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Abstract

In click-based interactive segmentation, the mask extrac-
tion process is dictated by positive/negative user clicks;
however, most existing methods do not fully exploit the
user cues, requiring excessive numbers of clicks for sat-
isfactory results. We propose Conditional Diffusion Net-
work (CDNet), which propagates labeled representations
from clicks to conditioned destinations with two levels of
affinities: Feature Diffusion Module (FDM) spreads fea-
tures from clicks to potential target regions with global simi-
larity; Pixel Diffusion Module (PDM) diffuses the predicted
logits of clicks within locally connected regions. Thus, the
information inferred by user clicks could be generalized to
proper destinations. In addition, we put forward Diversified
Training (DT), which reduces the optimization ambiguity
caused by click simulation. With FDM,PDM and DT, CD-
Net could better understand user’s intentions and make bet-
ter predictions with limited interactions. CDNet achieves
state-of-the-art performance on several benchmarks.

1. Introduction

Interactive segmentation has been a topic of research for
a long while; various forms of interactions have been ex-
plored. Human could provide bounding boxes [26, 30, 15],
scribbles [16, 6, 1], or clicks [27, 20, 32, 11] to express
the segmentation intentions, which guide the algorithm for
the mask extraction process. The segmentation target could
be anything that users want, which requires interactive seg-
mentation to be a flexible tool and makes it a challenging
vision task. In this work, we address click-based interactive
segmentation, and we aim to improve upon existing works
by better understanding user’s intentions.

For click-based interactive segmentation, users places
positive/negative clicks (red/ green points in Fig. 1) to in-
dicate foreground/ background regions. In general, a user’s
click contains two layers of information: the first layer is
spatial – the location of the foreground/background could

*Corresponding Author

(a) Baseline (b) CDNet

(c) Baseline (d) CDNet
Figure 1. Comparison of baseline method and CDNet. Posi-
tive /negative clicks are marked in red and green. Diffusion flows
are visualized in colored arrows. As the red arrow denotes, CDNet
propagates information from clicks to target destinations, while
suppressing the invalid flow denoted by the white arrow.

be indicated by the distribution of clicks; the second layer
is visual – the label of regions around the clicks could be
inferred by visual similarity. In a standard pipeline, the first
step is encoding clicks into distance maps [32, 27, 11, 31],
Gaussian maps [20, 23, 21, 14], or super-pixels [22]; next,
encoded maps is concatenated with the original image and
fed into a segmentation network to make predictions. This
kind of method exploits good use of spatial information but
ignores the visual hint. Consequently, we see two problems:
1) like the example in Fig. 1 (a), the label of a click often
fails to be generalized to target regions further away from
clicks, even if parts of the target region has almost the same
appearance as the click. 2) the labels could spill over to the
wrong regions, even if the target has clear boundaries, as
demonstrated in Fig. 1 (c).

To address the aforementioned issues, we explored to
model the affinity between different locations and diffuse
the representations from clicks to unlabeled regions. A
straightforward solution is modeling the affinity simply
based on feature similarity. However, it would lead to over-
generalization: in Fig. 1 (b), the information should not
propagate from A to C (under the assumption that the target
is the bottom flamingo), even though they are visually simi-
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lar. To deal with over-generalization, constraining the diffu-
sion within a instance/ semantic- level range around clicks
is an option that can be thought of directly. Again, since
the target was flexibly defined and could be either part, in-
stance, or stuff, a fixed constrain would not be a cure-all. In
general, it is a dilemma that we expect to enlarge the diffu-
sion range and avoid over-generalization simultaneously.

Facing this challenge, we conduct an in-depth study
of information diffusion and propose Conditional Diffu-
sion Network (CDNet), which diffuses information from
clicks and dynamically constrains the diffusion destination.
Specifically, two components are designed:

• Feature Diffusion Module (FDM) generates a con-
ditional affinity map. It firstly considers feature sim-
ilarity to diffuse the representations from clicks to all
unlabeled regions. We then constrain the diffusion des-
tination by a primitive prediction of foreground/ back-
ground per the distribution of clicks and the content
of the image. FDM propagates features in full-image
with a global perspective.

