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Figure 1: Self-attention from a Vision Transformer with 8 × 8 patches trained with no supervision. We look at the self-attention of
the [CLS] token on the heads of the last layer. This token is not attached to any label nor supervision. These maps show that the model
automatically learns class-specific features leading to unsupervised object segmentations.

Abstract

In this paper, we question if self-supervised learning pro-
vides new properties to Vision Transformer (ViT) [16] that
stand out compared to convolutional networks (convnets).
Beyond the fact that adapting self-supervised methods to this
architecture works particularly well, we make the follow-
ing observations: first, self-supervised ViT features contain
explicit information about the semantic segmentation of an
image, which does not emerge as clearly with supervised
ViTs, nor with convnets. Second, these features are also ex-
cellent k-NN classifiers, reaching 78.3% top-1 on ImageNet
with a small ViT. Our study also underlines the importance
of momentum encoder [26], multi-crop training [9], and the
use of small patches with ViTs. We implement our findings
into a simple self-supervised method, called DINO, which
we interpret as a form of self-distillation with no labels.
We show the synergy between DINO and ViTs by achieving
80.1% top-1 on ImageNet in linear evaluation with ViT-Base.
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1. Introduction

Transformers [57] have recently emerged as an alternative
to convolutional neural networks (convnets) for visual recog-
nition [16, 56, 68]. Their adoption has been coupled with
a training strategy inspired by natural language processing
(NLP), that is, pretraining on large quantities of data and
finetuning on the target dataset [15, 45]. The resulting Vision
Transformers (ViT) [16] are competitive with convnets but,
they have not yet delivered clear benefits over them: they
are computationally more demanding, require more training
data, and their features do not exhibit unique properties.

In this paper, we question whether the muted success of
Transformers in vision can be explained by the use of super-
vision in their pretraining. Our motivation is that one of the
main ingredients for the success of Transformers in NLP was
the use of self-supervised pretraining, in the form of close
procedure in BERT [15] or language modeling in GPT [45].
These self-supervised pretraining objectives use the words
in a sentence to create pretext tasks that provide a richer
learning signal than the supervised objective of predicting
a single label per sentence. Similarly, in images, image-
level supervision often reduces the rich visual information
contained in an image to a single concept selected from a
predefined set of a few thousand categories of objects [49].

While the self-supervised pretext tasks used in NLP are
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text specific, many existing self-supervised methods have
shown their potential on images with convnets [9, 11, 23, 26].
They typically share a similar structure but with different
components designed to avoid trivial solutions (collapse) or
to improve performance [14]. In this work, inspired from
these methods, we study the impact of self-supervised pre-
training on ViT features. Of particular interest, we have
identified several interesting properties that do not emerge
with supervised ViTs, nor with convnets:

• Self-supervised ViT features explicitly contain the
scene layout and, in particular, object boundaries, as
shown in Figure 1. This information is directly accessi-
ble in the self-attention modules of the last block.

• Self-supervised ViT features perform particularly well
with a basic nearest neighbors classifier (k-NN) without
any finetuning, linear classifier nor data augmentation,
achieving 78.3% top-1 accuracy on ImageNet.

The emergence of segmentation masks seems to be a
property shared across self-supervised methods. However,
the good performance with k-NN only emerge when com-
bining certain components such as momentum encoder [26]
and multi-crop augmentation [9]. Another finding from our
study is the importance of using smaller patches with ViTs
to improve the quality of the resulting features.

Overall, our findings about the importance of these
components lead us to design a simple self-supervised ap-
proach that can be interpreted as a form of knowledge
distillation [28] with no labels. The resulting framework,
DINO, simplifies self-supervised training by directly pre-
dicting the output of a teacher network—built with a mo-
mentum encoder—by using a standard cross-entropy loss.
Interestingly, our method can work with only a centering
and sharpening of the teacher output to avoid collapse, while
other popular components such as predictor [23], advanced
normalization [9] or contrastive loss [26] add little benefits
in terms of stability or performance. Of particular impor-
tance, our framework is flexible and works on both convnets
and ViTs without the need to modify the architecture, nor
adapt internal normalizations [47].

