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Abstract

Curvilinear structure segmentation (CSS) is under se-
mantic segmentation, whose applications include crack de-
tection, aerial road extraction, and biomedical image seg-
mentation. In general, geometric topology and pixel-wise
features are two critical aspects of CSS. However, most se-
mantic segmentation methods only focus on enhancing fea-
ture representations while existing CSS techniques empha-
size preserving topology alone. In this paper, we present
a Joint Topology-preserving and Feature-refinement Net-
work (JTFN) that jointly models global topology and refined
features based on an iterative feedback learning strategy.
Specifically, we explore the structure of objects to help pre-
serve corresponding topologies of predicted masks, thus de-
sign a reciprocative two-stream module for CSS and bound-
ary detection. In addition, we introduce such topology-
aware predictions as feedback guidance that refines atten-
tive features by supplementing and enhancing saliencies. To
the best of our knowledge, this is the first work that jointly
addresses topology preserving and feature refinement for
CSS. We evaluate JTFN on four datasets of diverse appli-
cations: Crack500, CrackTree200, Roads, and DRIVE. Re-
sults show that JTFN performs best in comparison with al-
ternative methods. Code is available.1

1. Introduction
Curvilinear Structure Segmentation (CSS) [19, 37] is to

segment binary masks of curvilinear objects such as con-
crete cracks, aerial roadmaps, blood vessel, and neuron
boundary, etc. An accurate CSS in computer vision can help
automatically detect concrete cracks captured by unmanned
aerial vehicle [53], extract road networks from aerial im-
ages [4,38], assist doctors to recognize lesions from medical
images [48]. While significant progress has been made in
CSS and semantic segmentation communities, at least two
critical problems remain: topology preserving and feature
refinement. Like human’s labeling process, topology pre-

*These authors contributed equally.
1https://github.com/zkl20061823
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Figure 1. Effects of Joint Topology-preserving and Feature-
refinement Network (JTFN) on road network extraction, blood
vessels segmentation, and crack detection. JTFN can preserve
global connectivity and render details simultaneously. Red and
blue rectangles mark effect regions of topology-preserving and
feature refinement separately.

serving seeks to preserve overall geometric connectivity;
feature-refinement aims to render details.

Typically, general CSS methods [14, 26, 39] tend to em-
phasize topology preserving. For instance, [14] explicitly
defines connected components and holes as local topology,
but only optimizes limited pixels for topology, thus leads
to the method is sensitive to complex backgrounds. An-
other work [26] implicitly assumes features produced by
pre-trained VGG have natural topology, but such strong
assumptions cause limited improvements. Hence, a ro-
bust, loose assumption, and global topology-preserving
CSS method is demanding.

In contrast, general semantic segmentation works mostly
focus on feature representations, which integrate additional
contextual or spatial information [7, 8, 15, 42, 44, 59]. For
context-aware methods, dilated convolutions or pyramid
designs are applied to enhance receptive fields [7, 8, 44],
and non-local modules are used to raise self-attentions
[15,42,59]. For spatial-aware methods, multi-scale or skip-
connected architectures are introduced to aggregate differ-
ent features to diversify representations [20, 21]. Though
these methods improve representations relatively, refining
features for details is still problematic for CSS. Correspond-
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ingly, [9, 26, 33, 40, 41] directly bring predicted masks as
additional input channels and update the predictions iter-
atively. To sum up, to refine features, it is inspiring to
study how to utilize both context- and spatial-aware pre-
dicted masks as feedback guidance.

To address the aforementioned problems, we propose a
novel framework, Joint Topology-preserving and Feature-
refinement Network (JTFN), to tackle two problems with
one stone. JTFN aims to jointly model global topology
and refined features based on an iterative feedback learn-
ing strategy. Specifically, JTFN explores object boundary
as global-topology regularizations of predicted masks, and
designs a Feature Interactive Module (FIM) to reciprocate
features between CSS and boundary detection. The learned
topology-aware predictions naturally facilitate both atten-
tive context- and spatial-aware features. To utilize such at-
tentive masks as feedback guidances during feature refine-
ment, JTFN proposes a Gated Attentive Unit (GAU) to sup-
plement and enhance saliencies. Furthermore, JTFN em-
beds FIM and GAU in a feedback loop from feature learn-
ing to prediction updating, thus not only refines features but
also rectifies final predictions accordingly.

