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Abstract

We present a task and benchmark dataset for person-
centric visual grounding, the problem of linking between
people named in a caption and people pictured in an im-
age. In contrast to prior work in visual grounding, which
is predominantly object-based, our new task masks out the
names of people in captions in order to encourage meth-
ods trained on such image—caption pairs to focus on con-
textual cues, such as the rich interactions between mul-
tiple people, rather than learning associations between
names and appearances. To facilitate this task, we introduce
a new dataset, Who’s Waldo, mined automatically from
image—caption data on Wikimedia Commons. We propose a
Transformer-based method that outperforms several strong
baselines on this task, and release our data to the research
community to spur work on contextual models that consider
both vision and language. Code and data are available at:
https://whoswaldo.github.io

1. Introduction

The correspondence between people observed in images
and their mentions in text is informed by more than sim-
ply their identities and our knowledge of their appearances.
Consider the image and caption in Figure 1. We often see
such image—caption pairs in newspapers and, as humans,
are skilled at recovering associations between the people
depicted in images and their references in captions, even if
we’re unfamiliar with the specific people mentioned. This
ability requires complex visual reasoning skills. For the ex-
ample in Figure 1, we must understand an underlying activ-
ity (“passing”) and determine who is passing the ball, who
is being passed to, and which people in the image are not
mentioned at all.

In this paper, we present a person-centric vision-and-
language grounding task and benchmark. The general prob-
lem of linking between textual descriptions and image re-
gions is known as visual grounding, and is a fundamental
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Sam Schulz passes to Curtly Hampton during the UWS Giants vs. Eastlake
NEAFL match at Robertson Oval on 1 August 2015.

Figure 1. By studying this picture and caption, we can use contex-
tual cues to link between the people referred to in the text and their
visual counterparts, even if we are unfamiliar with the specific in-
dividuals. This capability requires understanding of a broad set of
interactions (e.g. “passing”) and expected behaviors (e.g. players
pass to their teammates). We propose the task of person-centric vi-
sual grounding, where we abstract over identity names (e.g. mask-
ing out Sam Schulz and Curtly Hampton with [NAME] tokens) to
encourage algorithms to emulate such contextual reasoning.

capability in visual semantic tasks with applications includ-
ing image captioning [66, 41, 3], visual question answer-
ing [19, 20, 26] and instruction following [4, 43, 7]. Our
task and data depart from most existing works along two
axes. First, our task abstracts over identity information, in-
stead focusing specifically on the relations and properties
specified in images and text. Second, rather than using data
annotated by crowd workers, we leverage captions originat-
ing from real-life data sources.

While visual grounding has traditionally centered around
localizing objects based on referring expressions, we ob-
serve that inferring associations based on expressions in
person-centric samples—i.e. people’s names—could lead
to problematic biases (e.g. with regards to gender). Hence,
we formulate the task to use captions that mask out peo-
ple’s names. This allows for an emphasized focus on the
context—both in image and text—where the person ap-
pears, requiring models to understand complex asymmetric
human interactions and expected behaviors. For instance, in
the example in Figure 1 we might expect a player to pass to
someone on their own team.
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To explore this problem, we create Who’s Waldo: a col-
lection of nearly 300K images of people paired with textual
descriptions and automatically annotated with alignments
between mentions of people’s names and their correspond-
ing visual regions. Who’s Waldo is constructed from the
massive public catalog of freely-licensed images and de-
scriptions in Wikimedia Commons. We leverage this unique
data source to automatically extract image—text correspon-
dences for over 200K people. We also provide evaluation
sets that are validated using Amazon Mechanical Turk and
demonstrate that our annotation scheme is highly accurate.

To link people across text and images, we propose a
Transformer-based model, building upon recent work on
learning joint contextualized image—text representations.
We use similarity measures in the joint embedding space be-
tween mentions of people and image regions depicting peo-
ple to estimate these links. The contextualized Transformer-
based representations are particularly suited to handle the
masked names, by shifting the reasoning to surrounding
contextual cues such as verbs indicating actions and ad-
jectives describing visual qualities. Our results demonstrate
that our model effectively distinguishes between different
individuals in a wide variety of scenes that capture complex
interactions, significantly improving over strong baselines.