• Pixel Diffusion Module (PDM) constructs a condi-
tional diffusion source on the predicted logits, and
leverages color similarity to diffuse the labels of clicks.
It constrains the diffusion in local regions with uniform
color to avoid over-generalization. Meanwhile, the dif-
fusion is carried out iteratively to enlarge the range of
destination. PDM mainly refines the details.

FDM and PDM work in synergy to extract representations
with both high-level and low-level consistency in a coarse-
to-fine manner. To better train CDNet, we develop a practi-
cal training regime called Diversified Training (DT), which
eases the optimization ambiguity caused by click simula-
tion. Combing FDM/PDM/DT together, CDNet better ex-
ploits the information contained in clicks by diffusing the
representations of clicks to correct destinations and makes
better predictions with fewer clicks.

Large amounts of experiments have been conducted on
GrabCut [26], Berkeley [24], SBD [8], and DAVIS [25]
datasets. Results prove the effectiveness of our method and
show that our CDNet achieves state-of-the-art performance.
Our contributions could be summarized as follows: 1) We
formulate click-based interactive segmentation as a process
of conditional diffusion and propose CDNet, which predicts
better segmentation results with fewer clicks. 2) We design
FDM and PDM, which propagate the labeled information
of clicks to enhance unlabeled regions on different levels.
3) To better train CDNet, we develop Diversified Training,
which reduces the optimization ambiguity caused by click
simulation.

2. Related Works
Classical Methods. Before the era of deep learning, re-
searchers take interactive segmentation as an optimization
problem. GrabCut [26] uses the Gaussian mixture model to
solve the problem of max-flow in color space. Geodesics [7]
calculates geodesic between clicked points and other pixels
to predict segments with minimum energy cost. [6] applied
random walk algorithm to predict the labels of unseeded
pixels. [12] proposes a high order method with the con-
strain of label consistency. These classical methods model
the relationship between pixels according to low-level sim-
ilarity, which enables them to predict segmentation results
with local consistency. However, lacking high-level seman-
tic information limits the performance of classical methods.
Deep Learning Methods. The first deep learning-based
method [32] embeds clicked points into distance maps and
uses a fully convolutional network to predict the mask of
foreground and background. RIS-Net [18] adds a local
branch to refine the predicted result around human clicks.
[22] uses super-pixels to embed clicked points to provide
guidance with local consistency. [17] predicts multiple po-
tential results and train another network to choose from
them. FCANet [20] underlines the importance of the first
click and proposes first click attention to get better results.
BRS [11] uses backward propagation to finetune the guid-
ance map in an online manner. f-BRS [27] refines the inter-
mediate feature to get more precise masks with faster speed
compared with BRS. Most of these learning-based meth-
ods only use clicks to generate the guidance map to indi-
cate the rough location of the target object. BRS and f-BRS
use the given labels of clicked points to fine-tune the net-
work, but online learning brings extra computation during
inference and makes them hard to deploy. Compared with
classical methods, deep learning models get better perfor-
mance. However, they are not utilizing the user inputs to
the full potential.

3. Method
3.1. Pipeline Overview

The pipeline of Conditional Diffusion Network (CDNet)
is shown in Fig.2. The blocks in blue demonstrate a com-
monly used baseline, on which we add two diffusion mod-
ules in red. First, we embed positive and negative clicks
as two Gaussian maps and concatenate them with the orig-
inal RGB image to get the 5-channel input. Second, the
input is fed into a segmentation network to extract high-
level features. In this work we use DeeplabV3+ [3] with
ResNet-50 [9] backbone. Then, the stride-8 high-level fea-
ture and the Gaussian maps are sent into Feature Diffusion
Module (FDM). In this block, the labeled features around
clicks could be propagated to prospective unlabeled regions.
Next, following DeeplabV3+, we make feature fusion with

7346



𝐻
8
,
𝑊
8
, 𝐶

𝐻
8
,
𝑊
8
, 𝐶

𝐻,𝑊, 1 𝐻,𝑊, 1

𝐻,𝑊, 2

𝐻,𝑊, 3

Gaussian
Maps

Image

Segmentation 
Model FDM PDMConcat

Figure 2. An overview of our Conditional Diffusion Network.
FDM denotes Feature Diffusion Module. PDM denotes Pixel Dif-
fusion Module. The dotted lines mean PDM only exists during
inference.

low-level features and upsample the predicted logits to the
size of the original image. Afterward, Pixel Diffusion Mod-
ule (PDM) takes the original image, Gaussian Maps, and
predicted logits to propagates the logits from clicks to their
neighbors iteratively, which refines the prediction with low-
level consistency. PDM only exists during inference. Train-
ing supervision is applied on the logits before PDM.