We further validate the synergy between DINO and ViT
by outperforming previous self-supervised features on the
ImageNet linear classification benchmark with 80.1% top-1
accuracy with a ViT-Base with small patches. We also con-
firm that DINO works with convnets by matching the state
of the art with a ResNet-50 architecture. Finally, we discuss
different scenarios to use DINO with ViTs in case of limited
computation and memory capacity. In particular, training
DINO with ViT takes just two 8-GPU servers over 3 days
to achieve 76.1% on ImageNet linear benchmark, which
outperforms self-supervised systems based on convnets of
comparable sizes with significantly reduced compute require-
ments [9, 23].
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Figure 2: Self-distillation with no labels. We illustrate DINO in
the case of one single pair of views (x1, x2) for simplicity. The
model passes two different random transformations of an input
image to the student and teacher networks. Both networks have
the same architecture but different parameters. The output of the
teacher network is centered with a mean computed over the batch.
Each networks outputs a K dimensional feature that is normalized
with a temperature softmax over the feature dimension. Their
similarity is then measured with a cross-entropy loss. We apply a
stop-gradient (sg) operator on the teacher to propagate gradients
only through the student. The teacher parameters are updated with
an exponential moving average (ema) of the student parameters.

2. Related work

Self-supervised learning. A large body of work on self-
supervised learning focuses on discriminative approaches
coined instance classification [11, 17, 26, 60], which con-
siders each image a different class and trains the model
by discriminating them up to data augmentations. How-
ever, explicitly learning a classifier to discriminate be-
tween all images [17] does not scale well with the num-
ber of images. Wu et al. [60] propose to use a noise
contrastive estimator (NCE) [25] to compare instances in-
stead of classifying them. A caveat of this approach is
that it requires comparing features from a large number
of images simultaneously. In practice, this requires large
batches [11] or memory banks [26, 60]. Several variants
allow automatic grouping of instances in the form of cluster-
ing [2, 7, 8, 21, 29, 35, 61, 65, 69].

Recent works have shown that we can learn unsupervised
features without discriminating between images. Of par-
ticular interest, Grill et al. [23] propose a metric-learning
formulation called BYOL, where features are trained by
matching them to representations obtained with a momen-
tum encoder. It has been shown that methods like BYOL
work even without a momentum encoder, at the cost of a
drop of performance [14, 23]. Several other works echo this
direction, showing that one can train features matching them
to a uniform distribution on the `2 hypersphere [5] or by
using whitening [19, 66]. Our approach takes its inspiration
from BYOL but operates with a different similarity matching
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loss and uses the exact same architecture for the student and
the teacher. That way, our work completes the interpretation
initiated in BYOL of self-supervised learning as a form of
Mean Teacher self-distillation [52] with no labels.

Self-training and knowledge distillation. Self-training
aims at improving the quality of features by propagating
a small initial set of annotations to a large set of unlabeled
instances. This propagation can either be done with hard
assignments of labels [34, 63, 64] or with a soft assign-
ment [62]. When using soft labels, the approach is often
referred to as knowledge distillation [6, 28] and has been
primarily designed to train a small network to mimic the
output of a larger network to compress models. Xie et
al. [62] have recently shown that distillation could be used
to propagate soft pseudo-labels to unlabelled data in a self-
training pipeline, drawing an essential connection between
self-training and knowledge distillation. Our work builds on
this relation and extends knowledge distillation to the case
where no labels are available. Previous works have also com-
bined self-supervised learning and knowledge distillation,
enabling self-supervised model compression [20] and perfor-
mance gains [12, 38]. However, these works rely on a pre-
trained fixed teacher while our teacher is dynamically built
during training. This way, knowledge distillation, instead
of being used as a post-processing step to self-supervised
pre-training, is directly cast as a self-supervised objective.
Finally, our work is also related to codistillation [1] where
student and teacher have the same architecture and use distil-
lation during training. However, the teacher in codistillation
is also distilling from the student, while it is updated with a
momentum average of the student in our work.

3. Approach
3.1. SSL with Knowledge Distillation

The framework used for this work, DINO, shares the same
overall structure as recent self-supervised approaches [9, 14,
11, 23, 26]. However, our method shares also similarities
with knowledge distillation [28] and we present it under
this angle. We illustrate DINO in Figure 2 and propose a
pseudo-code implementation in Algorithm 1.