Fig. 1 illustrates examples of JTFN’s effects on diverse
CSS applications, and obtains the results from Base-FIM,
Base-GAU, and JTFN respectively (will be illustrated in
Sec. 4). From the results, we can see that JTFN can preserve
global topology and refined features simultaneously. Com-
prehensive experiments on Crack500 [55], CrackTree200
[60], Roads [25], and DRIVE [24] validate the effectiveness
of JTFN in comparison with ablations and alternatives.

2. Related Work
Semantic Segmentation: Given an input image, the

goal of semantic segmentation (SS) is to assign pixel-level
labels as 0 or 1, thus SS belongs to dense prediction. Fully
Convolutional Network (FCN) [23] is a pioneer work that
helps reduce computation cost and preserve spatial informa-
tion. Broad SS methods follow the FCN stream and achieve
inspiring results. Here, we categorize the methods into 2
types: context-aware and spatial-aware.

Context-aware methods encourage to perceive of con-
textual information from larger fields (e.g., dilated convo-
lution), neighboring pixels (e.g., non-local modules), or hi-
erarchical layers (e.g. pyramid). [7, 8, 44, 54] apply dilated
convolution to enlarge receptive fields with limited extra pa-
rameters. Feature pyramid-based methods [22, 57, 58] ag-
gregate features of different scale by utilizing parallel spa-
tial pooling. Besides, [15, 42, 59] exploit non-local module
to model global context by building long-range dependen-
cies among neighboring pixels. However, the above meth-
ods lose some spatial details due to down-sampling oper-
ations used. To mitigate the loss, spatial-aware methods
mostly are built on encoder-decoder architectures [2] which

recover spatial information layer by layer in decoder mod-
ule. For CSS, details matter, and more precise spatial infor-
mation is necessary. Thus skip connections are proposed to
directly concatenate spatial features in encoder to the ones
in decoder [31, 56]. In addition, [20, 21] introduce richer
spatial features in skip connections by aggregating multiple
scales features. Instead, we introduce feature refinement in
skip connection module, and utilize both context and spatial
aware predictions as attentive guidance to select saliencies.

Refined Segmentation: Refined segmentation aims to
refine predictions when initial “coarse predictions” are ob-
tained. We broadly group refined segmentation methods
into three categories: offline postprocessing-based, cascade
refinement-based, and feedback loop-based.

Offline postprocessing-based methods [7, 13] are sen-
sitive to various scenes since thresholds are manually set.
Cascade refinement-based methods design additional mod-
ules that sequentially update predictions [17,30,39,51]. For
instance, [30, 51] propose a residual refinement module to
learn the difference between “coarse predictions” and the
ground truth. Wang et al. [39] add another light encoder-
decoder network to generate finer patches that can replace
the corresponding patches in “coarse predictions”. How-
ever, these methods require extra modules, consequently,
bring more parameters. To address this problem, feed-
back loop-based method (e.g. DRU [41]) builds a feedback
scheme by iteratively bringing “coarse predictions” as an-
other channel of input image [9,26,33,40]. Besides, instead
of embedding “coarse predictions” to inputs, CPD [49] uti-
lizes the predictions to guide deep layer features in en-
coders. But CPD still adds extra parameters due to separate
cascaded decoders are exploited to reconstruct refined fea-
tures. By contrast, first, JTFN not only refines predictions
but also refines features; secondly, JTFN refines features
from shallow to deep layers; third, JTFN treats “coarse pre-
dictions” as context- and spatial-aware guidance.

Curvilinear Structure Segmentation: The two criti-
cal aspects of Curvilinear Structure Segmentation (CSS) are
topology preserving and feature refinement [14, 26, 33, 38,
39, 53]. But existing general CSS methods center on topol-
ogy preserving. TopoNet [14] learns local topology by op-
timizing limited critical points, thus is sensitive to various
scenes. [26] assumes that pre-trained VGG [34] can produce
natural topology of objects, but such assumption causes lim-
ited improvements. Accordingly, the sub-tasks of CSS, such
as crack detection [53], road extraction [4,38], and biomed-
ical image segmentation [31,33,39], also only consider one
aspect alone. For instance, [4] involves extra annotated data
to keep connectivities of road network. FPHBN [53] di-
versifies receptive field by aggregating pyramid features for
crack detection. Instead, our JTFN jointly addresses topol-
ogy preserving and feature refinement.
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Figure 2. Joint Topology-preserving and Feature-refinement Network (JTFN). (a) Architecture of JTFN. Our model consists of three
phases: five encoding layers, reciprocative decoders (FIM) from semantic segmentation (S) to boundary detection (B), and skip connec-
tions embedded with feature refinement (GAU). (b) Feature Interactive Module (FIM). (c) Gated Attentive Unit (GAU).

