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Abstract

Current self-supervised depth estimation algorithms
mainly focus on either stereo or monocular only, neglect-
ing the reciprocal relations between them. In this paper, we
propose a simple yet effective framework to improve both
stereo and monocular depth estimation by leveraging the
underlying complementary knowledge of the two tasks. Our
approach consists of three stages. In the first stage, the pro-
posed stereo matching network termed StereoNet is trained
on image pairs in a self-supervised manner. Second, we
introduce an occlusion-aware distillation (OA Distillation)
module, which leverages the predicted depths from Stere-
oNet in non-occluded regions to train our monocular depth
estimation network named SingleNet. At last, we design an
occlusion-aware fusion module (OA Fusion), which gener-
ates more reliable depths by fusing estimated depths from
StereoNet and SingleNet given the occlusion map. Fur-
thermore, we also take the fused depths as pseudo labels
to supervise StereoNet in turn, which brings StereoNet’s
performance to a new height. Extensive experiments on
KITTI dataset demonstrate the effectiveness of our proposed
framework. We achieve new SOTA performance on both
stereo and monocular depth estimation tasks.

1. Introduction

Depth estimation from either stereo image pairs or
monocular images is a fundamental problem in computer
vision. It has been extensively studied due to its wide ap-
plications in robotic manipulation[37], augmented reality
[35, 27] and autonomous driving [26, 43]. Current super-
vised depth estimation methods [4, 13], though tremendous
progress has been achieved, require costly dense ground-
truth data for training. Alternatively, self-supervised meth-
ods are getting increasing attention in recent years[10, 40,
3], which only requires stereo or monocular raw images.

Figure 1. Characteristics of stereo and monocular models. In the
upper part, we paste a car ‘instance’ to both left image Il and right
image Ir , respectively. Dl(stereo) andDl(mono) are left dispar-
ity maps generated from the stereo and monocular models, where
the brighter color means bigger disparity. In the lower left, we
move the car in left image a distance to the right, and the estimated
disparity of the car becomes larger, as shown in D′l(stereo). In
the lower right, we shrink the car, and see the corresponding dis-
parity becomes smaller, as shown in D′′l(mono).

Recent SOTA self-supervised methods mainly focus on
one of monocular or stereo depth estimation problems, ne-
glecting the reciprocal relations between them. On the one
hand, stereo matching approaches aim at learning structural
information by comparing the similarity of local left and
right patches to obtain the optimal disparity and seeking a
globally smooth disparity map. Thus for left boundaries and
occlusions where only a single view can be seen, unsuper-
vised stereo matching methods often fail to learn reliable
depth. On the other hand, monocular depth estimation is an
inherently ill-posed problem and it mainly relies on the ap-
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pearance or semantic knowledge inside the features. Thus it
is robust to occluded regions. As shown in Fig. 1, we con-
duct the dummy experiments to elaborate the observation.

To fully exploit the complementary knowledge of the
two tasks, in this paper, we design a simple but effective
framework to integrate the advantages of both stereo and
monocular depth estimation networks. Generally, we train
a stereo depth estimation network, named StereoNet in a
self-supervised manner. Due to the invisible characteristic,
estimated depth in occluded regions are not reliable. Thus
an occlusion-aware distillation strategy is adopted to extract
the visible estimated depths from StereoNet. Different from
methods [46, 11] that adopt stereo images for novel view
synthesis by a left-right depth consistency term, we propose
a monocular depth estimation framework named SingleNet,
under the supervision of distilled depth from StereoNet and
observe a considerable improvement. The gain can be at-
tributed to two main reasons. First, StereoNet learns more
reliable depth given the stereo structural knowledge in vis-
ible regions than SingleNet under the same self-supervised
training. Second, our occlusion-aware distillation strategy
only adopts non-occluded depths as supervision to guide
the SingleNet to learn semantic information. Furthermore,
not only StereoNet can help to train SingleNet, but also
SingleNet can be leveraged to improve StereoNet in turn.
Even though StereoNet is generally more accurate than Sin-
gleNet, we observe that SingleNet still performs better than
StereoNet on occluded pixels. Especially, along the bound-
ary region of objects, SingleNet tends to preserve sharp
edge across object borders while bleeding artifacts are obvi-
ous for StereoNet. Inspired by this observation, we propose
an occlusion-aware fusion strategy, which fuses estimated
depth maps from both StereoNet and SingleNet given the
occlusion map. The fused depth map gives full play to its
strength of the structure-based StereoNet and appearance-
based SingleNet. A further hint can be conducted by adopt-
ing the fused depth as pseudo-labels for supervision to train
StereoNet in turn to further improve the performance of
self-supervised StereNet.

