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Abstract

Domain Adaptive Object Detection (DAOD) relieves the
reliance on large-scale annotated data by transferring the
knowledge learned from a labeled source domain to a new
unlabeled target domain. Recent DAOD approaches resort
to local feature alignment in virtue of domain adversarial
training in conjunction with the ad-hoc detection pipelines
to achieve feature adaptation. However, these methods are
limited to adapt the specific types of object detectors and
do not explore the cross-domain topological relations. In
this paper, we first formulate DAOD as an open-set domain
adaptation problem in which foregrounds (pixel or region)
can be seen as the “known class”, while backgrounds (pixel
or region) are referred to as the “unknown class”. To this
end, we present a new and general perspective for DAOD
named Dual Bipartite Graph Learning (DBGL), which cap-
tures the cross-domain interactions on both pixel-level and
semantic-level via increasing the distinction between fore-
grounds and backgrounds and modeling the cross-domain
dependencies among different semantic categories. Exper-
iments reveal that the proposed DBGL in conjunction with
one-stage and two-stage detectors exceeds the state-of-the-
art performance on standard DAOD benchmarks.

1. Introduction
Object detection has gained unprecedented development

in the past decade, owing to the renaissance in deep learning
and the explosive increase of labeled training data. Never-
theless, the performance gains rely on an assumption that
the training and test data are drawn from identical distribu-
tion, which is challenged to be satisfied in real-world ap-
plications. Moreover, collecting large-scale annotated data
in various domains is impractical. An intuitive solution is
to directly apply the off-the-shelf object detection models
trained on the source domain to a new domain. However,
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Figure 1: We formulate DAOD as an open-set domain
adaptation problem, where foregrounds refer to the “known
class” and backgrounds refer to the “unknown class”.

domain shift [36] hinders the deployment of models and
emerges as an inevitable challenge. Unsupervised Domain
Adaptation (UDA) [31] serves as a plausible solution to
tackle this problem by facilitating knowledge transfer and
mitigating the distributional shift between domains. The de-
sign principle of UDA is to learn domain-invariant features
and ensure that the learned features will preserve a low risk
on the source domain. Existing UDA methods mainly fall
into two types, i.e., statistics matching [15, 12, 26, 49, 35]
and adversarial learning [13, 42, 27, 5, 19]. In this paper, we
aim to investigate the UDA techniques for object detection,
namely, Domain Adaptive Object Detection (DAOD).

Considering the local nature of detection tasks, most ex-
isting DAOD approaches strive to change the emphasis of
adaptation from holistic to local in virtue of elaborate fea-
ture alignment modules regarding the foreground objects.
However, they are highly model-related, that is to say, their
adaptation process relies on the specific pipelines of detec-
tion models. For example, most of them [7, 52, 38, 4, 6,
47, 51, 46] resort to incorporate the adversarial training [13]
within Faster R-CNN [37] based on the region proposal step
to generate a sparse set of proposals (instance-level fea-
tures). Given the dense prediction property of SSD [25],
Kim et al. [21] propose to jointly reduce the false positives
and false negatives during hard negative mining step. How
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to bridge the gap between two-stage and one-stage DAOD
is yet to be thoroughly studied. On the other hand, existing
feature alignment techniques proposed by previous DAOD
works focus on achieving one-to-one semantic matching
while neglect the inherent topological structure regarding
the relations among different foreground objects.

To tackle the above challenges, we first formulate DAOD
as an Open Set Domain Adaptation (OSDA) problem [34].
Compared to closed set UDA problem, which assumes
that the source and target domains share an identical la-
bel space, OSDA should additionally identify and isolate
the unknown class before reducing the distributional shift
of known classes between domains. In DAOD, as shown in
Fig. 1, we found that backgrounds would be distinct across
domains and thus can be seen as the “unknown class”, i.e.,
backgrounds are non-transferable, while the foregrounds
have more common features across domains. In this regard,
strictly matching the whole distribution across domains will
be risky and result in inferior performance. This motivates
us to design DAOD algorithms in the following two steps:
(1) Make a distinction between foreground and background
feature representations in an unsupervised manner. (2) Ap-
ply adaptation to the foreground objects in both domains.