3. Joint Topology-preserving and Feature-
refinement Network (JTFN)

In this section, we first discuss the JTFN architecture.
Then we illustrate topology preserving and feature refine-
ment separately. Finally, we explain the iterative training
and inference process for JTFN.

3.1. JTFN Architecture

Fig. 2(a) illustrates the JTFN architecture. The architec-
ture is built on UNet [31]. For encoders, we truncate the
first five layers of VGG16 [34] and remove the last three
fully-connected layers and the last pooling layer of VGG-
16. Thus we obtained five hierarchical encoding features
that are in charge of gaining knowledge. We name these
five encoding layers as same as VGG-16, like Conv1 2 in
Fig. 2(a). Four decoding layers are used for reconstruct-
ing spatial and semantic features, thus comprehensive priors
are important for extracting meaningful info. Here, we in-
troduce object connectivity as topology priors and design a
reciprocative module (i.e., FIM) to exchange features from
semantic segmentation (S) to boundary detection (B). S
and B are two homogeneous streams and each S or B con-
tains two sets of “conv + bn + relu” and one upsampling.
Additionally, to mitigate the spatial loss of encoders due to
stacks of pooling operations, we add skip connections be-
tween each corresponding encoding and decoding layers for
feature refinement. In this step, we embed a Gated Attentive
Unit (GAU) in each skip connection, to introduce context-
and spatial-aware predictions as feedback guidance that se-

lects saliencies for better refinement. Consequently, this it-
erative feedback learning strategy not only refines features
but also helps update predictions simultaneously.

3.2. Feature Interactive Module (FIM)

[16,43,52] support that topology and boundary connec-
tivity are related, and demonstrate that topology connec-
tivity can help identify boundary. Thus we utilize object
boundary to represents the topology of curvilinear struc-
tures. Technically, segmentation masks are highly asso-
ciated with corresponding object boundaries. In addition,
boundary map annotations can be automatically obtained
by performing Canny operator [6] on existing segmentation
labels. Hence, we exploit features from boundary detec-
tion as supervision of topology preserving for segmenta-
tion. Inspired by this, we build a feature interactive module
(FIM) to model feature interchange between segmentation
and boundary detection. It is worth noting that we only uti-
lize FIM and boundary detection in decoders because de-
coding layers emphasize semantic features (such as topol-
ogy) more compared to encoding layers [1]. Fig. 2(b) shows
the brief architecture of FIM. The left blue part corresponds
to the learned features for semantic segmentation (S) and
the yellow one is for boundary detection (B). Here we de-
note lower-case s`t and b`t as the learned features in S and
B separately, where ` means the layer number and t is for #
learning iterations. Thus FIM is designed as follows:

st`,b
t
` = F`(s

t
`−1,b

t
`−1,RFt

`; θ
t
F ), (1)
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Figure 3. Feature refinement in GAU. Under feedback yt−1

s ’s
guidance, the learned encoding features et

` is refined as RFt
`.

where RFt
` is a refined feature from GAU, and θF represents

the parameters of FIM. The S branch learns st` through three
parts: concatenating refined features RFt

` and the previous
S’s feature st`−1, updating features by two convs (denoted
as s̃t`−1), and learning attentive features with a residual at-
tention which incorporates updated B features b`

t. As an
auxiliary stream, the B branch simply concatenates the up-
dated features s̃t` and the previous B’s feature bt

`−1. Here
s̃t` is obtained by taking two convs after s̃t`−1. With the
FIM designs, features are reciprocated from segmentation
to boundary detection, thus global topology is preserved.

3.3. Gated Attentive Unit (GAU)

The predicted masks naturally show context- and spatial-
aware attentions. Instead of directly including the predic-
tions to inputs [9, 26, 33, 40], JTFN back-feeds predictions
as feature-refinement guidance that helps enhance feature
representations in skip connections. In addition, this feed-
back loop from predictions to feature refinement encourages
refining features and iteratively updating predictions at the
same time. Specifically, we present a Gated Attentive Unit
(GAU) that both supplements residual and enhances exist-
ing saliencies, thus attentive features are obtained.

