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Abstract

Recently, the generalization behavior of Convolutional
Neural Networks (CNN) is gradually transparent through
explanation techniques with the frequency components de-
composition. However, the importance of the phase spec-
trum of the image for a robust vision system is still ig-
nored. In this paper, we notice that the CNN tends to con-
verge at the local optimum which is closely related to the
high-frequency components of the training images, while
the amplitude spectrum is easily disturbed such as noises
or common corruptions. In contrast, more empirical stud-
ies found that humans rely on more phase components to
achieve robust recognition. This observation leads to more
explanations of the CNN’s generalization behaviors in both
robustness to common perturbations and out-of-distribution
detection, and motivates a new perspective on data aug-
mentation designed by re-combing the phase spectrum of
the current image and the amplitude spectrum of the dis-
tracter image. That is, the generated samples force the
CNN to pay more attention to the structured information
from phase components and keep robust to the variation of
the amplitude. Experiments on several image datasets in-
dicate that the proposed method achieves state-of-the-art
performances on multiple generalizations and calibration
tasks, including adaptability for common corruptions and
surface variations, out-of-distribution detection, and adver-
sarial attack. The code is released on github/iCGY96/APR.

1. Introduction
In the past few years, deep learning has achieved even

surpassed human-level performances in many image recog-
nition/classification tasks [15]. However, the unintuitive
generalization behaviors of neural networks, such as the
vulnerability towards adversarial examples [11], common
corruptions [20], the overconfidence for out-of-distribution

*Corresponding author

Figure 1. More empirical studies found that humans rely on more
phase components to achieve robust recognition However, CNN
without effective training restrictions tends to converge at the local
optimum related to the amplitude spectrum of the image, leading
to generalization behaviors counter-intuitive to humans.

(OOD) [19, 22, 38, 3, 2], are still confused in the commu-
nity. It also leads that current deep learning models depend
on the ability of training data to faithfully represent the data
encountered during deployment.

To explain the generalization behaviors of neural net-
works, many theoretical breakthroughs have been made
progressively by different model or algorithm perspectives
[49, 39, 41]. Several works [46, 24] investigate the general-
ization behaviors of Convolutional Neural Network (CNN)
from a data perspective in the frequency domain, and
demonstrate that CNN benefits from the high-frequency im-
age components which are not perceivable to humans. Fur-
thermore, a quantitative study is provided in Figure 4 to in-
dicate that the predictions of CNN are more sensitive to the
variation of the amplitude spectrum. The above phenomena
indicate that CNN tends to converge at the local optimum
which is closely related to the high-frequency components
of the training images. Although it is helpful when the test
and training samples come from the identical distribution,
yet the robustness of the CNN will be affected due of the
amplitude spectrum is easily disturbed such as noises or
common corruptions. On the other hand, earlier empirical
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studies [32, 10, 13, 28] indicate that humans rely on more
the components related to the phase to recognize an object.
As is known, the human eye is much more robust than CNN,
and this fact encourages us to rethink the influence of am-
plitude and phase on CNN’s generalizability. A visualized
example is shown in Figure 2 to validate the importance of
phase spectrum in [32] to explain one counter-intuitive be-
havior of CNN. By replacing the amplitude spectrum of one
Revolver with the amplitude spectrum of one Jigsaw Puz-
zle, the CNN classifies the fused image as Jigsaw Puzzle
while humans could still recognize it as Revolver. In this
example, the prediction outcomes of CNN are almost en-
tirely determined by the amplitude spectrum of the image,
which is barely perceivable to humans. On the other hand,
even if the amplitude spectrum is replaced, the human is
able to correctly recognize the identical object in the origi-
nal picture. Moreover, we found that this phenomenon not
only exists in training data (in-distribution) but also in OOD
data as shown in Figure 3. In these images, after exchang-
ing the amplitude spectrum, the prediction of CNN is also
transformed with the label of the amplitude spectrum. How-
ever, humans could still observe the object structure of the
original images in the converted images.