2. Related Work

Visual Grounding. The goal of visual grounding is to lo-
calize objects in an image given a textual description. Tasks
are typically formulated to either recover correspondences
between object region proposals and text, or compute at-
tention maps over the whole image. Referring expression
comprehension (REC) is a common variant of this problem,
where the goal is to identify an image region corresponding
to a sentential description (e.g. [51, 17, 14, 67, 37]). Sadhu
et al. [52] recently extended this task to a zero-shot setting
that also considers expressions with unseen nouns. Qiao et
al. [49] provide a comprehensive survey on REC.

Still, this line of work has made limited use of descrip-
tions of relationships between objects. The Flickr30K En-
tities dataset [47] opened up new avenues for modeling
such dependencies by including images, full captions, and
ground-truth links between regions and phrases for nearly
a hundred object categories. Several methods have since
been proposed to visually ground objects from textual de-
scriptions that describe multiple objects [61, 46, 38]. A
weakly-supervised setting, which assumes that ground truth
links between regions and phrases are not available, has also
gained attention, with discriminative and contrastive objec-
tives [64, 62, 24], visual and linguistic consistencies [8] and
multilevel aggregation strategies [70, 1, 13] used to align
the image and language spaces.

However, most existing tasks in visual grounding permit
models to reason over referring expressions directly (allow-

ing models to learn priors over different object categories).
Our proposed task instead requires models to exclusively
reason over context and interactions between objects, as the
referring expressions (i.e. names) are masked.

The creation of most datasets related to visual grounding
involves a time-consuming, expensive annotation process
that includes both (i) generating referring expressions or full
textual descriptions for a given image, and (ii) annotating
corresponding regions in the image (e.g. [36, 28, 47, 68]).
We instead construct Who'’s Waldo through an automatic ap-
proach inspired by Conceptual Captions [56]. While that
work uses alt-text image descriptions from HTML (which
are noisy and must be aggressively filtered), we use raw de-
scriptions obtained from captions in Wikimedia Commons.

People-centric Tasks. Person identification [6, 32, 71] is a
task related to the one we propose, and is formulated as a
comparison between reference and target images, aiming to
determine whether these belong to the same identity. Our
work instead focuses on learning a contextual correspon-
dence between image regions and textual captions describ-
ing people and their depicted interactions. For ethical rea-
sons (see Ethical Considerations in Section 4), our released
dataset does not contain identity information, and thus can-
not be easily modified to train such models.

Another related people-centric task is to select a set of at-
tributes that will generate a description for each person in an
image that distinguishes that individual from others in that
image [53]. Finally, Aneja et al. detect out-of-context image
and caption pairs, using a dataset collected from news and
fact-checking websites. Their data (specifically, the subset
of images capturing people) could be used to augment ours.

Task-agnostic Joint Image-Text Representations. Recent
advances have led to a surge of interest in task-agnostic joint
visual and textual representations [39, 59, 34, 57, 10, 58,
72, 40, 35, 21]. Several works, such as LXMERT [59] and
VILBERT [39] learn these representations using two-stream
transformers [60] (one per modality). Others, including Vi-
sualBERT [34], VL-BERT [57] and UNITER [10], use a
unified architecture. In our work, we leverage these task-
agnostic features to learn to link between the individuals
described in the text and their visual counterparts.

3. Person-centric Visual Grounding

Given an image I with m > 1 people detections and a
corresponding caption x referring to n > 1 people (with
each person mentioned one or more times), we wish to find
a mapping from referred people to visual detections.

We expect to produce a partial, injective (one-to-one)
mapping, since not all referred people will be pictured and
no two referred people should map to the same detection.
We also find that this mapping is not necessarily surjec-
tive (onto), since the image may picture people who are not
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named in the caption and there could exist detections not
mapped to by any referred people.

In-the-wild captions featuring people often refer to them
by name. However, reasoning about visual grounding us-
ing actual names of people involves two challenges: the di-
versity of names creates significant data sparsity, and their
surface form (i.e., the text itself) elicits strong biases, e.g.,
with regard to gender. We therefore abstract over the sur-
face form of the names by replacing each name with the
placeholder token [NAME ]. This encourages models to fo-
cus on the textual context of the names, including adjectives
and adverbs that hint at the person’s visual appearance and
verbs that indicate the action they partake in. In other words,
by masking names we seek models that do not memorize
what specific people look like, or form stereotypical associ-
ations based on specific names, but must instead learn richer
contextual cues. As part of our dataset, we provide a map-
ping from referred people to their respective sets of refer-
ring [NAME] tokens.

