that it outputs alignment scores
between subtitles and individual frames which allows for
better conflict resolution strategies for overlapping subtitle
predictions.

4.5. Performance on different datasets
We demonstrate our model’s performance on two more

datasets: the BSL Corpus [47, 48] and BOBSL [1].
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“I’m going to cut half a lemon. I’ll need that later.”Subtitle text:

31:54 31:55 31:56 31:57 31:59 32:03

S+audio

SGT

SPred

Bull et al.
Heuristics

IoU: 0.91

31:58 32:00 32:01 32:02

“They use a lot of sesame seeds also. ”Subtitle text:

35:46 35:47 35:48 35:49 35:51 35:55

S+audio

SGT

SPred

Bull et al.
Heuristics

IoU: 0.00

35:50 35:52 35:53 35:54

Figure 4: Qualitative results: This figure shows short time windows of 9s with shifted audio-aligned subtitles (S+
audio), heuristic and Bull

et al. [9] baselines, ground truth signing-aligned subtitles (Sgt) and our predicted signing-aligned subtitles (Spred). Note that in practice,
we input 20 seconds of video during training and testing as our search window. We depict shorter, “zoomed in” 9 second windows here for
clearer visualisation. The right shows a failure case.

Rand. perturb.
(σpos, σdur) Method frame-acc F1@.10 F1@.25 F1@.50

(3.5s, 1.5s) Rand. shift & scale 63.24 37.13 26.54 12.47
SAT w/out pretrain. 73.73 51.51 43.33 27.98
SAT pretrain. 75.77 55.55 47.45 32.57
SAT w/ word pretrain. 76.29 57.65 50.35 34.54

(4.5s, 1.5s) Rand. shift & scale 60.18 29.52 20.61 10.00
SAT pretrain. 73.69 48.41 41.34 28.06
SAT w/ word pretrain. 74.29 51.33 44.37 30.13

(3.5s, 2s) Rand. shift & scale 62.62 37.47 26.82 11.87
SAT pretrain. 75.79 55.31 47.24 32.89
SAT w/ word pretrain. 76.00 57.86 50.43 33.79

Table 7: BSL Corpus: We randomly shift and scale the correctly
aligned subtitles in BSL Corpus to simulate unaligned data and
then use our SAT model to recover the original correct alignments.

BSL Corpus. The subtitles in this dataset are aligned to the
sign language, and so we randomly shift and scale the sub-
titles in order to create artificial training data. We then train
our SAT model to learn the correct alignment of subtitles to
video in the BSL Corpus. We train the model (i) without
any pretraining, (ii) with only word pretraining (on BSL-
1K) and (iii) with SAT pretraining on BSL-1Kaligned. We
report results in Tab. 7.

At each subtitle, we apply a random shift following a
normal distribution with standard deviation σpos and a ran-
dom change of duration of the subtitle also following a nor-
mal distribution with standard deviation σdur. Tab. 7 shows
that our model is able to partially recover the correct orig-
inal alignment. Larger shifts make it more difficult for our
model to recover the correct original alignment, but random
changes in subtitle duration seems to have less effect. This
is consistent with the results in Tab. 3, where changing the
duration of S+

audio does not greatly impact results. Word
pretraining on BSL-1K helps the model, but SAT pretrain-
ing on BSL-1Kaligned does not. Word pretraining may help
the SAT model recognise certain signs in BSL, but domain
difference between BSL Corpus and BSL-1Kaligned subti-
tles may explain why SAT pretraining on BSL-1Kaligned

does not lead to any significant gains on BSL Corpus.
BOBSL. The BOBSL test set allows us to evaluate our
model on a larger and more diverse set of videos than the
BSL-1Kaligned test set. We report results in Tab. 8 and show

Method frame-acc F1@.10 F1@.25 F1@.50

Saudio 23.93 32.94 20.23 7.39
S+
audio 50.05 65.48 54.80 33.71

SAT 55.62 70.95 61.55 41.46

Table 8: BOBSL dataset: We demonstrate strong performance of
the SAT model on this test set.

further qualitative analysis in App. Sec. C.

4.6. Qualitative analysis

Fig. 4 illustrates several test examples on BSL-
1Kaligned. The timeline shows the ground truth alignment
(Sgt), our prediction (Spred), as well as the S+

audio baseline,
alongside a sample of video frames and the query subtitle
text. While the shifted baseline S+

audio provides an approx-
imate position, it is largely unaligned. Our model effec-
tively learns to attend to both visual and textual cues. A
typical failure mode happens when the prior position en-
coding is significantly far from the ground truth (see Fig. 4
right). For additional qualitative examples on BSL Corpus
and BOBSL, we refer to App. Sec. C.

5. Conclusion
We presented a Transformer-based approach to syn-

chronise subtitles with sign language video content in
interpreted data. We showed that knowledge of subtitle
content is essential to effectively align subtitles to signing.
We hope that our work will be a stepping stone to obtain
video-subtitle pairs that allow training of unconstrained
machine translation systems for sign languages. Fur-
thermore, our approach is potentially applicable to other
domains, such as temporal grounding of sentences. We
refer to App. Sec. E for a discussion on the broader impact
on the community.
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