Motivated by the powerful generalizability of the human,
we argue that a robust CNN should be insensitive to the
change of amplitude and pay more attention to the phase
spectrum. To achieve this goal, a novel data augmentation
method, called Amplitude-Phase Recombination (APR), is
proposed. The core of APR is to re-combine the phase
spectrum of the current image and the amplitude spectrum
of the distracter image to generate a new training sample,
whose label is set to the current image. That is, the gen-
erated samples force the CNN to capture more structured
information from phase components rather than amplitude.
Specifically, the distracter image of the current image comes
in two ways: other images and its augmentations generated
by existing data augmentation methods such as rotate and
random crop, namely APR for the pair images (APR-P) and
APR for the single image (APR-S) respectively.

Extensive experiments on multiple generalizations and
calibration tasks, including adaptability for common cor-
ruptions and surface variations, OOD detection, and adver-
sarial attack, demonstrate the proposed APR outperforms
the baselines by a large margin. Meanwhile, it provides
a uniform explanation to the texture bias hypothesis [9]
and the behaviors of both robustness to common perturba-
tions and the overconfidence of OOD by the CNN’s over-
dependence on the amplitude spectrum. That is, the various
common perturbations change the high-frequency ampli-
tude components significantly, while has little influence on
the components related to the phase spectrum. Hence, the
attack sample could confuse the CNN but is easily recog-
nized by humans. On the other hand, the OOD samples of-

Figure 2. An example of the importance of phase spectrum to ex-
plain the counter-intuitive behavior of CNN. The recombined im-
age with the phase spectrum of Revolver and the amplitude spec-
trum of Jigsaw Puzzle is recognized as Jigsaw Puzzle by CNN.
However, the human can still clearly recognize it as a Revolver.

ten exhibit totally different image structures but may share
some similarities in the high-frequency amplitude compo-
nents, which makes the CNN hard to distinguish.

Our main contributions are summarized as follows: 1)
We propose that a robust CNN should be robust to the am-
plitude variance and pay more attention to the components
related to the phase spectrum by a series of quantitative and
qualitative analysis, 2) a novel data augmentation method
APR is proposed to force the CNN pay more attention to the
phase spectrum and achieves state-of-the-art performances
on multiple generalizations and calibration tasks, including
adaptability for common corruptions and surface variations,
OOD detection, and adversarial attack, and 3) a unified ex-
planation is provided to the behaviors of both robustness to
common perturbations and the overconfidence of OOD by
the CNN’s over-dependence on the amplitude spectrum.

2. Related Work

Frequency-Based Explanation for CNN. Recently,
several works provide new insights into neural network be-
haviors from the aspects of the frequency domain. [46]
shows that high-frequency components play significant
roles in promoting CNN’s accuracy, unlike human beings.
Based on this observation, [46] concludes that smoothing
the CNN kernels helps to enforce the model to use features
of low frequencies. [12] proposes an adversarial attack only
targeting the low-frequency components in an image, which
shows that the model does utilize the features in the low-
frequency domains for predictions instead of only learning
from high-frequency components. [42] demonstrates that
state-of-the-art defenses are nearly as vulnerable as unde-
fended models under low-frequency perturbations, which
implies current defense techniques are only valid against
adversarial attacks in the high-frequency domain. On the
other side, [30] demonstrates that CNNs can capture extra
implicit features of the phase spectrum which are beneficial
to face forgery detection. However, there are not works to
give a qualitative study of the roles of amplitude and phase
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(a) In-distribution samples of airplane and frog (b) In-distribution samples of cat and bird

(c) Out-of-distribution samples of 5 and 6 (d) Out-of-distribution samples of 2 and 4

Figure 3. Four pairs of testing samples selected from in-distribution CIFAR-10 [26] and OOD SVHN that help explain that CNN captures
more amplitude spectrum than phase spectrum for classification: First, in (a) and (b), the model (All Convolutional Network) correctly
predicts the original image (1st column in each panel), but the predicts are also exchanged after switching amplitude spectrum (3rd column
in each panel) while the human eye can still give the correct category through the contour information. Secondly, the model is overconfident
for the OOD samples in (c) and (d). Similarly, after the exchange of amplitude spectrum, the label with high confidence is also exchanged.