While visual grounding has traditionally centered around
localization of objects (including unnamed people), we find
that visual grounding in the context of named people (which
we denote as person-centric) presents additional oppor-
tunities. In object-centric visual grounding, referring ex-
pressions are not masked, allowing models to also learn
by matching images and object classes, rather than en-
tirely from context. Moreover, data for our task (i.e., cap-
tioned images of people) is readily available on the web
and matches a realistic distribution more closely than ob-
ject datasets, whose pairs are annotated by workers for the
sole purpose of visual grounding tasks.

Evaluation. Given a mapping produced by an algorithm
for an input example, we evaluate by computing accuracy
against ground truth links of referred people and detections.
This is unlike prior works that extract hundreds of candi-
date boxes and approximate correct matches using either
intersection-over-union ratios or the pointing game, which
requires the model to predict a single point per phrase. We
also enforce that the people in test images and captions do
not appear during training.

4. The Who’s Waldo Dataset

In this section, we describe Who’s Waldo', a new dataset
with 270K image—caption pairs, derived from Wikimedia
Commons.> We first describe the process of constructing
and annotating this dataset, then present an analysis over
dataset statistics. We show samples from our dataset, along
with their annotations, in Figure 2.

Data Collection. Under the broader “People by name” cat-
egory in Wikimedia Commons there are 407K categories

Icon created by Stefan Spieler from the Noun Project
’https://commons.wikimedia.org

named after people, each with their own hierarchy of sub-
categories. We refer to this set of people as Wikimedia
identities. We identified all sub-categories that are person-
centric (e.g. “Barack Obama playing basketball” or “Sally
Ride on Challenger in 1983, rather than “John F. Kennedy
International Airport”) by tokenizing names, matching to-
kens with regular expressions, and tagging parts of speech.
We then downloaded 3.5M images, collated duplicates, and
retained references to the Wikimedia identities they origi-
nate from. We observe that images originating from an iden-
tity are very likely to depict that identity.

Many images on Wikimedia Commons are also associ-
ated with human-provided English captions that describe
these images by naming the people present and detailing
their settings and interactions. We collected these captions
and pre-processed them by pattern matching with regu-
lar expressions to remove Wikimedia-specific text struc-
tures. We also removed phrases that are variants of “photo
by [photographer name]”, since photographers are often
named in captions but are not pictured in images.

Detecting People in Images and Captions. To detect
bounding boxes for people in images, we used a Switch-
able Atrous Convolution model with a Cascade R-CNN and
ResNet-50 backbone from MMDetection [48, 9] trained on
COCO [36]. We subsequently estimated 133 whole-body
keypoints using a top-down DarkPose model from MM-
Pose [69, 11] (trained on COCO [36] and finetuned on
COCO-WholeBody [27]).

We applied a pre-trained Punkt sentence tokenizer from
NLTK [29, 5] to all captions and performed named entity
recognition on each sentence using FLAIR [2] to identify
person names. We observe that people can be mentioned
more than once in captions and without exact matches (e.g.,
as “William” and “Bill”, or “Barack’ and “Obama”). There-
fore, we used neural coreference resolution models from Al-
lenNLP [33, 22] to cluster multiple name entities as individ-
ual referred persons.

Estimating Ground Truth Links. To produce supervision
for our task, we automatically generated ground truth links
from referred people in captions to detections of people in
images. As we will describe, Wikimedia Commons pro-
vides reference faces for many referred people. As we can
also generate face images for our image detections (via face
alignment from estimated pose landmarks), we computed
a similarity matrix using FaceNet embeddings [55, 54] be-
tween reference faces and detected faces. By finding a min-
imum weight bipartite matching [31] in this matrix and ap-
plying a threshold (set empirically to 0.46), we recovered a
partial mapping from referred people to detections.

We find reference faces for referred people as follows.
First, we associate referred people with Wikimedia iden-
tities (via the prior coreference resolution step). We also
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Left: _ Kikkan Randall and Ingvild Flugstad @stberg at the Royal Palace Sprint, part of the FIS World Cup 2012/2013, in

Stockholm on March 20, 2013. Kikkan Randall won the sprint cup.” Center: “_ blocks Allonzo Trier (#20) in front of | Luke Kennard
(#5) and _ (#31) in the 2015 McDonald’s All-American Boys Game.” Right: “At the Gagarin Cosmonaut Training Center in Star City, Russia,

Expedition 41/42 backup crew members - of NASA (left), _ of the Russian Federal Space Agency (Roscosmos, center) and

Mikhail Kornienko of Roscosmos (right) clasp hands as they pose for pictures in front of a Soyuz simulator at the start of final qualifications.”