Both FDM and PDM are easily extensible and could be
simple plugins for different segmentation models. With
FDM and PDM, the effect of clicks could be amplified as
their labeled representations are propagated to wider ranges,
which enables the model to make better predictions.

3.2. Feature Diffusion Module

Feature Diffusion Module (FDM) propagates the labeled
high-level features from clicks to conditional destinations.
It enables unlabeled regions to be better represented via
matching labeled templates and helps the labels of clicks
to be generalized to both wide and accurate destinations.

The implementation of FDM is inspired by self-attention
series [5, 10, 29, 33]. We first revisit the formulation of self-
attention. Then we elaborate on the architecture of FDM.

3.2.1 Revisiting Self-Attention

Non-local Network [29] proposes a standard formula for
self-attention, its variants [5, 10, 29, 33] are widely applied
in the task of semantic segmentation and proven to be effec-
tive. The formulation could be summarized as Eq. (1) (2),
where A denotes the affinity matrix which measures the de-
pendency between features of each two positions. x stands
for the input feature. g, θ, ϕ are transformation functions
which are implemented with 1× 1 Convs.

yHW×C = Softmax(AHW×HW )× g(x)HW×C (1)

A = θ(x)HW×C × ϕ(x)C×HW (2)

With self-attention, the information in x could be prop-
agated cross long-distance between every two positions,
which helps to build more unified feature representations
with the global context.

3.2.2 FDM Overview

Regarding Eq. (1) as a process of information diffusion, the
affinity matrix in Eq. (2) assigns equal chances for each lo-
cation to act as the diffusion source; the diffusion destina-
tion is decided by only considering semantic similarity. It
works for semantic segmentation, but it is not an optimal so-
lution for interactive segmentation for two reasons: 1) as the
labels of positive/ negative clicks are given, features around
clicks are more informative and should be prioritized for
diffusion; 2) since the foreground/ background are dynami-
cally defined by clicks, we could not constrain the diffusion
destination statistically using instance or semantic similar-
ity.

To address the aforementioned problem, FDM intro-
duces two additional features via dynamically re-weighting
the affinity matrix: it highlights the diffusion flows from
clicks, and constrains the diffusion destinations in the mean-
time. Formulated as Eq. (3), FDM uses two conditional
affinity matrix CAF/B to model the diffusion flow for fore-
ground/ background information, and add the diffusion re-
sults together. The pipeline of FDM is demonstrated in
Fig. 3, we first calculate the raw affinity matrix A following
Eq. (2). Then, we generate conditional affinity matrices by
re-weighting. The details of the conditional affinity would
be introduced in the next paragraph.

y = CAF × g(x) +CAB × g(x) (3)

3.2.3 Conditional Affinity

We re-weight the raw affinity map by setting source con-
straint and destination constraint. Source constraint high-
lights the diffusion flows starting from clicks; Destination
constraint defines a rough range for the diffusion, which
prevents the label of clicks to be over-generalized. With
these constraints, in Fig.1 (b), features from A could be dif-
fused to B, but would not be propagated to C.

Concretely, we generate source constrain maps SF/B

by placing Gaussian kernels on foreground/ background
clicks, with the amplitude and the standard derivation both
set as 1. Besides, we calculate destination constrain maps
DF/B through adding an auxiliary head on the input feature
of FDM, which makes a primitive prediction for the fore-
ground/ background regions. DF/B is not expected to be
accurate, it is used to control the probability for each posi-
tion to collect information from the foreground/ background
source. From another angle, FDM could be considered as a
further refinement based on DF/B .