Motivated by this, we propose a general DAOD frame-
work called Dual Bipartite Graph Learning (DBGL) to
model the cross-domain topological relationships on pixel-
level and semantic-level respectively, and learn fine-grained
correspondence for knowledge transfer. The proposed
DBGL can be seamlessly incorporated into any modern
object detectors. To be specific, DBGL consists of two
components, namely, Pixel-level Bipartite Graph Learn-
ing (PBGL) and Semantic-level Bipartite Graph Learn-
ing (SBGL). We search pixel-wise correspondence by only
retaining mutual nearest neighbors that satisfy the mutual
relation consistency requirement, and the pixel-level graph
is constructed based on the searched pixel pairs that be-
long to the same foreground category across domains. Pixel
prototype are introduced to reduce the influence of back-
ground pixels. Through message-passing, each foreground
node aggregates the features from its neighbors of oppo-
site domain, which naturally separates the foregrounds and
backgrounds and strengthens the semantic correspondence.
SBGL semantically models the cross-domain foreground
object relations via bipartite graph learning. To identify and
isolate the backgrounds, we first develop a cross-domain
similarity regularization strategy to increase the similarity
between foreground nodes and penalize the ones of nodes
that are more likely to be backgrounds. To enhance the node
features, we propose to utilize the internal node feature sim-
ilarities to endow the node with context-aware ability and
mitigate the negative influence of outlier nodes.

Our contributions can be summarized as follows:

• We formulate DAOD as an OSDA problem, which

is not discussed by the literature and gives a hint
to bridge the gap between theory and algorithm for
DAOD. Then, we provide theoretical analysis on the
upper bound of the expected target error under OSDA
settings and reveal how to empirically optimize this
upper bound in the context of our learning framework.

• We propose a new and general method that bridges
the gap between one-stage and two-stage DAOD. The
proposed DBGL, which jointly explores the cross-
domain pixel-wise and semantic-wise topological rela-
tions, can discriminate the foreground-background and
match foreground features in a more precise way.

• We conduct extensive experiments on three bench-
marks based on two-stage (Faster R-CNN [37]) and
one-stage (SSD [25]) object detectors. Experimental
results reveal that our approach significantly outper-
forms the state-of-the-arts in DAOD.

2. Related Work
Unsupervised Domain Adaptation (UDA). A typical solu-
tion for UDA is to align the source and target feature repre-
sentations in the shared latent space by incorporating well-
defined divergence measures into deep architectures, such
as Maximum Mean Discrepancy (MMD) [43, 26], Cor-
relation Alignment (CORAL) [41], Central Moment Dis-
crepancy (CMD) [49], and Optimal Transport (OT) dis-
tance [23, 48]. DANN [14] proposes a domain-adversarial
training strategy to adversarially confuse a domain discrim-
inator with the help of a Gradient Reversal Layer (GRL).
ABG [29] develops an adversarial bipartite graph learn-
ing framework to model the source-target interactions for
video-based UDA. Kang et al. [20] explore the pixel-level
association (one-to-one) in the context of cross-domain se-
mantic segmentation. However, they do not consider the
topological correspondence between domains and thus fail
to endow the adaptation model with cross-domain reason-
ing ability. More importantly, previous UDA works focus
on the closed set setting and cannot be simply extended to
OSDA [34]. Current OSDA methods [24, 1, 32, 30] are
tailed for classification tasks and cannot generalize to detec-
tion task, where the foreground objects (positive samples)
and backgrounds (negative samples) are naturally seen as
the so-called known and unknown classes.
UDA for Object Detection. Domain Adaptive Faster R-
CNN [7] is the first deep DAOD method that mitigates the
domain disparity on both image-level and instance-level by
domain adversarial training. Considering the local adapta-
tion property of DAOD, most recent works [52, 38, 4, 16,
6, 47, 51, 46, 17, 40, 50] strive to change the emphasis of
feature adaptation from global to local, and then explicitly
align the derived local features on different levels. To be
specific, Saito et al. [38] design a weak global alignment
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module to avoid fully matching of the whole data distribu-
tions. Chen et al. [6] devise a hierarchical transferability
calibration network to harmonize the contradiction between
transferability and discriminability on different levels(i.e.,
local-region, image, and instance). Xu et al. [47] and
Zheng et al. [51] propose to perform fine-grained instance-
level adaptation with respect to foreground objects based
on prototype alignment [45, 5]. Zhao et al. [50] develop a
collaborative self-training strategy to train RPN and RPC
with high-confidence ROIs. On the other hand, Kim et
al. [21], which is the only one-stage DAOD work, propose
a weak self-training method to mitigate the negative effects
of inaccurate pseudo-labels for adapting SSD [25]. Despite
their strong capability on adapting certain detectors, cur-
rent DAOD works can not be extended to distinct detection
pipelines and thus fail to form a general adaptation frame-
work. In addition, theoretical analysis regarding the statisti-
cal upper bound of DAOD is less investigated. And how to
model the cross-domain topological relationships for cap-
turing the interactions between two set of entities remains
the boundary to explore.

