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Abstract

Effectively structuring deep knowledge plays a pivotal
role in transfer from teacher to student, especially in seman-
tic vision tasks. In this paper, we present a simple knowl-
edge structure to exploit and encode information inside the
detection system to facilitate detector knowledge distilla-
tion. Specifically, aiming at solving the feature imbalance
problem while further excavating the missing relation inside
semantic instances, we design a graph whose nodes corre-
spond to instance proposal-level features and edges repre-
sent the relation between nodes. To further refine this graph,
we design an adaptive background loss weight to reduce
node noise and background samples mining to prune trivial
edges. We transfer the entire graph as encoded knowledge
representation from teacher to student, capturing local and
global information simultaneously.

We achieve new state-of-the-art results on the chal-
lenging COCO object detection task with diverse student-
teacher pairs on both one- and two-stage detectors. We
also experiment with instance segmentation to demonstrate
robustness of our method. It is notable that distilled
Faster R-CNN with ResNet18-FPN and ResNet50-FPN
yields 38.68 and 41.82 Box AP respectively on the COCO
benchmark, Faster R-CNN with ResNet101-FPN signifi-
cantly achieves 43.38 AP, which outperforms ResNet152-
FPN teacher about 0.7 AP. Code: https://github.
com/dvlab-research/Dsig.

1. Introduction
Thanks to massive visual data and computing power,

there is increasing advancement of advanced object detec-
tors driven by deep networks. The backbone networks,
such as ResNet [10] and VGG [30], facilitate modern de-
tectors to advance high-level vision research. These de-
tectors are powerful and contain numerous weights. They
consume considerable storage as well as computation, mak-
ing it hard to be deployed on mobile devices. Parallel
to previous research of network pruning [7, 6] and net-
work quantization [24, 42, 13, 16, 6], knowledge distilla-
tion [11, 41, 14, 23, 39, 27] transfers knowledge from the
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(f) ours with relation distillation

Figure 1. We use t-SNE [34] to show the topological structure of
the proposal’s features in different trained detectors on test image.
Each marker represents one proposal’s features.

teacher model to a much smaller student model. It con-
tributes in an effective way for network compression [6].

Feature Imbalance: Methods of [11, 27] for knowledge
distillation mostly dedicate to classifier distillation where
only the logits (to the final softmax layer) are considered.
However, transferring large global feature maps from the
teacher to student needs global feature regression, and may
introduces many trivial pixels to match.

To distill useful information in feature maps, methods
of [35, 31] pay attention to foreground location and use
human-made masks to extract close-to-instance features,
leaving a level of pixels unused in the whole feature maps.
Consequently, covering masks on feature maps may cause
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very few background features distilled, still losing useful
information in distillation. These two extreme cases raise
an essential question: how to leverage background features
and reach a promising balance?

Missing Instance-level Relations: Additionally, all pre-
vious methods [15, 35, 31] adopt the scheme to individually
transfer knowledge from teacher features to the student in
pixel level. In fact, object instances in a single image show
latent relation [12, 22] among each other, which is impor-
tant for the sampled instance features to form knowledge
base to facilitate later classification and regression tasks.

To better understand the relation, we visualize it using t-
SNE [34], which depicts the different topological structure
of instances in trained models in Figure 1. It reveals that the
relation space of the student and teacher is quite different in
terms of both shape and intensity w.r.t. the same test image.
Moreover, after the student is distilled with only pixel-to-
pixel regression [35], the topological structure is no longer
aligned with the teacher though it looks like better classified
than the student baseline. Here thus comes another major
question: how to better utilize the latent relation inside deep
neural networks?

Our Contributions: We address these two problems and
define an effective structured instance graph based on
each Region of Interest (RoI) in the detection system. In our
graph, nodes correspond to the features of RoI instances, we
collect these regional features that are sampled in the sub-
sequent classification and regression tasks.

Edges represent the relations between nodes and are
measured by their feature similarity. As the architectures
of student/teacher are heterogeneous in width and depth,
their output is with different topological structure, shedding
light on pairwise interrelation distillation. Different from
pixel-to-pixel distillation, pairwise interrelation distillation
utilizes information within a number of instances and intro-
duces a new type of regularization for student training.