In summary, the main contributions of this work are
listed below in threefold:

• We propose a simple yet effective framework to boost
the performance of self-supervised stereo and monoc-
ular depth estimation by mining task-specific strengths
and revealing the reciprocal relations of the two tasks.

• We put forward a novel occlusion-aware distillation
strategy for training monocular depth estimation net-
works as well as an effective occlusion-aware fusion
strategy that combines the advantages of the structure-
based stereo depth estimation and the appearance-
based monocular depth estimation.

• Extensive experiments on the KITTI benchmark shows

that our method establishes new SOTA performances
on both stereo and monocular depth estimation tasks.

2. Related Work
2.1. Stereo Depth Estimation

Stereo matching takes stereo image pairs as input and
computes the depth by finding the dense pixel-wise corre-
spondences between left and right images. For stereo depth
estimation, supervised approaches [4, 13, 28] have achieved
great performance with deep neural networks. GCNet [18]
constructs a 3D cost volume by comparing pixel-wise fea-
tures of reference and target images, then adopts soft-
argmin operation to compute the best disparity. PSMNet
[4] leverages a pyramid pooling module to encode cost vol-
ume, and designs a stacked hourglass 3D CNN to regress
the disparity. GWCNet [13] proposes group-wise correla-
tion to construct cost volumes, and modifies 3D hourglass
refinement network to improve the performance.

Considering that dense ground-truth depth is challeng-
ing to acquire, many works [51, 40] have put great efforts
into unsupervised stereo depth estimation, and exhibit con-
siderable performance gain than traditional methods like
[14, 15]. Monodepth [51] modifies the convolutional archi-
tecture of DispNet [28] to train the network without ground-
truth depth as supervision. [10] borrows the architecture of
effective GCNet [18] to predict the disparity map with an it-
erative unsupervised training framework. In UnOS [40], the
authors take a lightweight network termed PWCNet [33] for
stereo depth estimation by restricting the predicted optical
flow to the same horizontal row.

2.2. Monocular Depth Estimation

Monocular depth estimation infers a dense depth map
from the appearance feature of a single image. For monoc-
ular depth estimation, supervised works [6, 7, 20, 2] have
also obtained pleasing results with learning-based methods.
[6] adopts a multi-scale convolutional architecture to refine
coarse depth prediction. DORN [7] converts the regression
problem to quantized ordinal regression problem for higher
accuracy. [44] leverages a CRF module to fuse multi-scale
depth estimations. BTS [20] replaces bilinear upsampling
layer with novel local planar guidance layers at multiple
stages in the decoding phase. AdaBins [2] introduces an
AdaBins module to divide depth range into bins where the
bin widths change per image, and achieves SOTA perfor-
mance on supervised monocular depth estimation.

Self-supervised approaches [8, 10, 1] learn to estimate
the depth map by reducing the photometric loss between
stereo image pairs, monocular video frames, or stereo video
frames. [8] formulates the photometric loss between stereo
pairs with an L2 loss, which results in blurry depth maps.
Monodepth [10] takes a combination of SSIM [41] and L1
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to measure the similarity between correspondences to im-
prove the depth quality, and a post-processing operation is
also applied, where the depth maps of original image and
flipped image are averaged to obtain a more accurate depth
estimation. Monodepth2 [11] introduces the per-pixel min-
imum reprojection loss to solve the ambiguity of photomet-
ric loss at occluded region. Methods [42, 36] utilize addi-
tional proxy labels generated from traditional Semi-Global
Matching (SGM) [14, 15] as supervision to train monocu-
lar depth estimation models. Recent methods [32, 12] adopt
heavier backbones to improve the quality of depth estima-
tion at the cost of time and memory.