Since SF/B , DF/B are normalized to [0, 1], we directly
re-weight the raw affinity matrix A according to Eq. (4).
As denoted in the right block of Fig. 2, we first reshape
A to shape RHW×H×W and do element-wise multiplica-
tion with S ∈ R1×W×H to highlight the flows starting from
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Figure 3. Demonstration of Feature Diffusion Module. We first measure the dependency between features and generate a raw affinity
matrix A; Then, we apply source constrain and destination constrain in Conditional Re-weighting Block to get a Conditional Affinity
Matrix CA. Guided by the Conditional Affinity Map, features are propagated from source (clicked points) to target destinations to get the
enhanced representation. The concrete structure of Conditional Re-weighting Block is demonstrated in the right part.

clicks. Then, softmax function normalizes the summation
of source features that could be aggregated for each tar-
get. Afterward, the modified affinity map is reshaped to
RH×W×HW and multiplies the D ∈ RH×W×1 to suppress
the flows across foreground/background splits. Thus, we
get two conditional affinity matrices CAF/B which control
the information flow from foreground/ background clicks to
corresponding target regions.

CAF/B = Softmax(SF/B ⊙A)⊙DF/B (4)

3.2.4 Function Analysis

FDM propagates features from positive/ negative clicks to
corresponding destinations. It could also be analyzed from
the perspective of information gathering. For features pre-
dicted as foreground/ background with high confidence,
they only gather information from foreground/ background
clicks, which assists to make more unified representations
for the target. For features with uncertain predictions, they
have equal chances to gather information from the fore-
ground and background sources. Thus, it could make a
more reliable prediction by matching the foreground and
background templates according to feature similarity.

From the perspective of optimization, FDM enforces
each unlabeled feature to get closer to features of clicks with
the same label, while enlarging the distance with clicks with
opposite labels, which contributes to more unified and more
discriminative representations.

3.3. Pixel Diffusion Module

Pixel Diffusion Module (PDM) is designed to comple-
ment FDM and focus on the details that could not be refined
on high-level features. It follows the formula of FDM and
propagates information from clicks to unlabeled regions ac-
cording to affinity. Requiring the representations with rich
details, PDM is performed on the full-resolution predicted
logits.

3.3.1 PDM Overview

Limited by computing resources, the formulation of FDM
could not be directly applied to the full-resolution logits.
Therefore, we constrain the pixel diffusion in local regions
and implement the diffusion iteratively. Following the ba-
sic form of FDM, we formulate PDM as Eq. (5), where Aij

represents the affinity between logit i and its neighbor j;
y0 denotes the pixel diffusion source. Information is prop-
agated from each logit i to its neighboring regions Ni itera-
tively.

yt+1
i =

∑
j∈Ni

Softmax(Aij) · yt
j (5)

Given the pipeline of PDM, there are still two key areas
for consideration: 1) How to highlight the diffusion flows
starting from clicks. 2) How to enlarge the diffusion desti-
nation while avoiding over-generalization.

First, we highlight the flows from clicks by construct-
ing a conditional diffusion source, in which the information
concentration around clicks is augmented. Thus, the labels
of clicks get higher priorities to be propagated out; Second,
we calculate the affinity using color similarity, and constrain
each iteration of diffusion within a small range. In this way,
the diffusion would be truncated when it meets boundaries
or a sharp color change. At the same time, we conduct the
pixel diffusion iteratively, thus the enhanced logits could
diffuse further step by step in regions with uniform colors.

The Pipeline of PDM is demonstrated in Fig. 4. Given
the input image, the predicted logits, and the clicks, we con-
struct the conditional diffusion source and propagate the
information of the source in the local neighborhood itera-
tively. Finally, we add the original logits as a residual on
the diffusion result and set the threshold as 0 to get the bi-
nary prediction mask. Noticing that the whole pipeline of
PDM could be implemented with Conv layers. PDM runs
on GPUs with high efficiency.
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Figure 4. Pipeline of Pixel Diffusion Module (PDM). PDM takes
the original image, Gaussian maps of clicks, and the predicted log-
its as input. It propagates information from clicks to neighbors
iteratively to get the refined prediction map.