3. Theoretical Motivation
We theoretically analyze the motivation of our approach

with respect to the upper bound of OSDA, making using
of statistical learning theory of domain adaptation [11, 2,
3]. Before introducing the generalization bound, we first
provide the problem setting and definitions.

Definition 1. Open-Set Domain Adaptation (OSDA). Sup-
pose that we have a source domainDs = {(xsi , ysi)}

ns
i=1 of

ns labeled samples and a target domain Dt = {xtj}
nt
j=1

of nt unlabeled samples. Ds and Dt are drawn from
P (Xs,Ys) and Q(Xt,Yt), P 6= Q. The source and tar-
get label spaces share K known classes and individually
include a unknown class us and ut, which is different in
both domains (i.e., us 6= ut). The goal of OSDA is to learn
an optimal target classifier h : Xt → Yt.

Definition 2. Source and Target Risks. The source risk
Rs(h) and target risk Rt(h) of h w.r.t. L under source dis-
tribution P and target distribution Q are defined as

Rs(h) , E(x,y)∼PL(h(x), y) =

K+1∑
i=1

πs
iRs,i(h)

Rt(h) , E(x,y)∼QL(h(x), y) =

K+1∑
j=1

πt
jRt,j(h)

where πsi = P (y = i) and πtj = Q(y = j) are class-prior
probabilities of P and Q. Then, we have

Rs(h) =

K∑
i=1

πs
iRs,i(h) + πs

K+1Rs,K+1(h) = R∗s(h) + ∆s

Rt(h) =
K∑

j=1

πt
jRt,j(h) + πt

K+1Rt,K+1(h) = R∗t (h) + ∆t

Given the hypothesis spaceH with a condition that con-
stant function K + 1 ∈ H, for ∀h ∈ H, the expected error
on target samples Rt(h) is bounded as,

Rt(h)

1− πt
K+1

≤ R∗s(h) + dH∆H(PX|Y≤K , QX|Y≤K) + λ

+
∆t

1− πt
K+1

(1)

where the shared error λ = minh∈H
R∗

t (h)
1−πt

K+1
+ R∗s(h),

R∗s(h) =
∑K
i=1 π

s
iRs,i(h), and ∆t = πtK+1Rt,K+1(h).

We show the derivation of Inequality (1) in the supplemen-
tary material. According to Inequality (1), the target error is
bounded by four terms: (1) expected error on the known
classes of source domain R∗s(h); (2) domain divergence
dH∆H(PX|Y≤C , QX|Y≤C); (3) shared error λ of the ideal
joint hypothesis h∗; (4) target open set risk ∆t.

Remark 1. R∗s(h) is expected to be small and can be
easily minimize since we have source ground truth labels.
dH∆H(PX|Y≤C , QX|Y≤C) is associated with domain dis-
parity and can be minimize by domain alignment step. λ
is associated with the class-wise conditional shift and can
be minimize by category alignment, i.e., SBGL in our ap-
proach. The target open set risk ∆t tends to be large when
an approach does not regard the target backgrounds as an
unknown class. In our approach, we optimize this term by
the proposed DBGL to make a distinction between known
and unknown classes. In a nutshell, our work aims to ex-
plicitly optimize the upper bound of expected target error
by jointly minimizing the aforementioned four terms.

4. Dual Bipartite Graph Learning

Framework Overview. As demonstrated in Figure 2, the
proposed DBGL consists of two components, i.e., PBGL
and SBGL. PBGL builds the cross-domain pixel-wise cor-
relations (based on low-level features) with respect to the
possible foreground pixel pairs and explicitly enhances their
connections via node classification, which enforce the sepa-
ration between foreground and background pixels in an un-
supervised manner. SBGL models the cross-domain inter-
class interactions based on a set of instance-level (Faster R-
CNN [37]) or per-anchor (SSD [25]) features, and hereby
strengthens the context-aware ability and the semantic con-
sistency of high-level features. Note that the proposed
PBGL and SBGL are complementary to each other. Specifi-
cally, PBGL alleviates the negative influence of asymmetric
semantic space for SBGL by making a clear distinction be-
tween foregrounds and backgrounds, and the corresponding
class alignment learned by SBGL can boost the accuracy
and robustness of separation guided by PBGL.
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Figure 2: The overall architecture of DBGL, which mainly includes the pixel-level and semantic-level bipartite graph learning
modules, i.e., PBGL and SBGL. CDA denotes the category-aware domain alignment loss.