Fig. 2(c) illustrates the GAU architecture. The unit con-
sists of two functions: supplement and enhancement. The
inputs of GAU are encoding features et` and previous pre-
dictions yt−1

s . With GAU, et` will be enhanced as refined
features RFt

` under the yt−1
s ’s guidance, and then be skip-

connected to decoders for better reconstruction. We formu-
late GAU as below:

RFt
` = spt

` + eht
`

= M× et` + (1−M)× õt
`, (2)

where spt` means supplement and eht` represents enhance-
ment; M is denoted as the attentive-residual mask and × is
for element-wise multiplication.

Specifically, supplement (the blue lines) aims to make
up for residual attentive features that exist in the learned
predicted masks but not or weakly exist in et`. We define
supplement as follows:

spt
` = M× et` (3)

M = sigmoid[SA(rt`)× CA(rt`)]
rt` = et` − ot

`

ot
` = et` × yt−1

s .

Refer to Fig. 2(c), from left bottom to top, the detailed pro-
cess is as follows: (1) obtain overlapping attentive features
ot
` by multiplying et` and yt−1

s , i.e., existing attentive fea-
tures; (2) get residual attentive features rt` by finding differ-
ence between current learned features et` and the overlap-
ping attentive features ot

l ; (3) generate spatial- and channel-
wise masks M based on residual attentive features rt`; (4)
generate supplement features spt

` by masking input features
et` with M. Here, the spatial-wise attention SA and channel-
wise attention CA share the same structures as [47] used for
better feature representations.

By contrast, enhancement (the red lines) seeks to en-
hance existing attentive features that exist in both predicted
masks and current et`. We formulate its process as below:

eht` = (1−M)× õt
`(y

t−1
s ). (4)

Here õt
`(y

t−1
s ) is obtained by two convs after overlapping

attentive features ot
`. That’s to say, enhancement strength-

ens existing attentive features. Fig. 3 shows feature learn-
ing of GAU. The features are obtained from the layer (` =
2, t = 3) that is trained for road network extraction. From
the results, we can see residual attentive features (i.e. verti-
cal lines) are maintained or supplemented, and existing at-
tentive features (i.e. two horizontal lines) are enhanced.

3.4. Iterative Training & Inference

Training: In training, JTFN adopts an iterative feed-
back learning strategy, which traverse between accumulat-
ing a total loss from T iterations of forward passes, and then
performing backpropagation. Specifically, a batch of CSS
images I ∈ RC×H×W go through T -iterations updates.
Specifically, for iteration t, JTFN first learns an encoder
module. Then JTFN models two reciprocative decoders for
semantic segmentation and boundary detection (denoted as
S decoder and B decoder separately), thus generates seg-
mentation and boundary predictions yt

s and yt
b:

yt
s,y

t
b = FJTFN(I,y

t−1
s ; θ), (5)

where θ is the overall parameters of JTFN. At last, JTFN
brings a segmentation prediction yt

s as a feedback input of
GAU for feature refinement. In addition, we utilize binary
cross-entropy loss (BCE) to minimize the divergence be-
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Algorithm 1 Iterative Training
Input: Input image I ∈ RC×H×W , segmentation annotation

Gs ∈ R1×H×W , boundary annotation Gb ∈ R1×H×W , ini-
tialized prediction y0

s = 1, and hyper-parameters α and λ.
Output: Predicted segmentation and boundary masks: yts and ytb.

1: for itr = 0, . . . ,#epoch do
2: //Feed-forward:
3: for t = 1, . . . ,T do
4: et

` = encoder(I)
5: yt

s = S decoder(st`−1,RFt
`(e

t
`,y

t−1
s ),bt

`)
6: yt

b = B decoder(bt
`−1, s̃

t
`)

7: Lt = Lbce(y
t
s,Gs) + λLbce(y

t
b,Gb)

8: end for
9: Minimize L =

∑
t αtLt

10: Backward and Update JTFN.
11: end for

tween predictions and ground-truth (Gs,Gb):

Lt = Lbce(y
t
s,Gs) + λbLbce(y

t
b,Gb) (6)

= −
H×W∑

i

{[Gi
s log(y

i,t
s ) + (1−Gi

s) log(1− yi,t
s )]

+ [Gi
b log(y

i,t
b ) + (1−Gi

b) log(1− yi,t
b )]},

We set the balancing coefficient λb as 1 in experiments.
After T -rounds forward computation, total loss can be ob-
tained as:

L =

T∑
t=1

αtLt, (7)

where αt is the loss weight and here we set weights equally
in each iteration. See Algo. 1 for the detailed feedforward
computation and backward update.