The nodes are devised to overcome the feature imbal-
ance problem and the edges excavate the missing instance
relation. Rather than transferring the nodes and edges sep-
arately, we directly distill the structured graph from teacher
to student via a simple loss function, to close the gap be-
tween their knowledge space. In Figure 1(f), intuitively, dis-
tilling the entire graph via our method is actually to match
local feature patches while capturing the global topological
structures in the meantime.

However, distilling the graph is not easy. First, a large
proportion of background nodes in distillation provide too
much noisy supervision compared with foreground nodes.
Second, dense connection between nodes also contains
massive background-related edges (linked with background
node). These two issues both add harmful regularization
to overwhelm the distillation process. Here we introduce

two techniques. For nodes, we control the background node
loss as adaptive concerning the foreground/background ra-
tios. For edges, we design the Background Samples Mining
approach to prune trivial background-related edges, which
propels remaining ambiguous false negatives to be well reg-
ularized in distillation. More details are in Section 3.

Our method is easy to implement and can be stably
trained in the one/two-stage detection system without any
additional training strategies and tricks. In experiments,
our method outperforms all previous state-of-the-art detec-
tor distillation methods and achieves decent performance on
the COCO detection task [18] regarding various student-
teacher pairs. Also, we have validated our method on the
COCO instance segmentation task to emphasize that our
method is a general distillation framework.

2. Related Work
2.1. Object Detectors

Modern CNN-based object detectors are grouped into
two families according to their detection pipelines: (1) two-
stage object detectors with regional proposals method; (2)
one-stage object detectors with no prior proposals.

Two-stage object detectors mainly derive from R-
CNN [5] approach, which manages a number of candidate
object regions and forward each of them independently to
classify object instances and refine bounding boxes. To re-
duce the computational cost, SPP [9] and Fast R-CNN [4]
identify RoIs on feature maps adopting RoIPool to achieve
fast speed and high accuracy. Faster R-CNN [26] refined
this procedure by replacing proposals generation with learn-
able proposals generation module Region Proposal Net-
work (RPN). It was the leading framework for advanced
detectors [8, 3, 37, 1].

More recently, one-stage object detectors [19, 33, 25, 20]
were proposed for real-time detection while achieving con-
siderable accuracy. In this paper, we consider distilling both
one- and two-stage object detectors to show the generality
of our work.

2.2. Deep Knowledge Representation

Encoding and managing knowledge in deep neural net-
works are of vital importance in knowledge passing be-
tween teacher and student. Hinton et al. [11] regarded the
soft prediction logits as dark knowledge and matched them
in distillation. Besides the logits produced by the last layer,
Romero et al. [27] proposed that intermediate representa-
tions learned by teachers as hints can also serve as a form of
knowledge to improve student’s performance. Zagoruyko et
al. [39] leveraged the attention maps to guide student. Re-
cently, instead of using individual data examples, Park et
al. [23] introduced relation of image instances as a kind of
knowledge transferred from teacher to student in classifica-
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Figure 2. Diagram of our method for the distillation framework. Note we share the student’s RoI with teacher.

tion. Liu et al. [21] utilized pixel relations in large network
feature maps to facilitate student for semantic segmentation.

However, there exists no previous work to manage
knowledge in a structural form in distillation for a 2D ob-
ject detector. We also found in a single image, the regional
instances reveal more structured semantic correlations be-
tween each than classification or semantic segmentation. In
this paper, we build our graph edges based on the relation
of RoI instances as deep knowledge for distillation.

2.3. Detector Distillation

Distilling knowledge from large teacher detectors to stu-
dent is now an active research topic. Chen et al. [2]
proposed an end-to-end trainable framework for distilling
multi-class object detectors. Li et al. [15] matched all
features based on region proposals. Recently, Wang et
al. [35] utilized fine-grained imitation masks to distill the
near-object regions of feature maps for distillation. Sun et
al. [31] presented a task adaptive distillation framework
with the decay strategy to improve model generalization.
All of them do not elaborately employ background features.