4.1. Pixel-Level Bipartite Graph Learning

For the low-level features, existing DAOD methods usu-
ally focus on strongly aligning them [7, 38, 16] or trying
to capture the foreground objects via attention-like mod-
ules [6, 51, 17]. However, strong feature alignment will in-
evitably blend the foreground and background features, and
thus cause negative transfer. Moreover, those attention-like
modules extract the foreground features guided by source
supervision, which makes adaptation process source-biased
and error-prone. To discriminate the foregrounds and back-
grounds, the proposed PBGL models the foreground pixel-
level correlations between domains by message-passing and
feature aggregation, which avoids “hard” separation or fea-
ture reweighing that were widely adopted by prior works.

Suppose that we are given the source and target 3D fea-
ture maps Fs, Ft ∈ RC×H×W extracted from shallow layer
of the backbone network. Then, we aim to project the spa-
tial visual features Fs and Ft to node domain, i.e., con-
structing a pixel-level bipartite graph GP = {VPs ,VPt , EP },
where VPs and VPt denotes the source and target node sets.
Ep stands for the set of edges, which measure the node affin-
ity of pixel-level features between domains. An intuitive
approach to construct edges is to linking all pixels across
domains, which yet will incur redundant and bring in hefty
computation. Thus, we propose a more efficient approach
by only retaining mutual nearest neighbors that satisfy the
mutual relation consistency requirement.

We first define the concept of pixel prototype for each
source category, which denotes the mean feature of pixels
belonging to the same object categories within a source im-
age. Here, the category label of a source pixel is depended
on the object annotation and bounding box, and the bound-
ing box inevitably contains noisy background pixels. Thus,
pixel prototype can alleviate the negative influence of back-
grounds. The definition is formulated as,

cks =
1

|Iks |
∑
F i

s∈Iks

F is , k = {1, 2, . . . ,K} (2)

where i is the pixel index, and Iks is the set of pixels labeled
with class k in a source feature map Fs. Then, we utilize cks
to select pixels in Iks that have higher similarity with cks , i.e.,
if cos(cks , F

i
s) > τ , F is is added into Îks , where cos(·, ·) de-

notes the cosine similarity, τ is a threshold, and Îks denotes
the selected set.

For each source pixel i∗ in Îks , assume that j′ is its near-
est neighbor in the target domain. Similarly, i′ is the nearest
neighbor of target pixel j′ in the source domain. If i′ also
belongs to the category k, we will assign the target pixel j′

with pseudo-label k. By doing so, we can obtain two set
of selected pixels in both domains, i.e., VPs and VPt . Bipar-
tite graph edges Ep aim to represent the similarities between
nodes. To mitigate the impact of noisy background pixels,
we let the similarity be learnable,

Epij = σ([F is , F
j
t ]θpe) (3)
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where σ denotes the sigmoid function and θpe is the learn-
able parameter. To conduct graph convolution on the con-
structed bipartite graph GP , we augment its original form,

V̂P = [VP
s ,VP

t ], (4)

ÊP =

(
0 EP

(EP )T 0

)
(5)

Then, the augmented bipartite graph ĜP = {V̂P , ÊP }
can be learned by utilizing the modern Graph Convolu-
tional Networks (GCN) techniques [22]. We stack multiple
graph convolution layers in our implementation. Specif-
ically, the graph convolution is recursively conducted as:
X(l+1) = ReLU

(
ÂX(l)W (l)

)
, where W l is the param-

eter matrix, X l are the hidden features of the l-th layer
(where 1 ≤ l ≤ L), and Â is the adjacency matrix. To
further distinguish the foreground and background nodes,
we conduct node classification in the bipartite graph. Note
that the selected source and target pixels have ground-truth
labels and pseudo labels, respectively. Formally, the last
layer of pixel-level bipartite graph (GCN1) predicts the la-
bel using a classifier and can be written as follows,

ŷ = softmax(FC(GCN1(x, ĜP ))), (6)

where ŷ is the predicted label, FC is a fully-connected
layer, and x is the feature of source or target nodes. The
node classification loss is denoted by LGCN1

NC .

4.2. Semantic-Level Bipartite Graph Learning

Learning semantic correlations between domains is the
central problem of domain adaptation. In this regard, nu-
merous elaborate semantic alignment strategies have been
proposed. Among them, prototype alignment [45, 5, 33]
serve as the representative approach to achieve semantic
consistency. Recent DAOD works [47, 51] also introduce
this approach to align foreground objects with the same cat-
egory labels based on a sparse set of object proposals.