2.3. Distillation

Recently, the concept of knowledge distillation has been
introduced to transfer the learned knowledge from a teacher
model to a student model [21]. The teacher model is usu-
ally stronger and heavier, whereas the student model is
more lightweight. Knowledge distillation has been suc-
cessfully exploited for several computer vision tasks such
as image classification [39], object detection [5], and nat-
ural language processing [17]. In this paper, we borrow
the idea of knowledge distillation to transfer the learned
structure-based depth knowledge from the stereo model to
the monocular model with an occlusion-aware distillation
strategy. For further improvement, the fused depth predic-
tion of both stereo and monocular models are also distilled
as pseudo labels to train StereoNet in turn. To the best of
our knowledge, this work is the first attempt to analyse the
reciprocal relations between stereo and monocular depth es-
timation models.

3. Preliminary

Given a pair of images Il and Ir, stereo matching net-
works try to estimate a disparity map, which can be easily
converted to depth map as depth = b·f

|disparity| , where b
is the baseline between left and right cameras and f is the
camera focal length. For simplicity, we train both stereo
and monocular depth estimation models to predict disparity
instead of depth. Dl denotes the disparity from Il to Ir, and
Dr represents the disparity from Ir to Il.

During the self-supervised training process of stereo
matching, the generated disparity map can be applied to
synthesize the corresponding view of image [11, 42]. Given
learned disparity map Dl, each pixel pl in the left image Il
is able to find its corresponding pixel p̃r = pl + Dl(pl) at
the right image Ir. If the disparity value Dl(pl) is accurate
and the pixel pl is not occluded in the right view, the col-
ors of Il(pl) and Ir(p̃r) should be consistent. Based on this
assumption, we are able to reconstruct the appearance of Il
by warping right image Ir according to the obtained (pl, p̃r)

pairs as follows,

Ĩr→l = π(Dl, Ir), (1)

where Ĩr→l denotes the reconstructed left image originated
from the right image, and π is the warp operation using bi-
linear sampling [16].

Given the warped image Ĩr→l, the photometric loss is
employed to calculate the similarity between Ĩr→l and Il.
Following [48, 10], L1 and SSIM [41] are used to form our
photometric loss, and the loss is computed as,

Lp = γ
(1− SSIM(Il, Ĩr→l))

2
+(1−γ)|Il− Ĩr→l)|, (2)

where SSIM is computed over a 3× 3 kernel and γ is set to
0.85 by default.

However, the photometric loss is unfit for texture-less or
occluded regions. For pixels in the texture-less region, the
photometric loss is ambiguous, thus accurate disparity can-
not be guaranteed. For pixels occluded by other objects,
there are no corresponding pixels available in the right im-
age. Therefore, the edge-aware smoothness loss [11, 42] is
used to alleviate these problems. The smoothness loss is as,

Lm = |∂xDl|e−|∂xIl| + |∂yDl|e−|∂yIl|, (3)

where Dl is first mean-normalized following [38].

4. Method
We first introduce our turbine-like structure pipeline in

Section 4.1. Then we elaborate on the proposed self-
supervised StereoNet and our distilled monocular depth es-
timation network in Section 4.2 and Section 4.3, respec-
tively. Finally, the occlusion-aware fusion module and the
reutilization of fused prediction are depicted in Section 4.4.

4.1. Overall Framework

As shown in Fig. 2, the whole pipeline of our frame-
work is composed of three main parts. In Stage 1, we
design a self-supervised stereo matching network termed
StereoNet training from stereo pairs. Since there is no
ground truth supervision, the network is inclined to learn
the correspondences between left and right patches like the
traditional non-CNN approaches do. Thus we term it as
structure-based learning, since the network is learned to im-
plicitly carry out similarity comparison between patches.
Given the predicted stereo disparity maps, the framework
is able to compute the corresponding occlusion map. In
Stage 2, rather than directly training a monocular network
with photometric loss and smoothness loss as previous
works [10, 11] do, we propose an occlusion-aware distil-
lation strategy to leverage the predictions of stereo match-
ing branch as well as the occlusion map to supervise the
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Figure 2. (A) Occlusion-aware distillation (OA Distillation). Disparity map Dl and occlusion map Ol generated from structure-based
StereoNet (Stage 1) are used to guide the appearance-based SingleNet (Stage 2). (B) Occlusion-aware fusion (OA Fusion). Given disparity
maps Dl and D∗l predicted from StereoNet and SingleNet, an occlusion-aware fusion module is proposed to generate the fused disparity
map D̂l from Dl and D∗l . The fused prediction can be further utilized as pseudo labels to supervise StereoNet in turn (Stage 3).