Inference: In prediction, we obtain predictions only
from S, the semantic segmentation head. To refine predic-
tions, we iteratively perform T feedforward computations
and get the final predicted masks. Here the threshold for
binarizing predictions is set as 0.5.

4. Experiments
4.1. Datasets

To validate the effectiveness of CSS on various applica-
tions, we perform JTFN on below four datasets: Crack500
[55] and CrackTree200 [60] for crack detection, DRIVE
dataset [24] for blood vessel segmentation, Massachusetts
Roads dataset [25] for aerial road network extraction.

Cracks: Crack500 [55] and CrackTree200 [60] both
contain concrete/pavement crack images with various
shapes and cluttered backgrounds. Crack500 is the existing
largest public dataset that consists of 1896 training images
and 1124 test images. The widths and shapes of cracks in

Table 1. Ablations of Boundary-only (BO), FIM, and GAU.

Architecture +BO +FIM +GAU F1 Quality

Base 78.86 77.56
Base-C 80.44 79.60
Base-BO X 80.27 78.79
Base-FIM X X 82.07 80.75
Base-GAU X 81.84 81.55

JTFN X X X 84.19 82.96

Crack500 are varying from a large range that makes crack
detection challenging. CrackTree200 has 206 pavement im-
ages that are only annotated with one-pixel width masks.
Hence, CrackTree200 is feasible for topology-aware evalu-
ation. Following [26]’s settings, we dilate the ground truth
masks by 4-pixels in evaluation. Since public dataset parti-
tions are not provided in [60], in experiments, we use 164
images for training and the rest for testing.

DRIVE: DRIVE dataset [24] is designed for blood ves-
sel segmentation of medical images. The dataset only con-
tains 40 retina images. The limited number of images can
evaluate our model’s performance on the small dataset. Fol-
lowing [39], we set 20 images for training and 20 for testing.

Roads: Massachusetts Roads dataset [25] is the largest
available dataset for road network extraction whose images
are taken from airborne craft. The dataset contains different
roads, like small paths, highways, etc., which provide dif-
ferent scenarios for evaluation. The dataset has 1108 train-
ing and 49 test images.

4.2. Implementation Details

Evaluation metrics. To evaluate the topology and pixel-
wise accuracy in CSS, we choose two types of metrics cor-
respondingly. For pixel-wise evaluation, we choose F1
score, Precision, and Recall that have widely been used
in existing semantic segmentation methods [14, 26, 32].
Precision and Recall are computed by comparing pre-
dicted and ground-truth masks in pixel-level and F1 coor-
dinates the agreement between Precision and Recall: F1 =
2Precision×Recall
Precision+Recall . Compared to pixel-wise metrics are sen-

sitive to small changes, topology-based is relatively robust.
For evaluating topology, following [46], we adopt Correct-
ness, Completeness and Quality, which measure the simi-
larity between predicted skeletons and ground truth within
a threshold. In our experiments, the threshold is set to 2.

Training details. Our proposed network is built with
PyTorch [29] and trained on a single NVIDIA RTX 3090.
For data augmentation, we use horizontal flipping, random
cropping, and random rotation with 90◦, 180◦ and 270◦.
Our model is optimized by Adam [18] with an initial learn-
ing rate of 10−3 and a weight decay of 5 × 10−4. During
training, all training samples are cropped to 256× 256, and
our network is trained with a mini-batch size 2. In addition,
we produce GT boundary by fusing boundaries from Canny
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BaseImage GTBase-BO Base-FIM

Figure 4. Examples of ablations w/ boundary or FIM. Three abla-
tion models are performed: Base, Base-BO, and Base-FIM. The
blue rectangle represents effect regions of topology-preserving.

operator [6] and a spatial gradient deriving method.

4.3. Ablation Study

To analyze JTFN, we performed extensive ablations with
comprehensive metrics: pixel-wise based F1 and topology-
based Quality. We show quantitative results on Crack-
Tree200 [60] and qualitative results on DRIVE [24], Roads
[25], and CrackTree200. Here, our baseline model (denoted
as Base) is obtained from JTFN excluding boundary detec-
tion, FIM, and GAU, i.e. a UNet-like structure.