3.3.2 Conditional Diffusion Source

We construct the conditional diffusion source by augment-
ing the information concentration around clicks. Consider-
ing the network is trained with Sigmoid function and Cross-
entropy loss, the absolute value of logits could be large. To
manipulate the logits, we first normalize the values of log-
its into a controllable range. Concretely, we normalize the
logits into [-1, 1] according to Eq. (6). Then, we enhance
the normalized logits ynorm via placing Gaussian kernels at
clicked positions as in Eq. (7), with amplitude and standard
derivative set to 1 and 10.

ynorm = Tanh(yraw)× 2 (6)

y0 = Enhance(ynorm) = ynorm +GF −GB (7)

3.3.3 Dynamic Diffusion Range

We leverage color similarity to measure the affinity, which
is a robust low-level feature used in some traditional meth-
ods [26, 13]. The affinity between pixel i and pixel j as in
Eq.(8). σi denotes the standard derivation.

Aij = −|Ii − Ij | / σ2
i (8)

Each diffusion iteration is constrained within the local
range of n neighbors; the affinity is also calculated locally.
In this work, we use four 3×3 convolution filters with dila-
tion {1,2,4,8} to sample the neighbors, so n = 4× 8 = 32.
Then, we enlarge the diffusion range by applying the diffu-
sion iteratively. Thus, information flows could go further in
regions with uniform color, and would be truncated when
encountering edges.

3.3.4 Function Analysis

For regions around clicks, PDM propagates logits from
clicks to visually similar neighbors, which guarantees the
correct prediction around clicks could be generalized in lo-
cal regions. For regions far from clicks, PDM also makes
refinement with local-consistency, it enforces adjacent pix-
els with similar colors to predict similar labels.

3.4. Diversified Training

Ambiguity is a common problem for interactive segmen-
tation; divergence between segmentation result and user’s
true intention frequently happens. For example, in Fig. 5,
when only one click on the leg of the rider was placed as
foreground, there could be many possible and reasonable
targets: the leg, the rider, or the entirety of rider/motorcycle.

Some works [17, 19] focus on the inference procedure
to tackle the ambiguity. They propose to predict multiple
masks and require the user or a selection network to pick
one of them. However, our analysis concludes that if the
model is well-trained, the ambiguity can be naturally re-
duced during inference when more clicks are sequentially
placed; the real challenge lies in training, where the am-
biguity is difficult to reduce even with bigger numbers of
clicks. Many previous works [27, 11, 32, 22] simply simu-
late interactions during training by randomly sampling pos-
itive/ negative clicks inside/ outside the given ground truth
mask. There is no guarantee that clicks could clarify the
outline of the given ground truth. Consequently, it is hard
to train the model well, as the optimization target varies.

Pred 1 Pred 2 Pred 3 Pred 4√

Image + Clicks Ground Truth

Loss 1

Loss 2

Loss 3

Loss 4

√

X

X

X

CDNet

Head 1

Head 2

Head 3

Head 4

Figure 5. Demonstration of Diversity Training. We predict N
more potential results and chose the one most similar to the ground
truth to propagation the gradients. The original head is not shown
for simplicity.

In this work, we reduce the ambiguity by developing Di-
versified Training (DT). Inspired by [17, 19], we explore the
latent diversity; differently, we focus on the training process
instead of inference. Fig. 5 depicts the pipeline of DT. We
add another N latent heads during training and remove them
during inference. In this work, we set N = 4. We super-
vise these latent heads with diversity loss and click loss. As
Eq. (9), diversity loss calculates the cross-entropy of each
latent head and chooses the minimum one to initiate back-
ward propagation. With this setup, the ambiguity is eased
by permitting all reasonable predictions. We also design a
click loss to enforce each latent head to make correct pre-
dictions around labeled clicks. As Eq. (10), Mi denotes the
Gaussian mask of clicks, which only keeps the gradients in
clicked regions. The total loss is the sum of the original bi-
nary cross-entropy loss, the diversity loss, and the click loss
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as Eq. (11). In this work, we set a0, a1, a2 as 0.5,1,1.

Ldiv = min(Lbce(Pi,gt) | i ∈ [1, n]) (9)

Lclick =
∑

i∈[1,n]

Mi Lbce(Pi,gt) (10)

Ltotal = a0 Lbce(P0,gt) + a1 Ldiv + a2 Lclick (11)

We only keep the original head during inference. Al-
though removed for prediction, latent heads make contribu-
tions during training; they assist the model to learn better
representations. Based on the representations, the original
head learns the projection relation between the distribution
of input clicks and the prospective mask, which enables the
original head to make better predictions during inference
when given enough clicks.