Zhang et al. [40] proposed an attention-guided method
to distill useful information and introduced non-local mod-
ule [36] to capture relation inside pixels of backbone feature
maps. They ignore the inner structure inside semantic in-
stances. In contrast, our method designs a structured graph
that leverages both feature and inter-feature similarity. It
transfers knowledge in a structured manner, which makes it
possible to improve detector distillation effectively.

3. Our Method
In this section, we introduce the distillation framework.

The core idea is to generate a deep structured instance graph
inside both teacher and student, based on regional object in-
stances. This graph well exploits the deep knowledge inside
detection networks and can be regarded as a new knowl-

edge structure encoded in the detection system. Distilling
the structured graph enables not only sufficient knowledge
passing but also retains the whole topological structure of
the embedding space.

3.1. Structured Instance Graph

Our diagram is shown in Figure 2. It can be applied to
one- and two-stage detection networks. For illustration, we
choose the classical detection network Faster R-CNN [26]
for explanation. As for the one-stage detector, we can sim-
ply replace the RPN with the predicted boxes and build our
graph. Unlike other methods processing the whole back-
bone feature map, we pay our attention to building graphs
upon RoI pooled features since they are extracted based on
the RPN proposals and forwarded to the subsequent detec-
tion head. Moreover, they are semantic instances that are
identified by detectors. Thus, it is reasonable to model rela-
tions between instances other than independent pixels [21].

In the structured graph, each node corresponds to one
instance in an image, represented as the vectorized feature
of this instance. The relation of two instances forms the
edge between two corresponding nodes and is calculated
by their similarity in the embedding space. In fact, the def-
inition and semantics of edge are fundamentally different
from pixel similarity in [21]. It is notable that our nodes are
pooled and extracted by the learnable semantic proposals of
various scales and sizes, thus sharing strong semantic rela-
tion between each other. While those in [21] are sampled
and uniformly-distributed pixel blocks with the same sizes
within an image. The strong relation between instances
transferred from teacher to student would serve for inter-
pretable distillation in our method.

Note that we share the student’s RoIs with teacher to
align their sampled regions. It means the same RoIs are
used to extract features of student and teacher. For teacher
t and student s, the structured graph is expressed as Gt =
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(Vt, Et). Gs = (Vs, Es) can be obtained similarly, where V
and E denote the node and edge sets of each graph. More
definitions of nodes and edges are as follows.

3.1.1 Nodes

We directly construct nodes based on RoI pooled fea-
tures. They are assigned to foreground categories or back-
ground as per IoUs between proposals and ground truth
boxes. Different from previous work, we recognize that
the background-labeled region features can influence the
detector performance significantly. Rather than discarding
these background-labeled nodes whose IoU with ground-
truth boxes are less than a threshold (e.g. 0.5) to avoid back-
ground noise, we divide these nodes into foreground and
background in the nodes set and deal with the types differ-
ently via adaptive background loss weight (Section 3.2).

The nodes in G are denoted as V =
{vfg1 , vfg2 , ..., vfgn , vbg1 , vbg2 , ..., vbgm}, where vfgi is the
feature of i-th foreground instance xfg

i while vbgi is the
feature of i-th background instance xbg

i . The numbers
of foreground and background instances are n and m
respectively. Note that n and m vary in each image.

3.1.2 Edges

The edges in G are denoted as E = [eij ]k×k, where k is
the size of nodes set. epq is the edge of the p-th and q-th
nodes, denoting the similarity of corresponding instances in
the embedding space and expressed as

epq := sim function(vp, vq), (1)

where vi denotes the node of the i-th instance xi. Here we
adopt cosine similarity to define the edges of

s(vp, vq) =
vp · vq

∥vp∥ · ∥vq∥
,

because it is invariable to the length of feature in V . Obvi-
ously, G is a complete graph, since we assume that between
every pair of nodes in V there exists an edge. Further, since
the similarity function is symmetric, epq = eqp for any p
and q, making G an undirected graph and E a symmetric
matrix with elements all being 1 in principal diagonal.

3.1.3 Background Samples Mining

We discover that distilling dense edges produced by the
whole nodes set can be detrimental to training because a
large amount of background nodes bring overwhelming loss
in background-related edge distillation. A simple way of
moderating this degeneration is to establish a smaller edge
set with only foreground nodes.