spectrums for the generalization behavior of CNN.
Data Augmentation. Data augmentation has been

widely used to prevent deep neural networks from over-
fitting to the training data [1], and greatly improve gener-
alization performance. The majority of conventional aug-
mentation methods generate new data by applying transfor-
mations depending on the data type or the target task [6].
[52] proposes mixup, which linearly interpolates between
two input data and utilizes the mixed data with the corre-
sponding soft label for training. Then, CutMix [50] sug-
gests a spatial copy and paste based mixup strategy on im-
ages. AutoAugment [6] is a learned augmentation method,
where a group of augmentations is tuned to optimize per-
formance on a downstream task. AugMix [20] helps mod-
els withstand unforeseen corruptions by simply mixing ran-
dom augmentations. However, many methods substantially
degrade accuracy on non-adversarial images [34] or need
adaptive and complex parameters to different tasks.

3. The Secret of CNN in the Frequency Domain

3.1. Qualitative Study on the Frequency Domain

Beyond the examples in Figure 2 and 3, here more qual-
itative analyses are given to measure the contributions of
amplitude and phase. Several experiments are conducted on

CIFAR-10 [26] to evaluate the performances of the CNNs
which are trained with the inversed images by various types
of amplitude and phase spectra. For the image x, its fre-
quency domain Fx is composed by amplitude Ax and phase
Px as:

Fx = Ax ⊗ ei·Px , (1)

where ⊗ indicates the element-wise multiplication of two
matrices. Here, four types of amplitude spectra, Px, PL

x ,
PI
x , and PH

x are combined with four types of amplitude
spectra, including Ax, AL

x , AI
x, and AH

x , respectively.
Here AL

x , AI
x, AH

x and PL
x , PI

x , PH
x represent the ampli-

tude spectrum and phase of low-frequency, intermediate-
frequency and high-frequency by low-pass Hl, high-pass
Hh, and band-pass Hb filters, respectively. Noted in Eq.(1),
if one element of Ax is zero, then the corresponding ele-
ment of Fx would be zero, and the phase spectrum Px is
not able to be considered. To alleviate the influence of this,
we define the transfer function as:

ẑ =

{
1, z = 0
z, otherwise.

Finally, Px, P̂L
x , P̂I

x , and P̂H
x are combined with Ax, ÂL

x ,
ÂI

x, and ÂH
x , respectively.

For quantitative evaluation, we trained the ResNet-18
with the inversed images by the above each pair of ampli-
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Figure 4. We test the classification power of CNNs trained with
various combinations of the amplitude and phase spectrum.

tude and phase spectra:
argmin

θ
l(f(iDFT (Ax ⊗ ei·Px); θ), y), (2)

where iDFT is the inverse Discrete Fourier Transform
(DFT), and f(·) means the CNN model with the learnable
parameters θ.

The test accuracies of the model trained by each pair
are shown in Figure 4. It is clear that the combination of
phase and amplitude in the corresponding frequency do-
main achieves better performance in their various combi-
nations, which indicates the CNN can capture effective in-
formation from both amplitude and phase spectrum. More-
over, when fixing the amplitude spectrum and phase spec-
trum respectively, the range of change without amplitude
is larger than the case without phase according to the two
directions of the arrow. It indicates that the convergence
of the CNN more relies on the amplitude spectrum and ne-
glects the phase spectrum.

Furthermore, we randomly select 1000 samples from
CIFAR-10. Firstly, we generate 1000 corrupted samples by
Gaussian noise and show the distribution of corrupted sam-
ples and original samples as shown in Figure 5(a). We could
observe the amplitude spectrum in high-frequency of two
types of samples is so different while the corrupted sample
is just added invisible noise. Hence, CNN would make the
wrong prediction when the amplitude spectrum is changed.
This is also consistent with the conclusion that CNN cap-
tured high-frequency information in [46]. Therefore, we
propose an assumption (referred to as A1) that presumes:

Assumption 1. CNN without effective training restrictions
tends to perceive more amplitude spectrum instead of the
phase spectrum.