Despite their general efficacy for various tasks ranging
from classification to detection, these prototype alignment
approaches are still confined by several limitations. (1)
Prototype alignment only considers the one-to-one cross-
domain correspondence without exploring the inter-class re-
lations, which contain rich information with respect to the
topological structure of the semantic space. (2) When com-
puting the prototype of each foreground object category
based on the embedded representations, it will inevitably
include some negative samples (i.e., backgrounds), which
make the adaptation process risky and uncontrolled. (3)
Prototype alignment is more suitable for adapting two-stage
detectors since they have explicit instance-level features
generated by the region proposal mechanism. By contrast,
one-stage detectors usually require per-pixel prediction and

thus including many negative candidates. (4) Vanilla proto-
type alignment cannot be simply applied to an OSDA prob-
lem since the source and target label spaces are asymmetric.

Inspired by the discussions above, we devise a semantic-
level bipartite graph (GCN2) to compensate for the lack of
topological modeling w.r.t. inter-class relations between do-
mains. Let the bipartite graph be GS = {VSs ,VSt , ES}. The
source node set is VSs = {vsi}

Np

i=1 ∈ RNp×d and the target
node set is VSt = {vtj}

Np

j=1 ∈ RNp×d, where vsi and vtj
denote the ROI-based instance-level features generated by
RPN,Np represents the number of proposals, and d denotes
the node feature dimension. ES denotes the set of edges.
Note that we take Faster R-CNN as an exemplar to illus-
trate the technical details of SBGL and then generalize to
one-stage detector (SSD) in experiments (cf. Section 5).
Cross-Domain Similarity Regularization. Firstly, we
need to characterize the correspondence between two in-
dependent node sets, i.e., define the adjacency matrix A ∈
RNp×Np , which associates each edge (vsi , vtj ) with its el-
ement Aij . An optional approach is to traverse all possi-
ble pairs between source and target proposals to compute
their similarity. Intuitively, node pairs with higher similar-
ity should be assigned larger weights. However, considering
the asymmetry of OSDA problem, we need to make a dis-
tinction between known and unknown classes; otherwise,
the message-passing process may make the target nodes ag-
gregate biased semantic information.

To identify and isolate the backgrounds, we propose a
Cross-Domain Similarity Regularization (CDSR) strategy
to produce reliable node pairs between domains. Our mo-
tivation is to regularize the similarity measure such that the
nearest neighbor of a source node, in the target domain,
is more likely to have as a nearest neighbor this particular
source node, i.e., assign large weights to nodes from Vs and
Vt that are mutual nearest neighbors. However, we found
that vt1 being aK-NN of vs does not indicate that vs is aK-
NN of vt, which is also known as hubness problem [9, 8].
In high-level semantic space, some nodes are more likely
to be the nearest neighbors of many other nodes (e.g., easy
positives), but some others may be not nearest neighbors of
any node (e.g., hard negatives). On bipartite graph GS , the
neighborhood associated with a source node vs is denoted
by NT (vs). All K elements of NT (vs) are nodes from Vt.
Similarly, the neighborhood associated with a target node vt
is represented by NS(vt). The mean similarity of a source
node vs to its target neighborhood is denoted by,

rT (vs) =
1

K

∑
vt∈NT (vs)

cos(vs, vt), (7)

Likewise, the mean similarity of a target node vt to its
source neighborhood is represented by rS(vt). Formally,

1We omit the subscripts i and j for simplicity.
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we utilize these similarities to define a cross-domain simi-
larity measure CDSR(·, ·) between nodes,

CDSR(vs, vt) = σ(2 cos(vs, vt)− rT (vs)− rS(vt)) (8)

By doing so, we can obtain the adjacency matrix A.

Node Feature Enhancement. In DAOD, the target high-
level features are prone to be somewhat biased and inac-
curate to represent an object under the presence of domain
shift. For example, in the series of domain adaptive Faster
R-CNN, the target region proposals are randomly gener-
ated and cannot be divided into positive or negative sam-
ples due to the absence of ground-truth labels. Thus, the
constructed bipartite graph may be incapable of precisely
modeling foreground object relations. To enhance the tar-
get node features, we draw motivation from non-local op-
erations [44, 20] to model target intra-domain global de-
pendencies by representing each node feature as a weighted
sum of features from all the other target node features,

vtj = θvtj + (1− θ)
∑
k|k 6=j

wkvtk , (9)

wk =
eCDSR(vtj ,vtk )∑
k e

CDSR(vtj ,vtk )
(10)

where θ is set to 0.5 in all experiments. Note that this step
is only used for initialization and does not be updated as
training proceeds. The enhanced target node features glob-
ally aggregate the feature of other positions over the se-
mantic node space, which implicitly endow the node fea-
tures with context-aware ability. In addition, by compar-
ing the similarity of node features within the target domain,
the relations of nodes belonging to the same category can
be strengthened. We follow Eq. (4)-(5) to augment GS as
ĜS = {V̂S , ÊS} and then conduct graph convolution.