Knowledge distillation is a learning paradigm where we
train a student network gθs to match the output of a given
teacher network gθt , parameterized by θs and θt respectively.
Given an input image x, both networks output probability
distributions over K dimensions denoted by Ps and Pt. The
probability P is obtained by normalizing the output of the
network g with a softmax function. More precisely,

Ps(x)
(i) =

exp(gθs(x)
(i)/τs)∑K

k=1 exp(gθs(x)
(k)/τs)

, (1)

with τs > 0 a temperature parameter that controls the

Algorithm 1 DINO PyTorch pseudocode w/o multi-crop.

# gs, gt: student and teacher networks
# C: center (K)
# tps, tpt: student and teacher temperatures
# l, m: network and center momentum rates
gt.params = gs.params
for x in loader: # load a minibatch x with n samples

x1, x2 = augment(x), augment(x) # random views

s1, s2 = gs(x1), gs(x2) # student output n-by-K
t1, t2 = gt(x1), gt(x2) # teacher output n-by-K

loss = H(t1, s2)/2 + H(t2, s1)/2
loss.backward() # back-propagate

# student, teacher and center updates
update(gs) # SGD
gt.params = l*gt.params + (1-l)*gs.params
C = m*C + (1-m)*cat([t1, t2]).mean(dim=0)

def H(t, s):
t = t.detach() # stop gradient
s = softmax(s / tps, dim=1)
t = softmax((t - C) / tpt, dim=1) # center + sharpen
return - (t * log(s)).sum(dim=1).mean()

sharpness of the output distribution, and a similar formula
holds for Pt with temperature τt. Given a fixed teacher
network gθt , we learn to match these distributions by min-
imizing the cross-entropy loss w.r.t. the parameters of the
student network θs:

min
θs

H(Pt(x), Ps(x)), (2)

where H(a, b) = −a log b.
In the following, we detail how we adapt the problem

in Eq. (2) to self-supervised learning. First, we construct
different distorted views, or crops, of an image with multi-
crop strategy [9]. More precisely, from a given image, we
generate a set V of different views. This set contains two
global views, xg1 and xg2 and several local views of smaller
resolution. All crops are passed through the student while
only the global views are passed through the teacher, there-
fore encouraging “local-to-global” correspondences. We
minimize the loss:

min
θs

∑
x∈{xg

1 ,x
g
2}

∑
x′∈V
x′ 6= x

H(Pt(x), Ps(x
′)). (3)

This loss is general and can be used on any number of
views, even only 2. However, we follow the standard setting
for multi-crop by using 2 global views at resolution 2242

covering a large (for example greater than 50%) area of the
original image, and several local views of resolution 962

covering only small areas (for example less than 50%) of
the original image. We refer to this setting as the basic
parametrization of DINO, unless mentioned otherwise.

Both networks share the same architecture g with differ-
ent sets of parameters θs and θt. We learn the parameters θs
by minimizing Eq. (3) with stochastic gradient descent.
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Table 1: Networks configuration. “Blocks” is the number of
Transformer blocks, “dim” is channel dimension and “heads” is the
number of heads in multi-head attention. “# tokens” is the length
of the token sequence when considering 2242 resolution inputs, “#
params” is the total number of parameters (without counting the
projection head) and “im/s” is the inference time on a NVIDIA
V100 GPU with 128 samples per forward.

model blocks dim heads #tokens #params im/s

ResNet-50 – 2048 – – 23M 1237
ViT-S/16 12 384 6 197 21M 1007
ViT-S/8 12 384 6 785 21M 180
ViT-B/16 12 768 12 197 85M 312
ViT-B/8 12 768 12 785 85M 63

Teacher network. Unlike knowledge distillation, we do
not have a teacher gθt given a priori and hence, we build it
from past iterations of the student network. We study dif-
ferent update rules for the teacher in Appendix and show
that freezing the teacher network over an epoch works sur-
prisingly well in our framework, while copying the student
weight for the teacher fails to converge. Of particular in-
terest, using an exponential moving average (EMA) on the
student weights, i.e., a momentum encoder [26], is partic-
ularly well suited for our framework. The update rule is
θt ← λθt + (1− λ)θs, with λ following a cosine schedule
from 0.996 to 1 during training [23]. Originally the momen-
tum encoder has been introduced as a substitute for a queue
in contrastive learning [26]. However, in our framework, its
role differs since we do not have a queue nor a contrastive
loss, and may be closer to the role of the mean teacher used
in self-training [52]. Indeed, we observe that this teacher per-
forms a form of model ensembling similar to Polyak-Ruppert
averaging with an exponential decay [41, 48]. Using Polyak-
Ruppert averaging for model ensembling is a standard prac-
tice to improve the performance of a model [31]. We observe
that this teacher has better performance than the student
throughout the training, and hence, guides the training of the
student by providing target features of higher quality. This
dynamic was not observed in previous works [23, 47].