monocular depth estimation network, i.e. SingleNet. Con-
sidering that no correspondences can be found in occluded
regions, predictions of StereoNet in these regions are unre-
liable. On the contrary, the monocular branch mainly re-
lies on the appearance knowledge of learned features for
depth perception, resulting in more consistent and smoother
depth prediction. Inspired by this, the occlusion-aware
fusion strategy is put forward to fuse the predictions of
stereo and monocular stages given the occlusion map. Fur-
thermore, digging deep into the mechanism of stereo and
monocular depth perception, we further promote the perfor-
mance of stereo matching network by introducing the fused
depth map as the pseudo labels to supervise the StereoNet.
By revealing the reciprocal relations of the structure-based
stereo and appearance-based monocular networks, the per-
formance of both tasks can both be boosted. Note that we
do not use any labeled data during training, and in inference
stage of SingleNet, only a single image is required.

4.2. Sell-supervised Stereo Branch

In Stage 1 of Fig. 2, we first train a self-supervised stereo
disparity estimation model, termed StereoNet. Considering
that the previous top-performed stereo matching networks,
e.g. GWCNet [13], PSMNet [4], and GANet [47], usually
adopt heavy 3D convolutions to trade for accuracy, we in-
stead propose a lightweight unsupervised stereo disparity
estimation framework inspired by the optic flow estima-
tion method PWCNet [33]. It is worth mentioning that as
a generic framework, multiple stereo matching or optical
flow estimation networks can be adopted to instantiate the
unsupervised stereo branch in our pipeline. The generaliza-
tion ability will be further validated in the following exper-
iments.

Figure 3. StereoNet. The proposed StereoNet is composed of two
stages: Unet encoding stage to extract the feature pairs and pyra-
mid decoding to estimate the disparity map. Disp estimation mod-
ule is used to refine the disparity map with feature pairs at the
corresponding layer of the same resolution.

The architecture of our proposed StereoNet is presented
in Fig. 3. StereoNet takes stereo images Il and Ir as in-
put, and outputs the disparity map Dl. The framework of
StereoNet is composed of two stages: Unet encoding stage
and pyramid decoding stage. In the Unet encoding stage,
we adopt a Unet model to extract hierarchical feature pairs
for Il and Ir respectively. In the pyramid decoding stage,
the extracted feature map pairs are used to estimate dis-
parity map Dl in a coarse-to-fine manner. More specifi-
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Figure 4. Sample results from StereoNet and SingleNet on KITTI datasets. Il and Ir are left and right images. Dl and D∗l are disparity
maps estimated from StereoNet and SingleNet, respectively. Green and red squares are regions where SingleNet performs better. In Blue
squares, StereoNet gives more detailed and precise disparity estimation results.

cally, in each decoding layer, the disp estimation module
generates a refined disparity map based on the coarse dis-
parity map from the preceding layer and the feature map
pairs extracted by the Unet encoding module at the layer
of the same resolution. The disp estimation module shares
a similar architecture as that in [22]. Original PWCNet
generates feature pairs with a pyramid encoding structure,
where the shallower features are used to predict the higher-
resolution disparity map. We believe that a deeper feature
is also necessary for higher-resolution disparity estimation.
Therefore, we replace pyramid encoding stage with Unet
encoding structure, which brings remarkable performance
improvement as shown in our experiments.