However, pruning all background-related edges loses too
much information at the beginning of training since some of
them are hard negative samples that are quite informative in
training. So we design a method, called Background Sam-
ples Mining to select eligible background nodes along with
the entire foreground nodes to construct edges. Assuming
the original edge set based on only n foreground nodes is
E = [eij ]n×n, we expand it to Ê = [eij ]n̂×n̂ with more
node links from n × n to n̂ × n̂, which means we mine
n̂− n samples from background-labeled ones.

Inspired by OHEM [29], here we introduce a technique
to mine part of qualified background samples whose classi-
fication losses in teacher are greater than a threshold T . It
intuitively reveals that these background samples are prone
to misclassification, and thus can be reasonably added to the
foreground-only edges set (note all edges are linked with
foreground nodes), which still establishes a dense graph.

Samples with high confidence to be classified to back-
ground are not added to the set. It is natural that the ex-
panded edges set Ê degenerates to the prototype E if no sam-
ples are mined. We also provide detailed pseudo algorithms
of background samples mining and graph establishment in
supplementary material.

3.2. Graph Distillation Loss

The graph distillation loss LG is defined as the discrep-
ancy between structured graphs of teacher and student, con-
sisting of graph node loss LV and graph edge loss LE . We
simply utilize the Euclidean distance function to evaluate
these two losses as

LG=λ1 · Lfg
V +λ2 · Lbg

V +λ3 · LE

=
λ1

Nfg

Nfg∑
i=1

∥vt,fgi − vs,fgi ∥2+ λ2

Nbg

Nbg∑
i=1

∥vt,bgi − vs,bgi ∥2

+
λ3

N2

N∑
i=1

N∑
j=1

∥etij − esij∥2

(2)

where λ1, λ2, and λ3 represent the penalty coefficient bal-
anced in graph distillation loss. We set λ1 and λ3 to 0.5
based on grid search on the validation set, and define λ2 as
an adaptive loss weight for background nodes to mitigate
the imbalanced problem, expressed as

λ2 = α · Nfg

Nbg
, (3)

where the α is a coefficient empirically set to achieve a loss
scale comparable with other distillation losses.

The graph node loss LV is the imitation loss between
node set, it basically aligns student instance features with
those of teacher in a pixel-to-pixel manner. Traditionally,
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directly matching the feature map between two networks is
popular in distillation. However, in detection models, not
all the pixels in feature maps are forwarded to produce the
classification and box regression loss. Rather than utilizing
the overall feature map, we adopt the sampled foreground
and background features to produce the graph node loss. It
pushes the student to focus more on the RoIs along with
useful knowledge.

The graph edge loss LE is the imitation loss between
edges set. It leads to relation of student node alignment with
those of teacher. In experiments, simply mimicking fea-
tures cannot thoroughly mine the potential of knowledge.
When the highly semantic relation is not well distilled with
the node loss, edge loss would otherwise directly propel the
pairwise interrelation that is to be learned. Therefore, to
match the topological knowledge space between the student
and teacher, it is necessary to design the edge loss to capture
the global structured information in detectors.

3.3. Overall Loss

It is common in image classification to transfer knowl-
edge from teacher logits to student ones [11]. In detection,
we have our classification and bounding box head, in which
the output logits are matched using Kullback-Leibler (KL)
Divergence loss. A detailed definition of KLD loss is given
in supplementary material.

Incorporating graph and head logits KLD loss into the
detector loss, we form the overall student training loss as

L = LDet + LG + LLogits

= LRPN + LRoIcls + LRoIreg

+ LG + LLogits

(4)

where LRPN , LRoIcls, and LRoIreg represent the super-
vised RPN loss, RoI classification loss, and RoI bound-
ing box regression loss, LLogits represents the classification
and bbox regression logits KLD loss. Moreover, λ1, λ3, and
α in LG (Eq (2)) are kept unchanged during training.