Network architecture. The neural network g is composed
of a backbone f (ViT [16] or ResNet [27]), and of a projec-
tion head h: g = h ◦ f . The features used in downstream
tasks are the backbone f output. The projection head con-
sists of a 3-layer multi-layer perceptron (MLP) with hidden
dimension 2048 followed by `2 normalization and a weight
normalized fully connected layer [50] with K dimensions,
which is similar to the design from SwAV [9]. We have
tested other projection heads and this particular design ap-
pears to work best for DINO (see Appendix). We do not use
a predictor [23, 14], resulting in the exact same architecture

in both student and teacher networks. Of particular interest,
we note that unlike standard convnets, ViT architectures do
not use batch normalizations (BN) by default. Therefore,
when applying DINO to ViT we do not use any BN also in
the projection heads, making the system entirely BN-free.

Avoiding collapse. Several self-supervised methods differ
by the operation used to avoid collapse, either through con-
trastive loss [60], clustering constraints [7, 9], predictor [23]
or batch normalizations [23, 47]. While our framework can
be stabilized with multiple normalizations [9], it can also
work with only a centering and sharpening of the momentum
teacher outputs to avoid model collapse. As shown experi-
mentally in Appendix, centering prevents one dimension to
dominate but encourages collapse to the uniform distribution,
while the sharpening has the opposite effect. Applying both
operations balances their effects which is sufficient to avoid
collapse in presence of a momentum teacher. Choosing this
method to avoid collapse trades stability for less dependence
over the batch: the centering operation only depends on first-
order batch statistics and can be interpreted as adding a bias
term c to the teacher: gt(x) ← gt(x) + c. The center c is
updated with an exponential moving average, which allows
the approach to work well across different batch sizes as
shown in Appendix.

c← mc+ (1−m)
1

B

B∑
i=1

gθt(xi), (4)

where m > 0 is a rate parameter and B is the batch size.
Output sharpening is obtained by using a low value for the
temperature τt in the teacher softmax normalization.

3.2. Implementation and evaluation protocols

In this section, we provide the implementation details to
train with DINO and present the evaluation protocols used
in our experiments.

Vision Transformer. We briefly describe the mechanism
of the Vision Transformer (ViT) [16, 57] and refer to
Vaswani et al. [57] for details about Transformers and to
Dosovitskiy et al. [16] for its adaptation to images. We fol-
low the implementation used in DeiT [56]. We summarize
the configuration of the different networks used in this pa-
per in Table 1. The ViT architecture takes as input a grid
of non-overlapping contiguous image patches of resolution
N × N . In this paper we typically use N = 16 (“/16”)
or N = 8 (“/8”). The patches are then passed through a
linear layer to form a set of embeddings. We add an extra
learnable token to the sequence [15, 16]. The role of this
token is to aggregate information from the entire sequence
and we attach the projection head h at its output. We refer
to this token as the class token [CLS] for consistency with
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previous works[15, 16, 56], even though it is not attached
to any label nor supervision in our case. The set of patch
tokens and [CLS] token are fed to a standard Transformer
network with a “pre-norm” layer normalization [10, 32]. The
Transformer is a sequence of self-attention and feed-forward
layers, paralleled with skip connections. The self-attention
layers update the token representations by looking at the
other token representations with an attention mechanism [3].

Implementation details. We pretrain the models on the
ImageNet dataset [49] without labels. We train with the
adamw optimizer [37] and a batch size of 1024, distributed
over 16 GPUs when using ViT-S/16. The learning rate is
linearly ramped up during the first 10 epochs to its base
value determined with the following linear scaling rule [22]:
lr = 0.0005 ∗ batchsize/256. After this warmup, we decay
the learning rate with a cosine schedule [36]. The weight
decay also follows a cosine schedule from 0.04 to 0.4. The
temperature τs is set to 0.1 while we use a linear warm-up
for τt from 0.04 to 0.07 during the first 30 epochs. We
follow the data augmentations of BYOL [23] (color jittering,
Gaussian blur and solarization) and multi-crop [9] with a
bicubic interpolation to adapt the position embeddings to
the scales [16, 56]. The code and models to reproduce our
results is publicly available at https://github.com/
facebookresearch/dino.