When training StereoNet, the photometric loss is only
computed where pixels in the left image are not occluded,
or out of the view in the right image. The occluded pix-
els are detected by left-right consistency checking [23, 34].
StereoNet is performed twice when computing the occlu-
sion map. We take left and right image as the reference
image respectively and compute their disparity map: Dl

and Dr. If a pixel pl is not occluded or out of the view
in the right image, the disparity value Dl(pl) should be
the inverse of the disparity value at the corresponding pixel
Dr(p̃r) = Dr(pl + Dl(pl)). And hence the occlusion map
is detected as follows,

Ol =


1, |Dl + D̃l| ≥ α(|Dl|+ |D̃l|) + 0.5

or (p+Dl(p)) /∈ Ω

0, others

, (4)

where 0.5 is used to take care of the sub-pixel accuracy for
computing the occlusion map, and Ω represents the image
boundary. The updated photometric loss is defined as fol-
lows,

L̃p =

∑
Lp � (1−Ol)∑

(1−Ol)
, (5)

where � stands for pixel-wise multiplication. And the total
loss is composed of photometric loss L̃p and smoothness
loss Lm.

4.3. Distilling Monocular Branch

Monocular depth estimation model predicts the disparity
map D∗l from a single image Il. Similar to self-supervised
stereo depth estimation training, traditional self-supervised
monocular models are also trained by minimizing the pho-
tometric loss between reference image Il and warped image
Ĩl [11, 42]. Although stereo and monocular models are both
trained from stereo image pairs, the performance of monoc-
ular depth estimation is usually inferior to stereo depth esti-
mation. In contrast to monocular methods which directly
regress the disparity map from a single image Il, stereo
methods make the use of feature pairs from both images
Il and Ir, and they can typically produce a more accurate
disparity map. To make our monocular depth estimation
model more robust, we adopt a distillation strategy to train
our monocular depth estimation model, called SingleNet.

As mentioned, a better disparity map can usually be gen-
erated from the stereo methods. It is hence preferable to
explicitly exploit this disparity map to supervise monoc-
ular approaches. However, it is known that the disparity
map is likely inaccurate in occluded regions by stereo based
methods. We hence propose an occlusion-aware distilla-
tion strategy to train SingleNet, as shown in Fig. 2(A). In-
stead of using a common distillation method which takes the
whole disparity map generated from stereo images as tar-
gets, we utilize only the estimated disparity values in visible
regions where pixels pass the left-right consistency check.
A log L1 based distillation loss is then utilized to encour-
age SingleNet to generate similar results as stereo based ap-
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Figure 5. Example intermediate results during occlusion-aware fu-
sion. (a,b) are left and right images, respectively. (c,d) are esti-
mated disparity from StereoNet and SingleNet, respectively. (e) is
calculated occlusion map. (f) is fused disparity map.

proaches,

Ld =

∑
log(1 + |Dl −D∗l |)� (1−Ol)∑

(1−Ol)
, (6)

where Dl and Ol are disparity and occlusion maps gener-
ated from pre-trained StereoNet, and D∗l is the disparity
map estimated from SingleNet. Apart from the distillation
loss, the edge-aware smoothness loss is also employed to
train the occluded pixels. The total loss for this stage is
composed of distillation loss Ld and smoothness loss Lm.

4.4. Distilling Stereo Branch

As discussed above, SingleNet is generally able to yield
more preferable results in invisible regions, because Sin-
gleNet estimates the depth value (disparity value) of a pixel
based on the appearance feature, which is robust compared
to stereo approaches based on similarity comparison. This
phenomenon is also evident in results from public bench-
marks. For example, in the third row of Fig. 4, we can
see that Dl gives a wrong estimation in green region of Il,
where the grass in green square is occluded by a road sign.
In the second row, there are obvious bleeding artifacts along
the boundary region of traffic lights, while SingleNet tends
to preserve sharp disparity edge across object borders, as
shown in the red square area.