4. Experiments
4.1. Experiment Configurations

Implementation Details. For the 5-channel input, we em-
bed user clicks into two Gaussian Maps with the amplitude
as 1, the standard derivation as 10. Following f-BRS [27],
we use the same Map Fusion block to adjust the 5-channel
input to 3-channel tensor using 1 × 1 convolutions and
LeakyReLU. So that the 3-channel tensor could be fed into
a ResNet-50 [9] backbone pretrained on ImageNet [4].
During inference, we applied the same cropping strategy
as f-BRS. Starting from the third click, we calculate a
minimum box around the predicted mask and expand
the box with 40% along sides. Then, we crop the image
according to the box and apply interactive segmentation
only on the Zoom-In region.

Training Hyper-Parameters. We train our CDNet on
SBD [8] train set with 8498 images. We crop training
images with 320 × 480. For data augmentation, we applied
random rotation, flip, random resize (0.75 1.25), random
brightness (-0.25 0.25), random contrast (-0.15 0.4), and
RGB shift (shift limit = 10). We use Adam optimizer with
β1 = 0.9, β2 = 0.999 for 120 epochs. The first two epochs
are the warm-up stage in which the learning rate increases
linearly from 0 to 5 × 10−4. For the remaining epochs,
cosine annealing learning rate is applied. We train our
model on 4 GPUs with batch size 32 using asynchronous
BatchNorm.

Training Click Simulation. Positive/ negative clicks are
simulated by sampling points inside/outside the ground
truth mask following [32]. The number of foreground and
background points is randomly chosen in [1,10] and [0,10]

with a probability decay rate of 0.7.

Evaluation Protocol. For fair comparisons, we follow
the protocol of previous works [32, 18, 18, 22, 27, 11], and
generate clicks automatically: The first click is placed on
the center of the ground truth mask. Following clicks are
placed at the center of the largest error region iteratively
until reaching the targeted Intersection over Union (IoU) or
the max click number.

Evaluation Metrics. We report the average Number of
Click (NoC) required to reach the target IoU and set the
target IoU as 85% and 90%. We set the default max num-
ber of clicks as 20 and report the Number of Failure (NoF)
that could not reach the target IoU with 20 clicks. Since re-
sponse time is important for industrial applications, we also
report Second Per Click (SPC) to measure the speed of our
method on a single 1080 Ti GPU.

4.2. Comparison to state-of-the-art

We compare our Conditional Diffusion Network with
other state-of-the-art click-based methods on four bench-
marks. Comparison results could be found in Tab. 1.

• GrabCut [26] : GrabCut dataset contains 50 images.
It is commonly used to evaluate the performance of
interactive segmentation models.

• Berkeley [24] : Berkeley dataset contains 96 images
with 100 instance masks for testing.

• SBD [8] : SBD is a relatively larger dataset with 2,802
test images with 6,671 instance masks.

• DAVIS [25] : DAVIS dataset is annotated for the
task of video object segmentation, which contains 50
videos. We sample the same 345 frames as BRS [11].

Result Analysis. As shown in Tab. 1, CDNet outperforms
other models on all four datasets with large margins. We
do not include FCANet [20] because it uses more training
data than other works.