Boundary-only (BO): To demonstrate the objects’
boundary is effective for preserving the topology of curvi-
linear structures, we only include a parallel decoder of
boundary detection to original Base, and denote the model
as Base-BO. Observing results in Table 1, we see Base-
BO obtains about 1.41 points higher than Base in F1 and
achieves 1.23 points higher in Quality. We can infer that in-
cluding boundary to base model can help improve accuracy.
The second and third columns of Fig. 4 show the segmenta-
tion examples of Base and Base-BO models individually.
When zooming in the regions, we can see Base-BO can
learn new connectivities in various curvilinear structures,
like the missing structure in blood vessels. Thus we believe
including boundary to base segmentation model can help
preserve topology of curvilinear structures.

FIM: To fully take advantage of boundary informa-
tion when reconstructing semantic segmentation, we pro-
pose Feature Interactive Module (FIM) to interchange fea-
tures between boundary detection and semantic segmenta-
tion (i.e. CSS). To analyze the effectiveness of FIM, here we
include FIM to each pair of (segmentation, boundary detec-
tion) decoders, and denote this model as Base-FIM. As the
results shown in Table 1, compared to Base-BO, Base-FIM
performs 1.8 points higher in F1 and 1.95 points higher in
Quality. In addition, Comparing third and fourth columns
of Fig. 4, Base-FIM removes noisy connectivity of roads
and cracks, and obtains more complete topologies. These
results prove that our proposed FIM consistently performs

F1 score
Quality

#itr=1 #itr=3 GT 1  2   3   4

Pe
rf

or
m
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#iteration
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Figure 5. Iterative leaning of JTFN. JTFN achieves best results at
#itr 3. Topology and details are gradually complemented.

best by gradually including boundary information and inter-
active modules for topology enhancement.

GAU: To mitigate the spatial loss and enhance semantic
information from encoders to decoders, we design a GAU
embedded in skip connections, which module helps learn
attentive features under the guidance of predictions. To val-
idate the performance of GAU, we include GAU to Base
without adding Boundary or FIM. Observing results of
Base and Base-GAU in Table 1, we can see Base-GAU im-
prove the results by a large margin with 2.98 points in F1
and 3.99 points in Quality. In addition, we compare a new
baseline with concatenation operation C, instead of GAU
module. We can see Base-GAU outperforms Base-C by
1.4 and 1.95 points in F1 and Quality. The results show that
GAU is effective in CSS segmentation.

Including both FIM and GAU: We have validated the
effectiveness of FIM and GAU alone. Here, we will demon-
strate the combination of these two modules. Instead of
incrementally adding them together, our proposed JTFN
combines these two modules in an iterative learning strat-
egy. From the results in Table 1, JTFN obtains 5.33 points
gains in F1 (84.19 vs. 78.86) and 5.4 points gains in Qual-
ity (82.96 vs. 77.56), compared to Base model. Addition-
ally, compared with the separate modules, JTFN achieves
around 2 points increase for both F1 and Quality compared
to Base-FIM, and performs (2.35, 1.41) points better of (F1,
Quality) than Base-GAU. We can see JTFN consistently
performs best among extensive ablations. We can infer that
topology-preserving (FIM) and feature refinement (GAU)
mutually benefit during joint learning.

Number of iterations: Since JTFN goes through FIM
and GAU in an iterative learning strategy. Here we study
how many iterations are enough to obtain a speed-accuracy
tradeoff. We train our JTFN up to 4 iterations when the
accuracy starts to decrease. Fig. 5 illustrates experimental
results of JTFN on CrackTree200 by comprehensive topol-
ogy and pixel-wise metrics (i.e. F1 and Quality). For #itr 1,
only with FIM, JTFN is guided by an initialized mask and
achieves satisfactory results: (82.30, 81.68) of (F1, Qual-
ity). With the updates of feedback masks, for #itr 3, JTFN
significantly surpasses #itr 1 by a large margin ( 84.19 vs.
82.30) of F1 and (82.96, vs. 81.68) of Quality. JTFN starts
to decrease performance at #itr 4, thus, we select #itr as 3 in
below experiments. It is worth noting that the results from
#itr 2 to 3, even 4 are substantially better than #itr 1 with
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Table 2. Comparisons with alternative CSS methods across segmentation-based and topology-based metrics. Results of alternatives were
obtained by reproducing codes provided by authors. Red numbers indicate best results, blue numbers are second best.