To utilize the advantages of both StereoNet and Sin-
gleNet, we further propose an occlusion-aware fusion mod-
ule, which fuses StereoNet and SingleNet’s results to form
new disparities, as shown in Fig. 2(B). Specifically, we use
Dl and Ol to denote learned disparity and occlusion maps
from StereoNet, and D∗l as the disparity map from Sin-
gleNet. The fused disparity map D̂l is calculated as follows,

D̂l = Dl � (1−Ol) +D∗l �Ol. (7)

As shown in Fig. 5, the fused disparity D̂l is better than
both Dl and D∗l . D̂l not only preserves the details, but also
ensures the sharp disparity edge. On the basis of this obser-
vation, we further take the fused disparities as supervision
to train StereoNet in turn. The logistic L1 loss is used as
follows,

Lds = log(1 + |Dl − D̂l|). (8)

We denote the distilled StereoNet as StereoNet-D to distin-
guish it from StereoNet trained in Stage 1. And StereoNet-
D is even better than the fused disparity used for training
itself.

5. Experiments
5.1. Implementation Details

For stereo depth estimation training, we use the whole
pipeline to train StereoNet. While for monocular depth es-
timation, only the first two stages are required for training
SingleNet. At the first stage, the α used in Ol formula Eq.6
is set to 0.1. For the rest stages, it is equal to 0.01.

Our models are implemented in PyTorch [29], and
trained on one Tesla V100 GPU. Our SingleNet is based
on Unet architecture, where Resnet50 is used as our en-
coder, and the decoder is similar to [11]. For all stages, the
weight for smoothness loss is all set to 0.1, and we employ
the Adam [19] optimizer with β1 = 0.9, β2 = 0.999. The
learning rate starts from 1e−4 and is decayed by a factor of
10 after 15 epochs. We train all models for 20 epochs with
a batch size of 8. During evaluation, we restore test images
to the full size, and clip the estimated depth to be between
0 and 80 meters. The standard metrics described in [6] are
used for comparison.

5.2. Training Datasets

The KITTI dataset [9] is the benchmark widely used for
both stereo and monocular depth estimation tasks [12, 32,
42, 40]. KITTI 2015 dataset collects stereo video in 200
street scenes with sparse ground-truth depth obtained from
Velodyne laser scanner. The input image resolution is 320×
1024. For a fair comparison, different training splits are
employed for stereo and monocular depth estimation tasks.

Stereo depth estimation. Following [40], all the raw
KITTI images excluding KITTI 2015 training scenes are
adopted as the training set, which consists of 29K stereo
image pairs. And the 200 training image pairs of KITTI
2015 with ground-truth depth are used as the test split.

Monocular depth estimation. Following [42], we use
the data split of Eigen et al. [6], which uses 22600 image
pairs for training and 697 images for testing.

5.3. Evaluation

Stereo Depth Estimation. We evaluate our models on
the stereo depth estimation task on KITTI 2015 training set,
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Methods Train Test Abs Rel↓ Sq Rel↓ RMSE↓ RMSElog ↓ a1↑ a2↑ a3↑
Monodepth [10] S S 0.068 0.835 4.392 0.146 0.942 0.978 0.989
SsSMnet [49] S S 0.075 1.726 4.857 0.165 0.956 0.976 0.985
OpenWorld [50] S S (0.056) (0.692) (3.176) (0.125) (0.967) - -
UnOS (Stereo-only) [40] S S 0.060 0.833 4.187 0.135 0.955 0.981 0.990
UnOS (Ego-motion) [40] MS S 0.052 0.593 3.488 0.121 0.964 0.985 0.992
UnOS (Full) [40] MS S 0.049 0.515 3.404 0.121 0.965 0.984 0.992
Ours (StereoNet) S S 0.052 0.558 3.733 0.123 0.961 0.984 0.992
Ours (Fusion) S S 0.049 0.456 3.478 0.112 0.964 0.987 0.994
Ours (StereoNet-D) S S 0.048 0.482 3.393 0.105 0.969 0.989 0.994
EPC [45] MS M 0.109 1.004 6.232 0.203 0.853 0.937 0.975
Ours (SingleNet) S M 0.083 0.688 4.464 0.154 0.904 0.972 0.990

Table 1. Stereo depth estimation on KITTI 2015 training set. Best results are in bold. In the Train column, S and MS refer to training on
stereo pairs and stereo video, respectively. In the Test column, M and S refer to test on stereo or monocular images, respectively. Note that
OpenWorld is directly trained and tested on the whole KITTI 2015 training set, thus it is not comparable with other methods.