Category-Aware Domain Alignment. Based on ĜSk , we
propose a Category-aware Domain Alignment (CDA) loss
on top of ĜS to conduct domain alignment on all foreground
categories. Technically, we contrastively align the source
and target prototypes to achieve domain alignment. The
source and target prototypes are defined as,

P k
s =

1

|ĜSk |

∑
xi
s∈ĜSk

GCN2(xis, ĜSk )

P k
t =

1

|ĜSk |

∑
xi
t∈Ĝ

S
k

GCN2(xit, ĜSk )

(11)

where |ĜSk | denotes the nodes in GS belonging to class k
(k ∈ {1, 2, . . . ,K}). We utilize the target pseudo-labels to

cluster target nodes into K classes. Then, the CDA loss is
formulated as follows,

LGCN2
CDA =

∑
k

∥∥∥Pk
s , P

k
t

∥∥∥
2

+
∑
m 6=n

(max{0, ξ − ‖Pm
s , Pn

t ‖2}) (12)

where ξ is the margin term and set to 1 in all experiments.

4.3. Overall Objective

Assume that the detection loss is denoted as Ldet, which
contains the classification and regression losses. Since the
proposed DBGL is capable of working in a plug-and-play
manner, we incorporate DGBL into the domain adversar-
ial training [13] framework by adding domain discrimina-
tors on low-level features. To this end, the overall objective
function of DBGL is formulated as,

LDBGL = Ldet + αLadv + βLGCN1

NC + γLGCN2

CDA (13)

where α, β, and γ are hyper-parameters. Ladv denotes the
vanilla adversarial training loss.

5. Experiments
5.1. Datasets

We evaluate the proposed DGBL on Pascal VOC [10],
Clipart1k, Watercolor2k, and Comic2k [18] datasets,
which form three DAOD tasks. Following prior DAOD
works [38, 21, 16], we combine the Pascal VOC2007-
trainval and VOC2012-trainval datasets as the source do-
main, and use Clipart1k, Watercolor2k, and Comic2k as the
target domains respectively. The Pascal VOC [10] is a real-
world image dataset, which contains 16,551 images with
20 object classes. Clipart1k, Watercolor2k, and Comic2k,
which are collected from a website called Behance and an-
notated by Inoue et al. for cross-domain object detection
tasks, consist of 1,000, 2,000, and 2,000 images respec-
tively. Clipart1k has the same 20 object categories as Pascal
VOC, and Watercolor2k and Comic2k share 6 identical ob-
ject classes with the Clipart1k dataset, i.e., bicycle, bird, cat,
car, dog, and person. For Pascal VOC→ Clipart, we use all
images of Clipart1k as the target domain for both training
and testing by following mainstream DAOD works [38, 6].
For Pascal VOC→Watercolor and Pascal VOC→ Comic,
we leverage the train set (1K images) for training and the
test set (1K images) is held out for evaluation.

5.2. Implementation Details

For the two-stage detector based experiments, we fol-
low the same setting in [38, 6] that choose Faster R-CNN
framework with ResNet-101 architectures. The shorter side
of each input image is resized to 600 and the batch size
is set to 2 (one image per domain) to fit the GPU memory.
For the one-stage detector based experiments, we follow the
setting in [18, 21] that utilize SSD300 [25] framework with
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Table 1: Results on PASCAL VOC→ Clipart Dataset (%).

Methods aero bcycle bird boat bottle bus car cat chair cow table dog hrs bike prsn plnt sheep sofa train tv mAP
Faster R-CNN + ResNet-101

Source Only [37] 35.6 52.5 24.3 23.0 20.0 43.9 32.8 10.7 30.6 11.7 13.8 6.0 36.8 45.9 48.7 41.9 16.5 7.3 22.9 32.0 27.8
DA-Faster [7] 15.0 34.6 12.4 11.9 19.8 21.1 23.2 3.1 22.1 26.3 10.6 10.0 19.6 39.4 34.6 29.3 1.0 17.1 19.7 24.8 19.8
SWDA [38] 26.2 48.5 32.6 33.7 38.5 54.3 37.1 18.6 34.8 58.3 17.0 12.5 33.8 65.5 61.6 52.0 9.3 24.9 54.1 49.1 38.1
HTCN [6] 33.6 58.9 34.0 23.4 45.6 57.0 39.8 12.0 39.7 51.3 21.1 20.1 39.1 72.8 63.0 43.1 19.3 30.1 50.2 51.8 40.3