Method CrackTree200 Crack500 DRIVE Roads
Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

UNet [31] 79.16 78.95 78.42 62.22 68.85 61.83 82.74 80.59 81.41 62.55 52.63 55.70
VGG-UNet [26] 83.49 80.43 81.84 58.18 60.26 51.79 81.17 82.05 81.25 64.79 57.47 59.65
TopoNet [14] 81.85 77.80 79.03 66.81 62.68 60.06 82.94 80.29 81.36 62.25 55.83 57.36
DRU [41] 84.80 77.46 80.49 61.94 71.43 62.82 84.36 80.82 82.30 60.62 56.96 57.42
JTFN (ours) 85.87 82.58 84.19 68.81 69.06 65.76 82.71 83.40 82.81 65.14 59.04 60.65

Method Correct. Complete. Quality. Correct. Complete. Quality Correct. Complete. Quality Correct. Complete. Quality
UNet [31] 82.05 85.93 76.15 31.66 34.98 19.56 55.60 46.29 33.82 62.89 58.06 48.56
VGG-UNet [26] 86.95 85.36 80.08 25.45 32.75 15.67 53.04 33.36 31.25 67.23 61.34 53.98
TopoNet [14] 85.50 83.92 77.36 30.02 37.26 19.83 55.67 46.95 34.22 62.46 61.47 50.77
DRU [41] 87.81 84.02 79.47 30.51 36.02 19.78 56.03 48.86 35.36 62.04 60.42 49.83
JTFN (ours) 88.30 87.42 82.96 36.72 39.26 24.12 57.09 49.28 36.02 68.65 63.37 56.05

Table 3. Comparisons with SOA alternatives on CrackTree200.

Method Correct. Complete. Quality

CrackTree [60] 79.0 92.0 73.92
Reg-AC [35] 10.7 92.83 10.61
VGG-UNet [26] 85.50 83.92 77.36
TopoNet [14] 86.95 85.36 80.08

JTFN (ours) 88.3 87.42 82.96

the same computation cost. This indicates that an iterative
learning strategy is beneficial for optimizing predictions.
From the predictions in Fig. 5, we can see the confidence
becomes higher with iterative learning increasing.

4.4. Comparisons

To validate the effectiveness of our JTFN, we compare
with alternatives in general CSS methods and each branch
task separately, including crack detection, road network ex-
traction, and blood vessel segmentation.

Comparative methods: For general CSS methods’
comparisons, we select topology-based methods and the
closest semantic-based method (i.e. DRU [41]) to JTFN.
Correspondingly, VGG-UNet [26] and TopoNet [14] both
are alternative topology-preserving methods. Closest to
JTFN, the state-of-the-art DRU [41] also adopts iterative
learning strategy and exploits feature refinement module,
i.e., refined segmentation as Sec.2 discussed. However,
mimicked RNN’s idea, DRU simply embeds predictions to
input channel and only refines features in the last layer of
encoder without any attentive guidance. In addition, since
UNet [31] is a commonly used and effective structure in
CSS, here, we include UNet as a baseline. In experiments,
thanks to the codes provided by authors, we reproduce the
results for fair comparisons. To further show the effective-
ness of JTFN, we compare JTFN to state-of-the-art methods
in each sub-tasks. These methods vary from hand-crafted
features-based [5, 36, 50] to recent CNN based [24, 39]. All
numbers of alternatives are obtained from original papers.

Comparisons with alternative CSS methods: Table 2
shows results of JTFN and alternatives on four datasets

Table 4. Comparisons with SOA alternatives on Roads.

Method Correct. Complete. Quality

Reg-AC [35] 25.37 34.78 17.19
RoadTracer [3] 43.50 51.30 30.80
MSP-Tracer [45] 48.80 55.20 34.30