Then, we can formulate another formal statement for the
robustness of CNN as:

Corollary 1. With the assumption A1, there exists a sample
⟨x, y⟩ with its amplitude Ax and phase Px, that the model

(a) Corrupted Samples (b) OOD Samples

Figure 5. The T-SNE [45] distribution of the amplitude spec-
trum of high-frequency. Red represents the original image or in-
distribution (ID) samples in CIFAR-10, and gray represents the
corrupted samples from CIFAR-10 or OOD samples from CIFAR-
100.

f(·) without effective training restrictions cannot predict
robustly for x̂ = iDFT ((Ax + ϵ) ⊗ ei·Px) where ϵ is the
upper bound of the perturbation allowed.

Secondly, we randomly select 1000 OOD samples from
CIFAR-100. As shown in Figure 5(b), it is not able to dis-
tinguish the amplitude spectrum in high-frequency of in-
distribution and out-of-distribution, even these samples are
from different categories. As a result, CNN would be over-
confident for some distributions when similar amplitude in-
formation appears. Therefore, we first attempt to provide an
assumption (referred to as A2) for the behaviors of the ro-
bustness to common perturbations and the overconfidence
of OOD:

Assumption 2. The behaviors of the sensitivity to common
perturbations and the overconfidence of OOD may be all
due to CNN’s over-dependence on the amplitude spectrum.

Meanwhile, we can extend our main argument for OOD to
a new formal statement:

Corollary 2. With the assumptions A1 and A2, there exists
a in-distribution sample ⟨x1, y⟩ and an out-of-distribution
sample ⟨x2⟩ with their amplitude Ax1

,Ax2
and phase

Px1
,Px2

, that the model without effective training restric-
tions would give a high confidence of the y for x̂ =
iDFT (Ax1 ⊗ ei·Px2 ).

The proof is a direct outcome of the previous discussion
and thus omitted. The Corollary 1 has been proved in previ-
ous works [46, 39, 41] and Corollary 2 can also be verified
empirically (e.g., in Figure 2 and 3), therefore we can safely
state that these two corollaries can serve as the alternative
explanations to the generalization behavior of CNN. Mean-
while, we provide more examples for proof in Appendix.

3.2. The Role of the Phase Spectrum

Previous works [32, 10] have shown many of the im-
portant features of a signal are preserved if only the phase
spectrum is retained. Meanwhile, several works of image
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Figure 6. The four template-based contrasts for (u, v) in Eq.(3).
Each Fourier coefficient is computed by dividing an image into
two pairs of regions by the signs of real-part and the imaginary-
part. These signs are encoded in spectral phase.

saliency [13, 28] shown the connection of phase spectrum
with the fixation of the human visual system. Further, we
wish to explore why this important information of the image
is retained in the phase spectrum. Here, we reinterpret the
concept of discrete Fourier transforms from the perspective
of template-based contrast computation [28].

Give a gray image x with resolution N×N , its complex-
valued Fourier coefficient at (u, v) can be computed as:

Fx(u, v) =
∑N

n=1

∑N

m=1
x(n,m) · eiθ,

=
∑N

n=1

∑N

m=1
x(n,m) · (cos θ + i · sin θ),

where θ = −2π(un+vm)/N . Then, the real and the imag-
inary parts of Fx(u, v) can be rewritten as:

Rx(u, v) =
∑

cos θ≥0

cos θ · x(n,m) +
∑

cos θ<0

cos θ · x(n,m),

Ix(u, v) =
∑

sin θ≥0

sin θ · x(n,m) +
∑

sin θ<0

sin θ · x(n,m).

The frequency in (u, v) by Fourier transform can be in-
terpreted as computing by four template-based contrasts:

T R+
u,v (x) = max(cos θ, 0), T R−

u,v (x) = max(− cos θ, 0),

T I+
u,v (x) = max(sin θ, 0), T I−

u,v (x) = max(− sin θ, 0).
(3)

Moreover, we can define 4×N ×N templates for an image
x based on the signs of the real-part and the imaginary-part.
A template-based example is shown in Figure 6. More ex-
amples for templates are shown in Appendix.