Methods Train PP Abs Rel↓ Sq Rel↓ RMSE↓ RMSElog ↓ a1↑ a2↑ a3↑
Monodepth2 [11] M 0.115 0.882 4.701 0.190 0.879 0.961 0.982
PackNet [12] M 0.107 0.802 4.538 0.186 0.889 0.962 0.981
FeatureNet [32] M 0.104 0.729 4.481 0.179 0.893 0.965 0.984
HR-Depth [25] M 0.104 0.727 4.410 0.179 0.894 0.966 0.984
SuperDepth [30] S 0.112 0.875 4.958 0.207 0.852 0.947 0.977
Monodepth2 [11] S 0.107 0.849 4.764 0.201 0.874 0.953 0.977
Refine&Distill [31] S 0.098 0.831 4.656 0.202 0.882 0.948 0.973
Ours (SingleNet) S 0.095 0.697 4.435 0.186 0.891 0.962 0.981
Ours (SingleNet) S X 0.094 0.681 4.392 0.185 0.892 0.962 0.981
MonoResMatch [36] Ssgm X 0.111 0.867 4.714 0.199 0.864 0.954 0.979
DepthHints [42] Ssgm X 0.096 0.710 4.393 0.185 0.890 0.962 0.981
EPC++ [24] MS 0.128 0.935 5.011 0.209 0.831 0.945 0.979
Monodepth2 [11] MS 0.106 0.806 4.630 0.193 0.876 0.958 0.980
FeatureNet [32] MS 0.099 0.697 4.427 0.184 0.889 0.963 0.982
HR-Depth [25] MS 0.101 0.716 4.395 0.179 0.899 0.966 0.983
DepthHints [42] MSsgm X 0.098 0.702 4.398 0.183 0.887 0.963 0.983

Table 2. Monocular depth estimation on KITTI Eigen split. Best results are in bold. In the Train column, M, S and MS refer to training on
monocular video, stereo pairs and stereo video, respectively, and sgm means additional SGM proxy labels used as supervision. PP refers
to post-processing introduced by [10].

and the quantitative results are presented in Tab. 1. Our
models all show great performance on KITTI 2015 training
set. StereoNet is our baseline model, and is only trained
in the self-supervised setting with the photometric loss and
smoothness loss. From Tab. 1, we can see that StereoNet
outperforms all other models trained on stereo in all metrics,
and even achieves comparable performance with methods
trained on stereo video. Especially, StereoNet is better than
the SOTA UnOS (Stereo-only) on metrics Abs Rel (0.052
vs. 0.060) and Sq Rel (0.558 vs. 0.833), which shows
the effectiveness of our proposed Unet encoding module in
StereoNet.

We also give the results of our SingleNet. The perfor-
mance of SingleNet trained on stereo pairs is much better

than EPC [45], which is trained on stereo video. Although
SingleNet’s performance is inferior to some stereo depth es-
timation models, it can also be utilized to improve Stere-
oNet’s performance thanks to the occlusion-aware fusion
module that combines the advantages of both StereoNet and
SingleNet. From Tab. 1, we can see that the fusion strategy
improves StereoNet from 0.052 to 0.049 on Abs Rel.

Moreover, we also distill the fused disparity to Stere-
oNet, and the results of StereoNet-D are further improved
again. Besides, the performance of StereoNet-D even sur-
passes SOTA UnOS (Full) trained on stereo video.

Monocular Depth Estimation. We evaluate our Sin-
gleNet on the monocular depth estimation task on KITTI
Eigen split. For monocular depth estimation, we only per-

15535



form the first two stages on Eigen training split to get a fair
comparison with other monocular depth estimation meth-
ods. Tab. 2 presents all the SOTA performance trained on
monocular video, stereo and stereo video, respectively. For
methods [12, 11, 32, 25] trained on monocular video, the
per-image median ground truth scaling [10] is used during
evaluation. Our SingleNet gets the top performance among
all the methods, especially in the Sq Rel metric. More-
over, SingleNet performs even better than models trained
on stereo video. MonoResMatch and DepthHints lever-
age generated depth maps from the classical SGM [14, 15],
and their performances are still lower than our SingleNet.
We also test the post-processing technique introduced by
[10], which further improves SingleNet’s quantitative per-
formance.