DBGL (Ours) 28.5 52.3 34.3 32.8 38.6 66.4 38.2 25.3 39.9 47.4 23.9 17.9 38.9 78.3 61.2 51.7 26.2 28.9 56.8 44.5 41.6
SSD + VGG-16

Source Only [25] 27.3 60.4 17.5 16.0 14.5 43.7 32.0 10.2 38.6 15.3 24.5 16.0 18.4 49.5 30.7 30.0 2.3 23.0 35.1 29.9 26.7
DANN [14] 24.1 52.6 27.5 18.5 20.3 59.3 37.4 3.8 35.1 32.6 23.9 13.8 22.5 50.9 49.9 36.3 11.6 31.3 48.0 35.8 31.8

DT+PL w/o label [18] 16.8 53.7 19.7 31.9 21.3 39.3 39.8 2.2 42.7 46.3 24.5 13.0 42.8 50.4 53.3 38.5 14.9 25.1 41.5 37.3 32.7
WST [21] 30.8 65.5 18.7 23.0 24.9 57.5 40.2 10.9 38.0 25.9 36.0 15.6 22.6 66.8 52.1 35.3 1.0 34.6 38.1 39.4 33.8
BSR [21] 26.3 56.8 21.9 20.0 24.7 55.3 42.9 11.4 40.5 30.5 25.7 17.3 23.2 66.9 50.9 35.2 11.0 33.2 47.1 38.7 34.0

BSR+WST [21] 28.0 64.5 23.9 19.0 21.9 64.3 43.5 16.4 42.2 25.9 30.5 7.9 25.5 67.6 54.5 36.4 10.3 31.2 57.4 43.5 35.7
DBGL (Ours) 23.2 65.5 30.1 18.3 24.6 67.6 43.9 15.1 38.7 36.4 31.3 20.2 25.0 74.3 55.1 38.2 12.5 41.0 49.1 43.9 37.7

Table 2: Results on Pascal VOC→Watercolor2k (%).

Methods bike bird car cat dog person mAP
Faster R-CNN + ResNet-101

Source Only [37] 68.8 46.8 37.2 32.7 21.3 60.7 44.6
BDC-Faster 68.6 48.3 47.2 26.5 21.7 60.5 45.5

DA-Faster [7] 75.2 40.6 48.0 31.5 20.6 60.0 46.0
SWDA [38] 82.3 55.9 46.5 32.7 35.5 66.7 53.3

DBGL (Ours) 83.1 49.3 50.6 39.8 38.7 61.3 53.8
SSD + VGG-16

Source Only [25] 77.5 46.1 44.6 30.0 26.0 58.6 47.1
DANN [14] 73.4 41.0 32.4 28.6 22.1 51.4 41.5
BSR [21] 82.8 43.2 49.8 29.6 27.6 58.4 48.6
WST [21] 77.8 48.0 45.2 30.4 29.5 64.2 49.2

BSR+WST [21] 75.6 45.8 49.3 34.1 30.3 64.1 49.9
DBGL (Ours) 84.0 46.7 45.5 36.2 35.7 63.7 52.0

VGG-16 [39] architectures. The input images are resized to
300× 300 and the batch size is set to 32 (16 images per do-
main). We fine-tune ResNet-101 and VGG-16 pre-trained
on ImageNet. In all experiments, we report mean average
precision (mAP) with a IoU threshold of 0.5. We train the
domain adaptive detection network using stochastic gradi-
ent descent (SGD) optimizer with an initial learning rate of
0.001 and momentum 0.9. The learning rate is decreased
to 0.0001 after 5 epochs. We set α = 1 and β = γ = 0.1
in Eq. (13) for all experiments. We implement our experi-
ments based on PyTorch deep learning framework.

5.3. Comparisons with State-of-the-Arts

We compare the proposed DGBL with the state-of-the-
art DAOD methods, including Domain Adversarial Neural
Networks (DANN) [14], Strong-Weak Distribution Align-
ment (SWDA) [38], adversarial Background Score Regular-
ization + Weak Self-Training (BSR+WST) [21], and Hier-
archical Transferability Calibration Network (HTCN) [6].
Source Only represents the baseline model that is trained
on the source domain and directly applied to the target do-
main without adaptation procedure. We derive the quantita-

Table 3: Results on Pascal VOC→ Comic2k (%).