Meanwhile, the phase spectrum Px(u, v) for the image
x is equal to arctan( Ix(u,v)

Rx(u,v)
), which can be reinterpreted

as:

Px(u, v) = arctan(

∑
x⊗ T I+

u,v −
∑

x⊗ T I−
u,v∑

x⊗ T R+
u,v −

∑
x⊗ T R−

u,v

). (4)

In Eq.(4), first, we can observe that the above four templates
are encoded in the spectral phase. Hence, all 4×N×N tem-

plates are contained in the phase spectrum. This template-
based contrast can help to explain the importance of the
phase spectrum. Once the templates containing more tar-
gets without distractors are correctly estimated, the model
can highly effectively locate the target objects [28]. On
the other hand, these templates in the phase spectrum could
help to recover the structural information of the original im-
age even without the original amplitude spectrum as shown
in Figure 3. The robustness human visual system can also
rely on this visible structured information for recognition.

4. Amplitude-Phase Recombination

Motivated by the powerful generalizability of the hu-
man, we argue that reducing the dependence on the ampli-
tude spectrum and enhancing the ability to capture phase
spectrum can improve the robustness of CNN. Therefore,
we introduce a none-parameter data augmentation routine,
termed as Amplitude-Phase Recombination (APR), con-
structing more effective training examples based on the sin-
gle sample or pair samples.

APR for the Pair Samples (APR-P). Firstly, (xi, yi)
and (xj , yj) are two examples drawn at random from our
training data. The main principle of APR is to change the
amplitude spectrum as much as possible while keeping the
phase spectrum and the corresponding labels unchanged.
Hence, the APR-P could be defined as:

APRP (xi, xj) = iDFT (Axj ⊗ ei·Pxi ). (5)

Then, the inversed training pair samples (APRP (xi, xj), yi)

and (APRP (xj , xi), yj) are generated. Note that we use la-
bels of phase as targets to allow the model to find the effec-
tive structured information in the phase spectrum. Mean-
while, through a variety of spectrum changes, the model
gradually ignores the information from the imperceptible
amplitude spectrum. It can be implemented by the way as
Mixup [14] that uses a single data loader to obtain one mini-
batch, and then APR-P is applied to the original minibatch
and the minibatch after random shuffling.

APR for the Single Sample (APR-S). For a single
training sample, we consider a set S consisting of K dif-
ferent (random or deterministic) transformations, denoted
S = {S1, S2, . . . SK}. Here, we attempt to consider that
the sample (x, y) and its transformed sample x̂ are two dif-
ferent samples with the same label. The process of APR-S
could be denoted as:

APRS(S(xi), S̃(xi)) = iDFT (AS̃(xi)
⊗ ei·PS(xi)), (6)

where S̃ and S are transformations set based on different
random seeds or sequences.

Moreover, these two ways of amplitude-phase recombi-
nation could be used in combination and generate different
gains for different data. Several examples from APR-P and
APR-S are shown in Figure 7.
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Figure 7. The two ways of Amplitude-Phase Recombination: APR-P and APR-S. The inversed images by APR-S are less different from
the original image, compared with samples through ARP-P.

Table 1. The adaptability test of common corruptions and surface variations. Average classification error as percentages. All values are
percentages and the best results are indicated in bold.

Standard Cutout Mixup CutMix Adv Training APR-P AutoAugment AugMix APR-S ARP-SP

CIFAR-10-C

AllConvNet 30.8 32.9 24.6 31.3 28.1 21.5 29.2 15.0 14.8 11.5
DenseNet 30.7 32.1 24.6 33.5 27.6 20.3 26.6 12.7 12.3 10.3
WideResNet 26.9 26.8 22.3 27.1 26.2 18.3 23.9 11.2 10.6 9.1
ResNeXt 27.5 28.9 22.6 29.5 27 18.5 24.2 10.9 11.0 9.1

Mean 29.0 30.2 23.5 30.3 27.2 19.7 26 12.5 12.2 10.0

CIFAR-100-C

AllConvNet 56.4 56.8 53.4 56.0 56.0 47.5 55.1 42.7 39.8 35.9
DenseNet 59.3 59.6 55.4 59.2 55.2 49.8 53.9 39.6 38.3 35.8
WideResNet 53.3 53.5 50.4 52.9 55.1 44.7 49.6 35.9 35.5 32.9
ResNeXt 53.4 54.6 51.4 54.1 54.4 44.2 51.3 34.9 33.7 31.0