Figure 2. Samples from Who’s Waldo, showing detected named entities in bold and entities linked with image regions in unique colors,
corresponding to the boxes on the images. Unmatched boxes and entities are colored in black.
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Figure 3. Who’s Waldo statistics, including the number of number
of mentions (occurrences) for referred people in captions, ground
truth box-name links per sample, distribution of samples and cap-
tion length (by words).

find that many Wikimedia identities have primary images
on Wikimedia Commons, which prominently display their
faces. We treat these as reference faces of referred people.
However, not all referred people have such associations, so
our ground truth links are a subset of all links.

Dataset Size and Splits. The above process yields 271,747
image—caption pairs. Figure 3 summarizes the distributions
of annotations and identities present in Who’s Waldo.

We split these into 179K training, 6.7K validation, and
6.7K test image—caption pairs. We generate the validation
and test splits without overlapping identities from training

and by ensuring that examples are challenging and correctly
annotated. To do so, we first randomly select 16K identities
and produce a validation and test superset from examples
containing these identities (observing that additional iden-
tities likely appear in these examples as well). We generate
the training set from all remaining examples that do not con-
tain any identities in the superset. We then remove all (triv-
ial) examples from the superset with exactly one person de-
tection and one referred person. We manually validate this
superset further as described below and divide the resulting
examples into validation and test splits.

Validating Test Images with AMT. While our method ap-
proximates ground truth mappings, we want subsets for
evaluation that only include correct ground truth links. To
that end, we used Amazon Mechanical Turk (AMT) to re-
move test set examples with incorrect annotations. Given a
ground truth link (i.e. identity name and image crop of de-
tected person), we defined the following yes/no AMT task:
“Does this [detection crop] contain [identity name]?”. For
ease of comparison, we also provided workers with a refer-
ence image and a link to additional photos for that identity.
We assign each ground truth link to two workers. Finally,
we select all pairs for which both workers answered “yes”.
We manually inspected 400 responses and—accounting
for worker disagreement and error—estimate that our au-
tomatic technique was accurate for approximately 95.5% of
links in superset examples. However, after removing any ex-
amples for which either worker answered “no”, we estimate
that over 98.5% of links in the retained examples are accu-
rate. Please refer to the supplemental material for additional
visualizations over our dataset and generated links.

Ethical Considerations People-centric datasets pose ethi-
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kicking away from [ Matt de Boer
during the AFL round twelve match between Carlton and
Greater Western Sydney on 11 June 2017 at Etihad
Stadium in Melbourne, Victoria.

s “:s-'n u‘ “‘}-:Bw o) OV L L e o)

Box-Name
Similarity
Matrix

® —[=]—

[o [~

[CLS] a@_.

= < —
kicking — E_.
away — H_.
from _.H_.

[

during __, E_.
the — H—-

(BN Sy e

Figure 4. Overview of our approach. Features are extracted from image regions and words and combined with a Transformer to learn
similarities between people detected in the image (boxes A-C, colored in unique colors) and names mentioned in the caption (Caleb
Marchbank and Matt de Boer in the example above). Correspondences are depicted by matching colors.

cal challenges. For example, ImageNet [15] has been scruti-
nized based on issues inherited from the “person” category
in WordNet [12, 65]. Our task and dataset were created with
careful attention to ethical questions, which we encountered
throughout our work. Access to our dataset will be provided
for research purposes only and with restrictions on redistri-
bution. Additionally, as we mask all names in captions, our
dataset cannot be easily repurposed for unintended tasks,
such as identification of people by name. Due to biases in
our data source, we do not consider the data appropriate for
developing non-research systems without further process-
ing or augmentation. More details on distribution and in-
tended uses are provided in a supplemental datasheet [23].

5. Method

In this section we present an approach for linking people
in text and images. We use a multi-layer Transformer [60]
to learn joint image—text representations such that referred
people and their corresponding image regions will be highly
similar, while those that do not correspond will be dissimi-
lar. For brevity, we refer to the n names of referred people
as names and m image regions of detected people as boxes.

5.1. Model

Our method is based on the recent UNITER Transformer
model [10]. As shown in their work, their pretrained model
can be leveraged for a wide variety of downstream vision-
and-language tasks. In this section, we show how UNITER
can be modified for our task and fine-tuned on our dataset.
An overview of our approach is shown in Figure 4.