Speed Analysis. Interactive segmentation is often used in
annotation tools that need immediate feedback. Hence, in-
ference speed is an important factor. FDM models the affin-
ity across the full image, but it is applied on features with
low resolution. PDM is applied on full-resolution logits, but
it diffuses the information in the local neighborhood. There-
fore, the budgets brought by FDM and PDM are affordable.
In Tab. 2, we compare the running speed of our method on
DAVIS dataset, with f-BRS [27] and BRS [11], the previ-
ous SOTA methods. f-BRS [27] and BRS [11] apply online
learning to fine-tune the parameters of the network, which
enables them to make accurate predictions with few clicks.
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GrabCut Berkeley SBD DAVIS
Method NoC@85 NoC@90 NoC@90 NoC@85 NoC@90 NoC@85 NoC@90
Graph cut [2] 7.98 10.00 14.22 13.6 15.96 15.13 17.41
Geodesic matting [7] 13.32 14.57 15.96 15.36 17.60 18.59 19.50
Random walker [6] 11.36 13.77 14.02 12.22 15.04 16.71 18.31
Euclidean star convexity [7] 7.24 9.20 12.11 12.21 14.86 15.41 17.70
Geodesic star convexity [7] 7.10 9.12 12.57 12.69 15.31 15.35 17.52
Growcut [28] – 16.74 18.25 – – – –
DOS w/o GC [32] 8.02 12.59 – 14.30 16.79 12.52 17.11
DOS with GC [32] 5.08 6.08 – 9.22 12.80 9.03 12.58
Latent diversity [17] 3.20 4.79 – 7.41 10.78 5.05 9.57
RIS-Net [18] – 5.00 – 6.03 – – –
CM guidance [22] – 3.58 5.60 – – – –
BRS [11] 2.60 3.60 5.08 6.59 9.78 5.58 8.24
f-BRS-B-50 [27] 2.50 2.98 4.34 5.06 8.08 5.39 7.81
Ours 2.22 2.64 3.69 4.37 7.87 5.17 6.66

Table 1. Evaluation results on GrabCut, Berkeley, SBD and DAVIS datasets. NoC@85/ 90 denotes the average Number of Clicks required
the get IoU of 85/ 90%.

However, online learning is time-consuming and hard to de-
ploy. Results show that CDNet not only surpasses BRS and
f-BRS on accuracy, but also is evidently faster.

Method baseline Ours BRS[27] f-BRS [27]
SPC (s) 0.20 0.23 1.47 0.32
NoC@90 8.42 6.66 7.93 7.81

Table 2. Comparison for inference speed on DAVIS dataset.
Speeds are measured with the same hardware settings.

Method NoF20@90 NoF100@90 NoC100@90
Baseline 84 64 24.03
BRS [11] 77 51 20.89
f-BRS [27] 78 50 20.70
Ours 65 48 18.59

Table 3. Experiment for NoC100 on DAVIS dataset. NoF100@90
denotes the Number of Failure images that could not reach IoU
0.9 under 100 clicks. NoC100@90 means the average Number of
Clicks required to reach IoU 0.9 under 100 clicks.

Analysis for 100 Clicks. Following f-BRS [27], in
Tab. 3, we also report the metric under 100 clicks on DAVIS
dataset. The motivation is that the traditional NoC20 eval-
uates images requiring 20 clicks and images requiring 200
clicks with the same NoC results. However, many images
need more than 20 clicks, which makes NoC20 not distin-
guishing for difficult images. Results show that our method
gets better performance than f-BRS with a clear margin un-
der the metric of NoC100.

4.3. Ablation Studies

We carry out plenty of ablation studies to verify the ef-
fectiveness of our method. We choose DAVIS [25] dataset

to evaluate the performance. Since the masks in DAVIS are
annotated with high quality, and images in DAVIS cover
various scenarios, the result on DAVIS is more convincing.
We first prove the effectiveness of our three core compo-
nents: FDM, PDM, and DT. Then we dive into details to
give an in-depth analysis for FDM and PDM.

(a) Baseline (b) With FDM (c) With FDM+PDM

Figure 6. Qualitative results on DAVIS dataset. Three columns
demonstrate the result of the baseline method, our method with
FDM, and our method with FDM+PDM.

Effectiveness of Core Components. In Tab. 4, we ver-
ify the effectiveness of FDM, PDM, and DT. The baseline
listed in the first row is a DeeplabV3+ [3] with 5-channel
input. Results demonstrate that three new modules all bring
steady improvements. Baseline+ with DT could serve as
a stronger baseline without extra computation during in-
ference. FDM brings clear improvement with only 0.01
seconds of inference time. PDM requires affordable 0.02
seconds, while brings significant improvement for the NoC.
Equipped with all three proposed components, CDNet posts
remarkable performance gains with reasonable computation
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Version DT FDM PDM NoC@80 NoC@85 NoC@90 NoF@85 NoF@90 SPC (s)
Baseline 4.27 5.60 8.42 52 84 0.198
Baseline+ ✓ 4.24 5.47 8.14 51 84 0.198
CDNet ✓ 4.10 5.40 7.64 51 72 0.208
CDNet ✓ 4.07 5.39 7.06 49 63 0.221
CDNet ✓ ✓ ✓ 3.89 5.17 6.66 46 61 0.230

Table 4. Ablation studies for core components of CDNet on DAVIS dataset. FDM denotes Feature Diffusion Module. PDM denotes Pixel
Diffusion Module. DT denotes Diversified Training. For the metrics, NoC stands for the average Number of Clicks required to get target
IoU. NoF denotes Numbers of Failure cases that could not reach the target IoU in 20 clicks. SPC means Second Per Click.