Mean 55.6 56.1 52.6 55.5 55.2 46.6 52.5 38.3 36.8 33.9

5. Experiments

Datasets. CIFAR-10 and CIFAR-100 [26] datasets con-
tain small 32x32x3 color natural images, both with 50,000
training images and 10,000 testing images. CIFAR-10 has
10 categories, and CIFAR-100 has 100. The larger and more
difficult ImageNet [7] dataset contains 1,000 classes of ap-
proximately 1.2 milion large-scale color images.

In order to measure a model’s resilience to common cor-
ruptions and surface variations, we evaluate methods on
the CIFAR-10-C, CIFAR-100-C, and ImageNet-C datasets
[17]. These datasets are constructed by corrupting the orig-
inal CIFAR and ImageNet testsets. For each dataset, there
are a total of 15 noise, blur, weather, and digital corrup-
tion types, each appearing at 5 severity levels or intensities.
Since these datasets are used to measure network behavior
under data shift, these 15 corruptions are not introduced into
the training procedure.

To measure the ability for OOD detection, we con-
sider CIFAR-10 as in-distribution and the following datasets
as OOD: SVHN [31], resized LSUN and ImageNet [29],
CIFAR-100 [26].

5.1. CIFAR-10 and CIFAR-100

Training Setup. For a model’s resilience to common
corruptions and surface variations, we adopt various archi-
tectures including an All Convolutional Network [37], a
DenseNet-BC (k = 2, d = 100) [23], a 40-2 Wide ResNet
[51], and a ResNeXt-29 (32x4) [48]. All networks use an
initial learning rate of 0.1 which decay every 60 epochs.
All models require 200 epochs for convergence. We opti-
mize with stochastic gradient descent using Nesterov mo-
mentum [43]. All input images are processed with ”Stan-
dard” random left-right flipping and cropping prior to any
augmentations. For the data augmentations of APR-S, we
adopt those used in [20] which is shown in Appendix. For
the OOD detection, we use ResNet-18 [16] with the same
training strategies above. The data augmentations are set
up the same as the above. We report the Area Under the
Receiver Operating Characteristic curve (AUROC) [19] as
a threshold-free evaluation metric for a detection score. We
divide all methods into two categories, one is to add one
augmentation on the basis of standard augmentations (ran-
dom left-right flipping, and cropping), and the other is to
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Table 2. The experiment of distinguishing in- and various OOD data for image classification. The best results are indicated in bold.

Method Test acc.
CIFAR-10 −→

Mean
SVHN LSUN ImageNet LSUN(FIX) ImageNet(FIX) CIFAR100

Cross Entropy (CE) 93.0 88.6 90.7 88.3 87.5 87.4 85.8 88.1
CE w/ Cutout [8] 95.8 93.6 94.5 90.2 92.2 89.0 86.4 91.0
CE w/ Mixup [14] 96.1 78.1 80.7 76.5 80.7 76.0 74.9 77.8
CE w/ APR-P 95.0 98.1 93.7 95.2 91.4 91.1 88.9 93.1
SupCLR [25] 93.8 97.3 92.8 91.4 91.6 90.5 88.6 92.0
CSI [44] 94.8 96.5 96.3 96.2 92.1 92.4 90.5 94.0
CE w/ APR-S 95.1 90.4 96.1 94.2 90.9 89.1 86.8 91.3
CE w/ APR-SP 95.6 97.7 97.9 96.3 93.7 92.8 89.5 94.7

add a combination of multiple augmentations as [5, 20].
Common Corruptions and Surface Variations. We

first evaluate all methods with common corruptions and
surface variations, such as noise, blur, weather, and digi-
tal. Compared to the Mixup or CutMix based on pair im-
ages, our APR-P with exchanging amplitude spectrum in
pair images achieves 6% lower absolute corruption error
for CIFAR-100 as shown in Table 1. For methods based
on a combination of multiple augmentations, our APR-S
of the single image with just Cross-Entropy loss (CE) per-
forms better than AugMix with simply mixing random aug-
mentations and using the Jensen-Shannon loss substantially.
When combining our method for single and pair images, the
APR-SP achieves 5% performance improvement compared
with AugMix in CIFAR-100. In addition to surpassing nu-
merous other data augmentation techniques, Table 1 also
demonstrates that these gains come from simple recombi-
nation of amplitude and phase without a complex mixup
strategy. More comparisons and results about test accuracy
are shown in Appendix.