Evaluation protocols. Standard protocols for self-
supervised learning are to either learn a linear classifier
on frozen features [67, 26] or to finetune the features
on downstream tasks. For linear evaluations, we apply
random resize crops and horizontal flips augmentation
during training, and report accuracy on a central crop.
For finetuning evaluations, we initialize networks with
the pretrained weights and adapt them during training.
However, both evaluations are sensitive to hyperparameters,
and we observe a large variance in accuracy between runs
when varying the learning rate for example. We thus also
evaluate the quality of features with a simple weighted
nearest neighbor classifier (k-NN) as in [60]. We freeze
the pretrain model to compute and store the features of the
training data of the downstream task. The nearest neighbor
classifier then matches the feature of an image to the k
nearest stored features that votes for the label. We sweep
over different number of nearest neighbors and find that
20 NN is consistently working the best for most of our
runs. This evaluation protocol does not require any other
hyperparameter tuning, nor data augmentation and can be
run with only one pass over the downstream dataset, greatly
simplifying the feature evaluation.

Table 2: Linear and k-NN classification on ImageNet. We report
top-1 accuracy for linear and k-NN evaluations on the validation
set of ImageNet for different self-supervised methods. We focus
on ResNet-50 and ViT-small architectures, but also report the best
results obtained across architectures. ∗ are run by us. We run the
k-NN evaluation for models with official released weights. The
throughput (im/s) is calculated on a NVIDIA V100 GPU with 128
samples per forward. Parameters (M) are of the feature extractor.

Method Arch. Param. im/s Linear k-NN

Supervised RN50 23 1237 79.3 79.3
SCLR [11] RN50 23 1237 69.1 60.7
MoCov2 [13] RN50 23 1237 71.1 61.9
InfoMin [54] RN50 23 1237 73.0 65.3
BarlowT [66] RN50 23 1237 73.2 66.0
OBoW [21] RN50 23 1237 73.8 61.9
BYOL [23] RN50 23 1237 74.4 64.8
DCv2 [9] RN50 23 1237 75.2 67.1
SwAV [9] RN50 23 1237 75.3 65.7
DINO RN50 23 1237 75.3 67.5

Supervised ViT-S 21 1007 79.8 79.8
BYOL∗ [23] ViT-S 21 1007 71.4 66.6
MoCov2∗ [13] ViT-S 21 1007 72.7 64.4
SwAV∗ [9] ViT-S 21 1007 73.5 66.3
DINO ViT-S 21 1007 77.0 74.5

Comparison across architectures
SCLR [11] RN50w4 375 117 76.8 69.3
SwAV [9] RN50w2 93 384 77.3 67.3
BYOL [23] RN50w2 93 384 77.4 –
DINO ViT-B/16 85 312 78.2 76.1
SwAV [9] RN50w5 586 76 78.5 67.1
BYOL [23] RN50w4 375 117 78.6 –
BYOL [23] RN200w2 250 123 79.6 73.9
DINO ViT-S/8 21 180 79.7 78.3
SCLRv2 [12] RN152w3+SK 794 46 79.8 73.1
DINO ViT-B/8 85 63 80.1 77.4

4. Main Results
We first validate the DINO framework used in this study

with the standard self-supervised benchmark on ImageNet.
We then study the properties of the resulting features for
retrieval, object discovery and transfer-learning.

4.1. Comparing with SSL frameworks on ImageNet

We consider two different settings: comparison with the
same architecture and across architectures.

Comparing with the same architecture. In top panel of
Table 2, we compare DINO with other self-supervised meth-
ods with the same architecture, either a ResNet-50 [27] or
a ViT-small (ViT-S) [56]. The choice of ViT-S is motivated
by its similarity with ResNet-50 along several axes: num-
ber of parameters (21M vs 23M), throughput (1237/sec VS
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Table 3: Image retrieval. We compare the performance in retrieval
of off-the-shelf features pretrained with supervision or with DINO
on ImageNet and Google Landmarks v2 (GLDv2) dataset. We
report mAP on revisited Oxford and Paris. Pretraining with DINO
on a landmark dataset performs particularly well. For reference, we
also report the best retrieval method with off-the-shelf features [46].