JTFN (ours) 68.65 63.37 56.05

across six metrics, which evaluate both pixel-wise accuracy
(F1, Precision, Recall) and topology preserving (Correct-
ness, Completeness, and Quality). Compared to alterna-
tives, JTFN achieves 22 best scores, 1 second best, and 1
third best score over all 24 scores. The highest increment
among pixel-wise based metrics is around 5 points (e.g.
from 60.62 to 65.14 for Precision of Roads); and the largest
improvement on topology based metrics is about 6 points
(i.e. from 30.51 to 36.72 for Correctness of Crack500).
Thus we infer that JTFN obtains consistent improvements
on both topology-preserving and pixel-wise refinement. By
contrast, the alternative methods fail to improve consis-
tently, for example, DRU mostly performs better than base-
line UNet but sometimes even worse, such as Precision of
Roads (i.e. 60.62 vs. 62.55), and Correctness of Crack500
(30.51 vs 31.66) etc. Compared to the closest method DRU,
JTFN only performs less effectively on Recall of Crack500
(69.06 vs. 71.43) and Precision of DRIVE (82.71 vs. 84.36).
To further understand JTFN, Fig. 6 shows segmentation ex-
amples of JTFN and the alternatives. From the 1st row to
4th row correspond to results for road extraction, one-pixel
width crack detection, width-changing crack detection, and
blood vessel segmentation. We can see that JTFN delineates
curvilinear structure (e.g. roads or cracks) better compared
with alternatives. Besides, JTFN can capture more details
that appear near boundaries like blood vessels.

Comparisons with SOA alternatives: Tables 3-4 show
comparisons between JTFN and SOA alternatives in each
branch tasks. For crack detection, not many existing
works focus on the field, and in most scenarios, topology-
preserving works are main-stream, like Reg-AC [35] which
is only for centerline detection. Besides, for road network
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Image UNet VGG-UNet TopoNet DRU �T�N GT
Figure 6. Examples of segmentation for JTFN and alternatives. We can conclude that topology-preserving (TP) encodes boundary connec-
tivity to improve broken edges, and feature-refinement (FR) iteratively refines details such as curvilinear structure or thickness of edges.
Blue rectangle represents the area we can see effects of TP and red rectangle is for FR. Zoom in for better visualization.

extraction, connectivity is critical, thus topology-preserving
is also very important. Thus, according to the charac-
teristic of these two tasks, topology-based metrics are se-
lected for evaluation. From the results of CrackTree200 in
Table 3, JTFN performs best over Correctness and Qual-
ity and less effective on completeness of cracks. Besides,
JTFN achieves best across all the topology-based metrics on
Roads dataset shown in Table 4. Overall, we see JTFN per-
forms effectively in topology-aware applications. Not like
Reg-AC which only has effects on topology, JTFN also can
render details of segmentation. For blood vessel segmen-
tation, details and topology are both critical aspects, thus
pixel-wise accuracy and topology-aware metrics are applied
on DRIVE dataset. Table 5 shows JTFN performs best and
second best overall the metrics. From the above discussion,
we conclude that JTFN achieved state-of-the-art results.

5. Conclusion
We have proposed Joint Topology-preserving and

Feature-refinement Network (JTFN) for curvilinear struc-
ture segmentation. JTFN contains two critical modules:
Feature Interactive Module (FIM) and Gated Attentive Unit
(GAU), then combines these two modules via an iterative
learning strategy. FIM seeks to address topology preserving
by introducing boundary detection (B) as a geometric con-
straint of semantic segmentation (S), and reciprocates fea-
tures between two tasks. Using such topology-aware pre-

Table 5. Comparisons with SOA alternatives on DRIVE.

Method F1 Correct. Complete. Quality

Wavelets [36] 76.18 49.18 21.34 17.82
SE [10] 65.84 37.94 16.03 12.59
CE-Net [12] 71.09 33.69 25.96 17.14
HED [50] 79.59 43.83 41.57 27.03
KBoost [5] 80.03 46.89 42.01 28.40
N4Fields [11] 80.52 56.50 36.46 28.43
CRFs [28] 78.12 49.39 40.31 28.56
CS2 [27] 81.63 56.62 46.26 34.12
DRIU [24] 82.21 47.34 47.25 31.37
PolicyNet [39] 83.53 57.68 46.39 34.32

JTFN (ours) 82.81 57.09 49.28 36.02

dictions as feedback guidance, GAU refines attentive fea-
tures by supplementing and enhancing saliencies. We pro-
vide extensive ablation studies to justify FIM and GAU.
Comparisons with general CSS methods validate the effec-
tiveness of whole JTFN on topology-preserving and seg-
mentation accuracy. For each sub-tasks of CSS (e.g. blood
vessel segmentation), JTFN consistently outperforms state-
of-the-art alternatives. Potential extensions of JTFN include
adaptively weighing loss for each iteration, thus refining
learning process and refine predictions efficiently.
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