Out-of-Distribution Detection. We compare APR with
those augmentations (Cutout, and Mixup) and those several
training methods, the cross-entropy, supervised contrastive
learning (SupCLR) [25], and state-of-the-art method con-
trasting shifted instances (CSI) [44]. Since our goal is
to calibrate the confidence, the maximum softmax prob-
ability is used to detect OOD samples. Table 2 shows
the results. Firstly, APR-P consistently improves 2% AU-
ROC than Cutout on CIFAR-10 while maintaining test ac-
curacy. Then, after combining APR based on single and
pair images, APR-SP exceeds CSI and gains in almost all
OOD tasks. APR promotes CNN to pay more attention to
the phase spectrum so that some OOD samples that affect
CNN’s decision-making in amplitude spectrum could be de-
tected effectively.

Adversarial Attack. Moreover, the phenomenon of
CNN focusing on amplitude spectrum leads to a question
of whether APR can improve the adversarial robustness of
models. Here, we evaluate several augmentations against
one adversarial attack, AutoAttack [4]. Table 3 shows the
AutoAttack [4] performance by combining different meth-
ods with revisiting adversarial training method of FSGM

Table 3. Performance of ResNet-18 against with AutoAttack [4].

Method Clean
AutoAttack[4]
linf(ϵ = 8/255)

FSGM [47] 83.3 43.2
FSGM w/ Cutout 81.3 41.6
FSGM w/ APR-P 85.3 44.1
FSGM w/ APR-S 83.5 45.0
FSGM w/ APR-SP 84.3 45.7

[47] on CIFAR10. The cutout is not able to effectively
against adversarial attacks compared with the baseline with
revisiting adversarial training method of FSGM [47]. On
the contrary, APR could effectively against AutoAttack
while maintaining test accuracy. Compared with APR-P,
APR-S for single images achieves more improvement on
AutoAttack. Furthermore, the combination of these two
strategies achieves better performance. It is evident that
APR-SP improves the ability of the original model not only
on clean images but also against adversarial attacks.

5.2. ImageNet Classsification

Training Setup. ResNet-50 [16] is trained with an ini-
tial learning rate of 0.1 which decay every 30 epochs. It
is optimized with stochastic gradient descent using mo-
mentum 0.9 [33], and requires 100 epochs for conver-
gence. All input images are pre-processed with standard
random cropping horizontal mirroring. For the data aug-
mentations of APR-S, we adopt those used in [20] without
augmentations such as contrast, color, brightness, sharp-
ness, and Cutout, which may overlap with the corruptions
of ImageNet-C. Following [20], we utilize the convention
of normalizing the corruption error by the corruption err
of AlexNet [27]. Corruption Error (CEc) is computed
as CEc =

∑5
s=1 Ec,s/

∑5
s=1 E

AlexNet
c,s . The average of

the 15 corruption errors is as the Mean Corruption Error
(mCEc).

Results. Our method APR-SP achieves 15% improve-
ment than the baseline 80.6%mCEc while maintaining test
accuracy. Other methods such as AutoAugment and Aug-
Mix require a more complex combination strategy, while
ours does not. Meanwhile, APR improves corruption ro-
bustness [20] and uncertainty estimates across almost ev-
ery individual corruption and severity level while the per-
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Table 4. Test Error, Corruption Error (CEc), and mCEc values for various methods with ResNet-50 on ImageNet-C. All values are
percentages and the best results are indicated in bold.