5.4. Ablation Study

Here, we conduct more experiments to show the contri-
bution of our proposed network modules.

Unet Encoding Module. Traditional PWCNet[33] uses
a pyramid encoding stage to generate image feature pairs,
while our StereoNet adopts a Unet encoding stage. Tab. 3
shows the results of our StereoNet under different encoding
stages. These results are evaluated after the first training
stage. As shown in Tab. 3, Unet encoding can significantly
improve the performance.

Encoding
Abs
Rel

Sq
Rel RMSE

RMSE
log a1 a2 a3

Pyramid 0.054 0.629 30.822 0.127 0.959 0.983 0.991
Unet 0.052 0.558 30.733 0.123 0.961 0.984 0.992

Table 3. Contribution of Unet encoding in StereoNet.

Occlusion-Aware Distillation. To show the effective-
ness of our proposed occlusion-aware distillation strategy,
we also present the results under self-supervised training.
For self-supervised training, we only perform the first stage
by replacing StereoNet with SingleNet. Considering some
algorithms [42, 31] using SGM as supervision, we also con-
duct experiments with SGM-based occlusion-aware distil-
lation strategy. These results are all shown in Tab. 4, and
trained on Eigen split. As can be seen, our method achieves
the best performance.

We also present the impact of different αs used in the
occlusion-aware distillation strategy. Different from usual
distillation, we only take estimated disparity values in non-
occluded region to supervise SingleNet. When computing
occlusion map, α is used to control which pixels are seen
as occluded. The results of SingleNet under different αs
are presented in Tab. 5. All the results are trained on stereo
split. We can see that the best results are obtained when
α = 0.01.

Train
Abs
Rel

Sq
Rel RMSE

RMSE
log a1 a2 a3

self. 0.102 0.817 4.678 0.196 0.881 0.957 0.979
sgm. 0.100 0.834 4.576 0.186 0.889 0.962 0.981

stereo. 0.095 0.697 4.435 0.186 0.891 0.962 0.981

Table 4. Comparison of different supervision types for SingleNet.
Self. means self-supervised training. Stereo. and sgm. represent
distillation from stereo and SGM, respectively.

α
Abs
Rel

Sq
Rel RMSE

RMSE
log a1 a2 a3

1 0.086 0.724 4.577 0.161 0.898 0.967 0.986
0.1 0.086 0.708 4.509 0.159 0.898 0.968 0.987

0.01 0.083 0.688 4.464 0.154 0.904 0.972 0.990

Table 5. Comparison of different αs in occlusion-aware distillation
on SingleNet. These results are trained on stereo split.

Occlusion-Aware Fusion. We also evaluate the
occlusion-aware fusion strategy under different occlusion
maps controlled by α. Experiments under different αs are
all performed on stereo split, and are presented in Tab. 6.
We can see that best results are also obtained when α is
equal to 0.01.

α
Abs
Rel

Sq
Rel RMSE

RMSE
log a1 a2 a3

1 0.052 0.559 3.737 0.123 0.961 0.984 0.992
0.1 0.050 0.484 3.531 0.115 0.964 0.987 0.994

0.01 0.049 0.456 3.478 0.112 0.964 0.987 0.994

Table 6. Comparison of different α in occlusion-aware fusion.

6. Conclusion
In this paper, we proposed a simple yet effective frame-

work to improve both stereo and monocular models in
an unsupervised collaborative fashion. The introduced
occlusion-aware distillation module leverages the predicted
depths from stereo pairs by StereoNet to improve our
monocular depth estimation network, named SingleNet. We
also designed an occlusion-aware fusion module, which
fused estimated depths from StereoNet and SingleNet on
the basis with calculated occlusion map. And the fused
depths were then taken as pseudo labels to supervise Stere-
oNet in turn, which brought further performance improve-
ment. SOTA performances on both stereo and monocular
tasks are obtained on the KITTI benchmark.
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