ROx RPar

Pretrain Arch. Pretrain M H M H

Sup. [46] RN101+R-MAC ImNet 49.8 18.5 74.0 52.1

Sup. ViT-S/16 ImNet 33.5 8.9 63.0 37.2
DINO ResNet-50 ImNet 35.4 11.1 55.9 27.5
DINO ViT-S/16 ImNet 41.8 13.7 63.1 34.4
DINO ViT-S/16 GLDv2 51.5 24.3 75.3 51.6

1007 im/sec) and supervised performance on ImageNet with
the training procedure of [56] (79.3% VS 79.8%). We ex-
plore variants of ViT-S in Appendix. First, we observe that
DINO performs on par with the state of the art on ResNet-50,
validating that DINO works in the standard setting. When
we switch to a ViT architecture, DINO outperforms BYOL,
MoCov2 and SwAV by +3.5% with linear classification and
by +7.9% with k-NN evaluation. More surprisingly, the
performance with a simple k-NN classifier is almost on par
with a linear classifier (74.5% versus 77.0%). This property
emerges only when using DINO with ViT architectures, and
does not appear with other existing self-supervised methods
nor with a ResNet-50.

Comparing across architectures. On the bottom panel of
Table 2, we compare the best performance obtained across
architectures. The interest of this setting is not to compare
methods directly, but to evaluate the limits of a ViT trained
with DINO when moving to larger architectures. While
training a larger ViT with DINO improves the performance,
reducing the size of the patches (“/8” variants) has a bigger
impact on the performance. While reducing the patch size
do not add parameters, it still leads to a significant reduction
of running time, and larger memory usage. Nonetheless, a
base ViT with 8 × 8 patches trained with DINO achieves
80.1% top-1 in linear classification and 77.4% with a k-NN
classifier with 10× less parameters and 1.4× faster run time
than previous state of the art [12].

4.2. Properties of ViT trained with SSL

We evaluate properties of the DINO features in terms of
nearest neighbor search, retaining information about object
location and transferability to downstream tasks.

Table 4: Copy detection. We report the mAP performance in copy
detection on Copydays “strong” subset [18]. For reference, we
also report the performance of the multigrain model [4], trained
specifically for particular object retrieval.

Method Arch. Dim. Resolution mAP

Multigrain [4] ResNet-50 2048 2242 75.1
Multigrain [4] ResNet-50 2048 largest side 800 82.5

Supervised [56] ViT-B/16 1536 2242 76.4
DINO ViT-B/16 1536 2242 81.7
DINO ViT-B/8 1536 3202 85.5

4.2.1 Nearest neighbor retrieval with DINO ViT

The results on ImageNet classification have exposed the
potential of our features for tasks relying on nearest neighbor
retrieval. In this set of experiments, we further consolidate
this finding on landmark retrieval and copy detection tasks.

Image Retrieval. We consider the revisited [43] Oxford
and Paris image retrieval datasets [40]. They contain 3 differ-
ent splits of gradual difficulty with query/database pairs. We
report the Mean Average Precision (mAP) for the Medium
(M) and Hard (H) splits. In Table 3, we compare the perfor-
mance of different off-the-shelf features obtained with either
supervised or DINO training. We freeze the features and
directly apply k-NN for retrieval. We observe that DINO
features outperform those trained on ImageNet with labels.

An advantage of SSL approaches is that they can be
trained on any dataset, without requiring any form of anno-
tations. We train DINO on the 1.2M clean set from Google
Landmarks v2 (GLDv2) [59], a dataset of landmarks de-
signed for retrieval purposes. DINO ViT features trained on
GLDv2 are remarkably good, outperforming previously pub-
lished methods based on off-the-shelf descriptors [55, 46].