Version S D NoC@85 NoC@90 SPC (s)
Baseline 5.60 8.42 0.198
Auxiliary loss 5.60 8.61 0.198
Non-local [29] 5.87 8.81 0.202
Source2Full ✓ 5.56 8.49 0.203
Des2Des ✓ ✓ 5.62 8.10 0.208
Source2Des− ✓ ✓ 5.53 8.04 0.208
FDM ✓ ✓ 5.40 7.64 0.208

Table 5. Ablation studies for Feature Diffusion Module on DAVIS
dataset. S, D denotes Source Constrain, Destination Constrain.

overhead.
Qualitative comparisons for FDM and PDM are shown

in Fig. 6. Three columns demonstrate the results of base-
line, CDNet with FDM, and CDNet with FDM+PDM. FDM
enables the features of clicks to be generalized to wider re-
gions, which assists to correct large regions of false predic-
tion. PDM refines the boundary with low-level consistency,
which helps to capture fine details as shown in zoomed-in
patches. The positions of clicks are not exactly the same for
each column, because the clicks are generated according to
the evaluation protocol introduced in 4.1.
Experiments for FDM. In Tab. 5, we prove the effec-
tiveness of our proposed conditional affinity. First, as
FDM introduces the auxiliary supervision for the desti-
nation constraint, we add an auxiliary loss on the base-
line without FDM to make the comparison in the second
row. Then, we develop four variants of FDM with different
settings of source and destination constraints: Non-local
could be regarded as a variant of FDM without any con-
straint; Source2Full denotes the version only with source
constraint; Des2Des uses the destination constrain map in
FDM to constrain both the diffusion source and destination;
Source2Des− applies both source /destination constraints,
but remove the supervision for destination constraints and
make the model learn it in an end-to-end manner.

Results show that: 1) A single auxiliary loss could not
bring improvement. 2) Non-local exert a negative effect.
We analyze that it is hard to directly learn a conditional
affinity map with fixed convolutional filters for interactive
segmentation. 3) Single source /destination constrain do

bring improvements compared with the raw non-local layer,
but it is still sub-optimal compared with FDM. Thus, the
conditional affinity in FDM is proven to be effective.

Amplitude 0 0.2 0.5 1 2
NoC@90 6.89 6.87 6.86 6.66 6.72

Table 6. Experiment for the enhancement amplitude for PDM on
DAVIS dataset with 10 times of iteration.

Iterations 0 1 5 10 20
SPC (s) 0.208 0.216 0.224 0.230 0.243
NoC@90 7.54 7.15 6.74 6.66 6.66

Table 7. Experiment for the diffusion iteration of PDM on DAVIS
dataset.

Experiments for PDM. PDM constructs a conditional dif-
fusion source and diffuses the information in local regions
iteratively. The conditional diffusion source is constructed
by enhancing the logits around clicks using Gaussian ker-
nels as Eq. (7). In Tab. 6, we prove the effectiveness of the
conditional source by changing the amplitude of Gaussian
kernels. It can be observed that source enhancement brings
steady improvements, and we simply set the amplitude to 1.

In Tab. 7, we explore the trade-off between speed and
accuracy for different diffusion iterations. The performance
reaches saturation at about 10 times refinement. Consider-
ing the trade-off between accuracy and speed, we set the
iteration number as 10 in this work.

5. Conclusion

In this paper, we formulate click-based interactive seg-
mentation as a process of information diffusion and propose
Conditional Diffusion Network. We design a Feature Dif-
fusion Module and a Pixel Diffusion Module to propagate
information from clicked points to target regions. Experi-
ments show that our method is effective on four benchmarks
and sets new state-of-the-art.
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