4. Experiments
Experimental Benchmark We adopt the challenging ob-
ject detection benchmark COCO [18] to validate the ef-
fectiveness of our proposed method. Following the com-
mon practice, we train and validate all our COCO mod-
els on train/val2017, which contains around 118k/5k im-
ages respectively. For evaluation, the detection average
precision (AP) over IoU threshold is adopted, and we
report our results on COCO style AP metrics including
AP@[0.5:0.95], AP50, AP75, APS , APM , and APL.

Network Architecture and Initialization We build our
experiment upon Detectron2 [38], and adopt the off-the-
shelf pre-trained Detectron2 model zoo as teachers. In de-
tails, different sizes and architectures of backbone act as

teacher and student. We choose ResNet-FPN[17]-3x1 as
teacher architecture.

Apart from ResNets, we also adopt MobileNetV2 [28]
and EfficientNet-B0 [32] as backbones for student. We fur-
ther evaluate our method on one-stage detectors of Reti-
naNet [19] with these backbones. Note that 1x/3x schedule
in COCO means around 12/37-epoch training.

Training Details With the supervision of pre-trained
teacher models, we train students detection networks with
different types of architecture and capacity. We conduct
experiments on multiple student-teacher pairs of R18-R50,
R50-R101, R101-R152, MNV2-R50, and EB0-R101, to
verify our method. For training, all our experiments are
performed on 4 Nvidia RTX 2080Ti GPUs, and all students
stick to the 1x/2x/3x COCO training schedule. Detailed
training setting is provided in the supplementary material.

4.1. Main Results

We present our overall distillation performance of two-
stage detector Faster R-CNN as well as one-stage detector
RetinaNet for multiple student-teacher (Section 4) on the
COCO dataset [18]. For Faster R-CNN, as shown in Ta-
ble 1, student R18 improves its baseline by 4.19 AP, with
larger capacity, student R50/R101 still surpasses the base-
line of 2.54/1.38 AP, which proves the robustness of our
method even when the gap between student-teacher varies.

We also evaluate distilling detectors with heterogeneous
student-teacher (EB0-R101, MNV2-R50). Despite distilled
by totally different architectures, student EB0 and MNV2
still gets considerable AP gain (3.89/4.97), which manifests
that our graph can be effectively adopted in diversified types
of backbones. For RetinaNet, it is observed in Table 2 that
all students achieve stable gain w.r.t. baseline, which shows
that our method is generative for one-stage detector too.

Since 1x models are heavily under-trained, we also pro-
vide sufficiently trained 3x models results, see Table 1 2.
For two-stage Faster-RCNN, 3x-distilled models achieve
substantial 5.3 AP promotion on average, and some of them
even outperform the teacher by large margins. For one-
stage detector, there is 5.49 average AP improvement on
3x-distilled RetinaNet. These student-teacher-3x pairs all
yield satisfactory results, indicating that our method is ap-
plicable when training is even longer.

4.2. Comparison with other methods

We further validate our proposed method on the COCO
dataset [18] and compare with recent state-of-the-art meth-
ods using Faster R-CNN and RetinaNet student-teacher dis-
tillation pairs. Results are presented in Table 4 for fast 1x
schedule training, since [40] only has 2x schedule results, so
we add extra 2x schedule experiments. We don’t compare

1ResNet-FPN-3x: ResNet-FPN as backbone and train for 3x schedule.
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Detector Student Teacher Schedule APbox

Faster RCNN R18 - 1x 33.06
Faster RCNN R18 R50 1x 37.25
Faster RCNN R18 R50 3x 38.68
Faster RCNN - R50 3x 40.22

Faster RCNN R50 - 1x 38.03
Faster RCNN R50 R101 1x 40.57
Faster RCNN R50 R101 3x 41.82
Faster RCNN - R101 3x 42.03

Faster RCNN R101 - 1x 40.27
Faster RCNN R101 R152 1x 41.65
Faster RCNN R101 R152 3x 43.38
Faster RCNN - R152 3x 42.66

Faster RCNN EB0 - 1x 33.85
Faster RCNN EB0 R101 1x 37.74
Faster RCNN EB0 R101 3x 40.39
Faster RCNN - R101 3x 42.03

Faster RCNN MNV2 - 1x 29.47
Faster RCNN MNV2 R50 1x 34.44
Faster RCNN MNV2 R50 3x 36.93
Faster RCNN - R50 3x 40.22

Table 1. Object detection Box AP on COCO2017 val us-
ing Faster R-CNN with various backbones of ResNet18(R18),
ResNet50(R50), ResNet101(R101), EfficientNetB0(EB0), and
MobileNetV2(MNV2). Note that the dash refers to “none student
or teacher exists”, a student and teacher baseline.