Copy detection. We also evaluate the performance of ViTs
trained with DINO on a copy detection task. We report the
mean average precision on the “strong” subset of the INRIA
Copydays dataset [18]. The task is to recognize images
that have been distorted by blur, insertions, print and scan,
etc. Following prior work [4], we add 10k distractor images
randomly sampled from the YFCC100M dataset [53]. We
perform copy detection directly with cosine similarity on the
features obtained from our pretrained network. The features
are obtained as the concatenation of the output [CLS] token
and of the GeM pooled [44] output patch tokens. This results
in a 1536d descriptor for ViT-B. Following [4], we apply
whitening on the features. We learn this transformation on
an extra 20K random images from YFCC100M, distincts
from the distractors. Table 4 shows that ViT trained with
DINO is very competitive on copy detection.
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Table 5: DAVIS 2017 Video object segmentation. We evaluate
the quality of frozen features on video instance tracking. We report
mean region similarity Jm and mean contour-based accuracy Fm.
We compare with existing self-supervised methods and a supervised
ViT-S/8 trained on ImageNet. Image resolution is 480p.

Method Data Arch. (J&F)m Jm Fm

Supervised
ImageNet INet ViT-S/8 66.0 63.9 68.1
STM [39] I/D/Y RN50 81.8 79.2 84.3

Self-supervised
CT [58] VLOG RN50 48.7 46.4 50.0
MAST [33] YT-VOS RN18 65.5 63.3 67.6
STC [30] Kinetics RN18 67.6 64.8 70.2
DINO INet ViT-S/16 61.8 60.2 63.4
DINO INet ViT-B/16 62.3 60.7 63.9
DINO INet ViT-S/8 69.9 66.6 73.1
DINO INet ViT-B/8 71.4 67.9 74.9

Figure 3: Attention maps from multiple heads. We consider
the heads from the last layer of a ViT-S/8 trained with DINO and
display the self-attention for [CLS] token query. Different heads,
materialized by different colors, focus on different locations that
represents different objects or parts (more examples in Appendix).

4.2.2 Discovering the semantic layout of scenes

As shown qualitatively in Figure 1, our self-attention maps
contain information about the segmentation of an image. In
this study, we measure this property on a standard benchmark
as well as by directly probing the quality of masks generated
from these attention maps.

Video instance segmentation. In Tab. 5, we evaluate the
output patch tokens on the DAVIS-2017 video instance seg-
mentation benchmark [42]. We follow the experimental pro-
tocol in Jabri et al. [30] and segment scenes with a nearest-

Supervised

DINO

Random Supervised DINO

ViT-S/16 22.0 27.3 45.9
ViT-S/8 21.8 23.7 44.7

Figure 4: Segmentations from supervised versus DINO. We vi-
sualize masks obtained by thresholding the self-attention maps to
keep 60% of the mass. On top, we show the resulting masks for
a ViT-S/8 trained with supervision and DINO. We show the best
head for both models. The table at the bottom compares the Jac-
card similarity between the ground truth and these masks on the
validation images of PASCAL VOC12 dataset.

neighbor between consecutive frames; we thus do not train
any model on top of the features, nor finetune any weights
for the task. We observe in Tab. 5 that even though our
training objective nor our architecture are designed for dense
tasks, the performance is competitive on this benchmark.
Since the network is not finetuned, the output of the model
must have retained some spatial information. Finally, for
this dense recognition task, the variants with small patches
(“/8”) perform much better (+9.1% (J&F)m for ViT-B).

Probing the self-attention map. In Fig. 3, we show that
different heads can attend to different semantic regions of an
image, even when they are occluded (the bushes on the third
row) or small (the flag on the second row). Visualizations are
obtained with 480p images, resulting in sequences of 3601
tokens for ViT-S/8. In Fig. 4, we show that a supervised
ViT does not attend well to objects in presence of clutter
both qualitatively and quantitatively. We report the Jaccard
similarity between the ground truth and segmentation masks
obtained by thresholding the self-attention map to keep 60%
of the mass. Note that the self-attention maps are smooth
and not optimized to produce a mask. Nonetheless, we see
a clear difference between the supervised or DINO models
with a significant gap in terms of Jaccard similarities. Note
that self-supervised convnets also contain information about
segmentations but it requires dedicated methods to extract it
from their weights [24].
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Table 6: Transfer learning by finetuning pretrained models on
different datasets. We report top-1 accuracy. Self-supervised
pretraining with DINO transfers better than supervised pretraining.