Method Test Err. Noise Blur Weather Digital mCEGauss Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG

Standard 23.9 79 80 82 82 90 84 80 86 81 75 65 79 91 77 80 80.6
Patch Uniform 24.5 67 68 70 74 83 81 77 80 74 75 62 77 84 71 71 74.3
AutoAugment(AA) 22.8 69 68 72 77 83 80 81 79 75 64 56 70 88 57 71 72.7
Random AA 23.6 70 71 72 80 86 82 81 81 77 72 61 75 88 73 72 76.1
MaxBlur pool 23.0 73 74 76 74 86 78 77 77 72 63 56 68 86 71 71 73.4
SIN 27.2 69 70 70 77 84 76 82 74 75 69 65 69 80 64 77 73.3
AugMix 22.4 65 66 67 70 80 66 66 75 72 67 58 58 79 69 69 68.4
APR-S 24.5 61 64 60 73 87 72 81 72 67 62 56 70 83 79 71 70.5
APR-P 24.4 64 68 68 70 89 69 81 69 69 55 57 58 85 66 72 69.3
APR-SP 24.4 55 61 54 68 84 68 80 62 62 49 53 57 83 70 69 65.0
DeepAugment [18] 26.3 49 49 48 62 74 68 79 68 64 64 57 63 78 50 73 63.1
DeepAugment+APR-SP 26.4 44 45 41 57 70 60 79 56 56 50 54 54 78 47 71 57.5

(a) Original (b) Fog (c) Standard (d) APR-SP

Figure 8. The Gradient-weighted Class Activation Mapping [40]
of the baseline and the proposed APR-SP for images with frog
noise. Best viewed in color. APR-SP still is able to focus on the
parts of the target object even in a heavy fog.

formance of zoom blur is comparable with most methods.
APR-SP gets about 5% improvement than APR-S and APR-
P, and APR-SP with DeepAugment improves 6% than the
reproduced DeepAugment [18]. As shown in Figure 8, the
CNN trained with APR-SP is able to focus on the parts
of the target object for classification even in a heavy fog.
These results demonstrate that scaling up APR from CIFAR
to ImageNet also leads to state-of-the-art results in robust-
ness and uncertainty estimation.

5.3. Labeled by Amplitude or Phase?

For our proposed APR-P, we utilize the labels of phase
spectrum in the pair samples. Naturally, we wish to explore
the impact of using labels amplitude and phase separately.
Here, we add a linear classifier layer in ResNet-18 to predict
the labels of the amplitude spectrum. The model is trained
for the sample x̄ combined by the phase spectrum Pxi and
the amplitude spectrum Axj

by optimizing:
argmin

θ
λl(fP(x̄; θ), yi) + (1− λ) · l(fA(x̄; θ), yj). (7)

Then, the final prediction is defined as ȳ = λfP+(1−λ)fA.
The recognition ability of the model to different distribution
changes with λ as shown in Figure 9. With the enhancement
of the weight of phase prediction, the accuracy of the model
is improved, especially for common corruptions and sur-
face variations, and OOD detection. Meanwhile, the detec-
tion ability of the model for OOD samples becomes stronger
with the increase of phase attention. This result could fur-
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Figure 9. The performance of ResNet-18 for various distribution as
different attention weights for the amplitude and phase spectrum.

ther prove the correctness of our corollaries.

6. Conclusion & Outlook
This paper proposes a series of quantitative and qualita-

tive analyses to indicate that a robust CNN should be ro-
bust to the amplitude variance and pay more attention to
the components related to the phase spectrum. Then, a
novel data augmentation method APR is proposed to force
the CNN to pay more attention to the phase spectrum and
achieves state-of-the-art performances on multiple general-
izations and calibration tasks. Also, a unified explanation is
provided to the behaviors of both adversarial attack and the
overconfidence of OOD by the CNN’s over-dependence on
the amplitude spectrum. Looking forward, more research
directions about phase could be exploited in the future era
of computer vision research. One possible direction is to
explore how to represent part-whole hierarchies [21] in neu-
ral networks that rely on the phase spectrum. On the other
hand, more CNN models [36, 35] or convolution operations
to capture more phase information are worth exploring.
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