Detector Student Teacher Schedule APbox

RetinaNet R18 - 1x 31.60
RetinaNet R18 R50 1x 34.72
RetinaNet R18 R50 3x 37.18
RetinaNet - R50 3x 38.67

RetinaNet MNV2 - 1x 29.31
RetinaNet MNV2 R50 1x 32.16
RetinaNet MNV2 R50 3x 35.70
RetinaNet - R50 3x 38.67

RetinaNet EB0 - 1x 33.35
RetinaNet EB0 R101 1x 34.44
RetinaNet EB0 R101 3x 37.86
RetinaNet - R101 3x 40.39

Table 2. Object detection Box AP on COCO2017 val using One-
Stage Detector RetinaNet with various backbones.

ours with [35] and [31] on RetinaNet because their methods
cannot be utilized in one-stage detector.

Results shows that our method outperforms all previ-
ous methods by a large margin with heterogeneous student-
teacher backbones and training schedules on both Faster R-
CNN and RetinaNet. Surprisingly, our method surpasses

Method Stu-Tch Schedule APbox APmask

Stu Baseline R18 1x 33.89 31.30
†PixelPairWise [21] R18-50 1x 33.63 30.43

†FGFI [35] R18-50 1x 34.39 31.49
Ours R18-50 1x 37.33 33.90
Ours R18-50 3x 39.05 35.49

Tch Baseline R50 3x 40.98 37.16

Stu Baseline R50 1x 38.64 35.24
†PixelPairWise [21] R50-101 1x 38.80 34.89

†FGFI [35] R50-101 1x 38.97 35.30
Ours R50-101 1x 40.06 36.28

AttentionGuided [40] R50-101 2x 41.70 37.40
Ours R50-101 2x 41.64 37.52
Ours R50-101 3x 42.23 38.06

Tch Baseline R101 3x 42.92 38.63

Table 3. Instance segmentation results AP on COCO2017 val us-
ing Mask R-CNN with ResNet backbones. Stu and Tch refers
to student and teacher respectively. †Methods are reproduced by
ourselves, other results are obtained from corresponding papers.

the pixel pairwise distillation method [21] on four distilla-
tion pairs by 2.68 AP on average, indicating that the dis-
tillation of instance relations makes more difference than
pixel relations which is designed for semantic segmenta-
tion in detection task. Also, especially in smaller models,
our method improves state-of-the-art [40] by 1.1/0.9 AP on
Faster R-CNN and RetinaNet respectively in 2x schedule,
even though we didn’t add extra parametric modules.

4.3. Experiments for Instance Segmentation

Our distillation framework can be easily extended to
the instance segmentation task. We adopt Mask R-
CNN [8] as our architecture and evaluate two student-
teacher pairs (R18-R50, R50-R101). Models are trained on
COCO2017 images that contain annotated masks, and we
report the standard evaluation metric APbox and APmask

based on Box IoU and Mask IoU respectively. All other
training setting is the same as that described in Section 4.

Results are shown in Table 3. Distilled via our method,
Mask R-CNN with ResNet18 surpasses the PixelPair-
Wise [21] by 3.47 point APmask. In larger backbones, dis-
tilled Mask R-CNN with ResNet50 improves the state-of-
the-art [35] and [40] by 2.41/0.12 APmask in 1x/2x training.
Similarly, student-3x models exhibit even higher improve-
ment, bringing 3.5 point APmask gain on average to the stu-
dent baseline. Basically, the gaps shorten in APmask are
less obvious than that in APbox, and it is principally caused
by the fact that we do not apply our method to mask head.