Cifar10 Cifar100 INat18 INat19 Flwrs Cars INet

ViT-S/16
Sup. [56] 99.0 89.5 70.7 76.6 98.2 92.1 79.9
DINO 99.0 90.5 72.0 78.2 98.5 93.0 81.5

ViT-B/16
Sup. [56] 99.0 90.8 73.2 77.7 98.4 92.1 81.8
DINO 99.1 91.7 72.6 78.6 98.8 93.0 82.8

4.2.3 Transfer learning on downstream tasks

In Tab. 6, we evaluate the quality of the features pretrained
with DINO on different downstream tasks. We compare
with features from the same architectures trained with super-
vision on ImageNet. We follow the protocol used in Tou-
vron et al. [56] and finetune the features on each downstream
task. We observe that for ViT architectures, self-supervised
pretraining transfers better than features trained with su-
pervision, which is consistent with observations made on
convolutional networks [9, 26, 51]. Finally, self-supervised
pretraining greatly improves results on ImageNet (+1-2%).

5. Ablation Study of DINO
In this section, we empirically study DINO applied to

ViT. The model considered for this entire study is ViT-S. We
also refer the reader to Appendix for additional studies.

Importance of the Different Components We show the
impact of adding different components from self-supervised
learning on ViT trained with our framework.

In Table 7, we report different model variants as we add
or remove components. First, we observe that in the absence
of momentum, our framework does not work (row 2) and
more advanced operations, SK for example, are required to
avoid collapse (row 9). However, with momentum, using
SK has little impact (row 3). In addtition, comparing rows 3
and 9 highlights the importance of the momentum encoder
for performance. Second, in rows 4 and 5, we observe that
multi-crop training and the cross-entropy loss in DINO are
important components to obtain good features. We also
observe that adding a predictor to the student network has
little impact (row 6) while it is critical in BYOL to prevent
collapse [14, 23]. For completeness, we propose in Appendix
an extended version of this ablation study.

Importance of the patch size. In Fig. 5, we compare the
k-NN classification performance of ViT-S models trained
with different patch sizes, 16 × 16, 8 × 8 and 5 × 5. We
also compare to ViT-B with 16× 16 and 8× 8 patches. All

Table 7: Important component for self-supervised ViT pre-
training. Models are trained for 300 epochs with ViT-S/16. We
study the different components that matter for the k-NN and linear
(“Lin.”) evaluations. For the different variants, we highlight the
differences from the default DINO setting. The best combination
is the momentum encoder with the multicrop augmentation and
the cross-entropy loss. We also report results with BYOL [23],
MoCo-v2 [13] and SwAV [9].

Method Mom. SK MC Loss Pred. k-NN Lin.

1 DINO X 7 X CE 7 72.8 76.1
2 7 7 X CE 7 0.1 0.1
3 X X X CE 7 72.2 76.0
4 X 7 7 CE 7 67.9 72.5
5 X 7 X MSE 7 52.6 62.4
6 X 7 X CE X 71.8 75.6

7 BYOL X 7 7 MSE X 66.6 71.4
8 MoCov2 X 7 7 INCE 7 62.0 71.6
9 SwAV 7 X X CE 7 64.7 71.8

SK: Sinkhorn-Knopp, MC: Multi-Crop, Pred.: Predictor
CE: Cross-Entropy, MSE: Mean Square Error, INCE: InfoNCE
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ViT-B DeiT-S Figure 5: Effect of
Patch Size. k-NN eval-
uation as a function of
the throughputs for dif-
ferent input patch sizes
with ViT-B and ViT-S.
Models are trained for
300 epochs.

the models are trained for 300 epochs. We observe that the
performance greatly improves as we decrease the size of the
patch. It is interesting to see that performance can be greatly
improved without adding additional parameters. However,
the performance gain from using smaller patches comes at
the expense of throughput: when using 5×5 patches, the
throughput falls to 44 im/s, vs 180 im/s for 8×8 patches.

6. Conclusion

We have shown the potential of self-supervised pretrain-
ing a standard ViT model, achieving performance that are
comparable with the best convnets specifically designed for
this setting. We have also seen emerged two properties that
can be leveraged in future applications: the quality of the
features in k-NN classification has a potential for image re-
trieval. The presence of information about the scene layout
in the features can also benefit weakly supervised image
segmentation.
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[4] Maxim Berman, Hervé Jégou, Vedaldi Andrea, Iasonas
Kokkinos, and Matthijs Douze. MultiGrain: a unified im-
age embedding for classes and instances. arXiv preprint
arXiv:1902.05509, 2019. 6

[5] Piotr Bojanowski and Armand Joulin. Unsupervised learning
by predicting noise. In ICML, 2017. 2
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