Methods bike bird car cat dog person mAP
Faster R-CNN + ResNet-101

Source Only [37] 33.2 14.8 23.8 19.5 19.7 35.6 24.4
SWDA [38] 36.0 18.3 29.3 9.3 22.9 48.4 27.4

DBGL (Ours) 35.6 20.3 33.9 16.4 26.6 45.3 29.7
SSD + VGG-16

Source Only [25] 43.3 9.4 23.6 9.8 10.9 34.2 21.9
DANN [14] 33.3 11.3 19.7 13.4 19.6 37.4 22.5
BSR [21] 45.2 15.8 26.3 9.9 15.8 39.7 25.5
WST [21] 45.7 9.3 30.4 9.1 10.9 46.9 25.4

BSR+WST [21] 50.6 13.6 31.0 7.5 16.4 41.4 26.8
DBGL (Ours) 45.4 15.9 24.8 11.5 29.4 55.1 30.4

tive results of DANN based on our reproduction. For other
aforementioned methods, we cite the experimental results
reported in their original papers.

Results on Clipart1k. We compare with the state-of-the-
art methods in Table 1 based on Faster R-CNN and SSD de-
tection frameworks respectively. The proposed DBGL sub-
stantially outperforms all compared methods in general and
improves over state-of-the-art by +1.3% (40.3% to 41.6%)
and +2.0% (35.7% 37.7%), indicating that our method can
boost the adaptation ability of both one-stage and two-stage
detectors. In addition, the results also reveal the importance
of exploring the cross-domain topological relations and en-
dowing the adaptation model with reasoning ability.

Results on Watercolor2k and Comic2k. Table 2 and Ta-
ble 3 display the adaptation results on Pascal VOC→ Wa-
tercolor2k and Pascal VOC → Comic2k respectively. The
proposed DGBL exceeds all compared methods on most
object categories and achieve the best mAP on average,
demonstrating the efficacy and scalability of the proposed
learning framework for modeling distinct DAOD scenarios.
We can observe that DGBL shows impressive adaptation
performance on the challenging DAOD task, i.e., Pascal
VOC → Comic2k (26.8% to 30.4%), where the distribu-
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Figure 3: Qualitative detection results on Clipart1k, Watercolor2k, and Comic2k.

Table 4: Ablation of DBGL on three transfer tasks (%).

Source Pascal VOC
Target Clipart1k Watercolor2k Comic2k

Faster R-CNN + ResNet-101
w/o PBGL 39.5 52.0 28.3
w/o SBGL 39.1 51.7 27.6

PBGL w/ random link 37.2 48.1 26.4
SBGL w/o enhancement 41.0 53.1 28.8

DBGL (Full) 41.6 53.8 29.7
SSD + VGG-16

w/o PBGL 36.1 50.5 28.0
w/o SBGL 35.3 50.1 27.1

PBGL w/ random link 33.4 45.6 26.4
SBGL w/o enhancement 37.0 50.9 29.6

DBGL (Full) 37.7 52.0 30.4

tional shift is considerably larger than other DAOD scenar-
ios. The justification is that matching highly distinct dis-
tributions are error-prone, DBGL explicitly considers the
topological information and thus achieve better alignment.

5.4. Further Empirical Analysis

Ablation Study. We delve into the individual effect and
interaction of the proposed modules (i.e., PBGL and SBGL)
by conducting complete and in-depth ablation studies. The
quantitative results are shown in Table 4. (1) w/o PBGL
and w/o SBGL denote that we remove PBGL and SBGL
from the full DBGL model respectively. (2) PBGL w/
random link denotes that we randomly select pixel-level
graph nodes instead of using the proposed method to choose

highly similar foreground pixel pairs. (3) SBGL w/o en-
hancement denotes that we remove the node feature en-
hancement step in the SBGL module. We can see that the
performance drops accordingly when any one of the compo-
nents modules is discarded, revealing the effectiveness and
complementarity of all the proposed components in DBGL.

Qualitative detection results. Fig. 3 demonstrates some
detection results of different methods on three target do-
mains, i.e., Clipart1k, Watercolor2k, and Comic2k. The
proposed DBGL significantly outperforms Source Only,
WST+BSR [21], and HTCN [6] models on different target
domains. As can be seen, (1) DBGL detects the sample-
scarce categories in a more precise way (e.g., cow/dog in
(d) and plane/bird in (e)). (2) DBGL is able to detect those
obscured foreground objects and provide better bounding
box regression (e.g., dog in (b) and person in (c), (f)).

6. Conclusion

In this work, we propose a simple and general frame-
work for DAOD problem by exploring the topology-aware
and reasoning ability of detectors. Instead of relying on the
ad-hoc detection pipelines, the key idea of our method is to
model the cross-domain topological interactions and corre-
lations on pixel-level and semantic level, and draw similar
node features closer via message-passing and feature aggre-
gation. Experiments on three DAOD benchmarks demon-
strated the effectiveness of the proposed DBGL in conjunc-
tion with one-stage and two-stage detectors.
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