4.4. Visualization of Graph

To better understand how a structured graph manages ex-
ploited deep knowledge, we visualize the structured graph

4364



Detector Method BackBone Schedule AP AP50 AP75 APS APM APL

Faster RCNN Student Baseline ResNet18 1x 33.06 53.43 35.19 18.83 35.64 42.73
Faster RCNN Teacher Baseline ResNet50 3x 40.22 61.01 43.81 24.15 43.52 51.97

Faster RCNN † FGFI [35] ResNet18 1x 34.16 54.25 36.70 18.79 36.92 44.73
Faster RCNN †PixelPairWise [21] ResNet18 1x 33.67 54.09 35.92 19.65 36.16 43.22
Faster RCNN †TaskAdap [31] ResNet18 1x 35.77 55.22 38.74 19.32 38.72 47.27
Faster RCNN Ours ResNet18 1x 37.25 57.09 40.48 20.84 39.94 49.61
Faster RCNN AttentionGuided [40] ResNet18 2x 37.00 57.20 39.70 19.90 39.70 50.30
Faster RCNN Ours ResNet18 2x 38.09 58.33 41.26 21.17 41.09 50.16

Faster RCNN Student Baseline ResNet50 1x 38.03 58.91 41.13 22.21 41.46 49.22
Faster RCNN Teacher Baseline ResNet101 3x 42.03 62.48 45.87 25.22 45.55 54.59

Faster RCNN †FGFI [35] ResNet50 1x 38.85 59.62 42.16 22.68 42.20 50.48
Faster RCNN †PixelPairWise [21] ResNet50 1x 38.29 58.47 41.83 21.95 41.67 49.33
Faster RCNN †TaskAdap [31] ResNet50 1x 39.89 60.03 43.19 23.73 43.23 52.34
Faster RCNN Ours ResNet50 1x 40.57 61.15 44.38 24.17 44.06 52.80
Faster RCNN AttentionGuided [40] ResNet50 2x 41.50 62.20 45.10 23.50 45.00 55.30
Faster RCNN Ours ResNet50 2x 41.55 62.15 45.27 24.44 45.34 53.95

Faster RCNN Student Baseline MNV2 1x 29.47 48.87 30.90 38.86 30.77 16.33
Faster RCNN Teacher Baseline ResNet50 3x 40.22 61.01 43.81 24.15 43.52 51.97

Faster RCNN †FGFI [35] MNV2 1x 30.27 49.87 31.60 17.03 31.82 40.06
Faster RCNN †PixelPairWise [21] MNV2 1x 31.52 50.72 33.35 17.66 33.52 40.75
Faster RCNN †TaskAdap [31] MNV2 1x 31.90 50.54 34.26 16.92 33.46 42.82
Faster RCNN Ours MNV2 1x 34.44 53.85 37.04 18.53 36.30 46.92

RetinaNet Student Baseline ResNet18 1x 31.60 49.61 33.36 17.06 34.80 41.11
RetinaNet Teacher Baseline ResNet50 3x 38.67 57.99 41.48 23.34 42.30 50.31

RetinaNet †PixelPairWise [21] ResNet18 1x 32.48 50.66 33.86 17.30 35.82 42.71
RetinaNet Ours ResNet18 1x 34.72 53.12 36.73 19.41 38.05 45.93
RetinaNet AttentionGuided [40] ResNet18 2x 35.90 54.40 38.00 17.90 39.10 49.40
RetinaNet Ours ResNet18 2x 36.78 55.35 38.98 20.61 40.35 47.84

Table 4. Object detection results Box AP, vs. state-of-the-art method on COCO2017 val.

from trained student/teacher Faster R-CNN detector. Re-
sults are shown in Figure 3. We visualize one image from
the COCO dataset. It is observable that the graph nodes
extracted from the trained teacher (Figure 3(b) bottom) are
well-clustered in embedding space. However, for the stu-
dent (Figure 3(b) top), the nodes labeled as person are
mixed with those with label dog – these nodes indeed scatter
compared with the teacher.

For edges, the similarities are much closer within
the same classes and are more discriminative in differ-
ent classes. Obviously, the person, refrigerator, dining
table, and dog nodes exhibit relatively close inter-class
relation, mainly due to the fact that these nodes’ fea-
tures share highly-overlapped regions. However, a good
detector should be able to detect largely occluded ob-
jects. In teacher, some edges (Figure 3(c) bottom) ex-
hibit weak intensity (person↔refrigerator and dining ta-

ble↔person&dog). But the counterparts (Figure 3(c) top)
in student still have strong links, which make them hard to
be correctly classified. These two phenomena exhibited in
the visualization further demonstrate the necessity of our
method to structurally distill knowledge. We show more
COCO examples in our supplementary material.

In Figure 3(d), to compare ours with pixel-pixel method
FGFI [35] quantitatively, we adopt risk function to evalu-
ate the discrepancy between edges produced by them and
teacher as D(Et, Es) = Eei,j∼E∥eti,j − esi,j∥2 during train-
ing, along with the detection performance AP on the COCO
benchmark. Obviously, without distilling pairwise relation,
the edge distance gap still remains too large between FGFI
and the teacher, while our method achieves nearly 0 dis-
tance towards teacher, resulting in substantial improvement
in terms of COCO AP than the pixel-to-pixel scheme.
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(b) Node Visualization
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Figure 3. Graph visualization on test images. The top row of (b)&(c) represents student results while the bottom row is with teacher results.
In (b), we adopt t-SNE [34] to project high-dimensional node features to 2D space – each marker represents one node. In (c), we visualize
edges as a symmetric matrix by heatmap. The darker matrix element is, the closer relation between two corresponding nodes have (best
view after zoom-in). In (d), we quantitatively compare the edges distance and detection performance of FGFI [35] and ours.

STU EDG FGN BGN AP AP50 AP75 APS APM APL

✓ 33.06 53.43 35.19 18.83 35.64 42.73
✓ ✓ 33.95 53.81 36.54 18.56 36.72 44.16
✓ ✓ ✓ 36.64 56.89 39.60 21.21 39.47 48.43
✓ ✓ ✓ ✓ 37.17 57.36 40.17 21.05 39.97 48.63

Teacher 40.22 61.01 43.81 24.15 43.52 51.97

Table 5. Ablations. We adopt R18-R50 student-teacher pair trained on COCO2017 train and tested on COCO2017 val. We conduct
Student Baseline (STU) and gradually add Edge (EDG), ForeGround Node (FGN), BackGround Node (BGN).

4.5. Ablation Study

As shown in Table 5, we conduct experiments on dif-
ferent combinations of components for graph distillation to
highlight that each part of our proposed method makes dif-
ference. We have three different modules contributing to
graph distillation loss in our framework. They are 1) edge,
2) foreground node, and 3) background node.

Edges Preserving the same edge structures between stu-
dents and teachers contributes 0.89 point AP to distilla-
tion performance. It indicates that even without straightfor-
ward pixel-pixel mimicking, merely aligning relations can
be an essential regularization to preserve topological struc-
ture, which proves that our method is feasible.

Foreground Nodes Imitating student features in
foreground-labeled nodes brings about 2.69 AP gain, which
is greater than that from edges, it means that distilling fore-
ground features effectively enables the student networks to
focus more on the regions of foreground instances. This
suggests that features matching in these foreground-labeled
areas is more salient for the student to imitate than the

global high-dimensional feature maps without much
noise. Moreover, edges cooperating with nodes yield more
promising results, which verifies the effectiveness of both
parts of the graph – they are complementary.

Background Nodes Adding imitation of student features
in background-labeled regions brings extra AP gain, which
is 0.53 compared to foreground nodes. This suggests that,
even on the basis of foreground nodes imitation, seemingly
useless background nodes play an important role in distill-
ing students when balanced via our adaptive background
loss weight.

5. Conclusion
In this paper, we have proposed a new Structured In-

stance Graph to manage instances in the detection distilla-
tion system. We adopt it to leverage useful local proposal-
level features while maintaining their global semantic inter-
relations for distillation. Extensive experiments are con-
ducted to manifest the effectiveness and robustness of dis-
tilling the whole structured graph regarding both object de-
tection and instance segmentation distillation tasks.
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