We extract visual features for each person detection p us-

ing a fully-convolutional variant of Faster R-CNN [3]. Vi-
sual features are concatenated with encodings of their spa-
tial coordinates,® yielding spatial-visual features f(p). We
tokenize words into WordPieces [63]. In accordance with
our task, names are symbolized by [NAME] tokens. For
each sub-word w, we extract features g(w) that are com-
posed of a token embedding and position embedding.

We feed these spatial-visual and textual features into a
Transformer model that uses self-attention layers to learn
a contextual representation and captures a more context-
specific representation in upper-hidden layers [18]. We de-
note the final hidden layer of spatial-visual features as Py,
and of textual features as X;, where P, X; € R7%8.

From these contextualized representations, we construct
a box—name similarity matrix S (top-right of Figure 4). This
matrix measures cosine similarities S; ; between the ¢-th
name and the j-th box:

PTX;
Sij=—"re ey
1P 211Xl
where X; is an embedding averaged over all [NAME] to-
kens for mentions of the ¢-th referred person in a caption.

During inference, for each referred person, we select its
corresponding detection as the most similar box in S.

5.2. Learning

To train our model, we propose the following loss terms
that operate on the similarity matrix S: (1) box—name
matching losses defined within and across images and (2)
an unlinked box classification loss.

3Following [10], these are: [x1, y1, T2, Y2, w, h,w X h].
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Figure 5. Selecting unlinked boxes. We select small and blurry
boxes (colored in red) for our proposed classification loss, encour-
aging the model to focus on larger (and less blurry) people.

Box-Name Matching Losses. We define box—name match-
ing losses within images (supervising estimated correspon-
dences with ground truth links) and across images (using a
discriminative objective over image—caption pairs).

We compute the estimated probability for a ground truth
link (4, 7) over different boxes (p = Softmax(S;.);) and
also over different names (¢ = Softmax(S. ;);) in its cor-
responding image—caption pair. We minimize cross-entropy
losses over these for all ground truth links L in a batch:

1
Lia = ~17 2 [logp® +10ga®] @
leL

Because we would like to leverage additional images dur-
ing training (i.e., those without ground truth links), we also
compute a matching loss across images containing a sin-
gle box and name (which are likely to represent the same
person). We sample positive and negative box—name pairs.
Negative pairs are generated by replacing the box with one
from another image (and of a different person). We mini-
mize a binary cross-entropy loss Liyter Over these pairs.

Unlinked Box Classification Loss. As not all people de-
picted in an image are referred to in its caption, we aug-
ment .S with a constant null name Xg. We formulate a bi-
nary cross-entropy classification loss over similarities be-
tween boxes and Xg. We process these similarities S;—g ;
through a sigmoid function to obtain normalized values.
Boxes linked to names are considered negative matches
(i.e., these should yield low similarities with Xg).

We cannot assume all other boxes are positive matches
(i.e., should yield high similarities with X4) as we are
only provided with partial ground truth correspondences
from the algorithm in Section 4. Instead, we select un-
linked boxes that are (1) insignificant compared to other
boxes in the image and (2) blurry. Both are measured using
the a detected person’s face (computed from whole body
landmarks): a face image f is considered insignificant if
Area(f) < 0.6 - Area( flargesy) and blurry if Var(A(f)) <
50 [45], where flargest is the largest face in the image and
A is the Laplace operator. Figure 5 shows several images
from our dataset with unlinked boxes in red. We minimize a

Method Training Data Accuracy
Full Names

Gupta et al. [24] COCO 36.9 +1.04
Gupta et al. [24] Flickr30K Entities 39.3 £ 1.05
SL-CCRF [38] Flickr30K Entities 43.5 +£1.06
MAttNet [67] RefCOCOg 43.6 & 1.06
UNITER [10]  Multiple [36, 30, 44, 56] 36.3 +1.03
Random

Gupta et al. [24] COCO 39.3 &+ 1.05
Gupta et al. [24] Flickr30K Entities 41.1 +1.06
SL-CCRF [38] Flickr30K Entities 44.1 +1.07
MAIUttNet [67] RefCOCOg 44.0 + 1.07
UNITER [10]  Multiple [36, 30, 44, 56] 38.4 + 1.04
Constant

Gupta et al. [24] COCO 35.6 £1.03
Gupta et al. [24] Flickr30K Entities 38.2+1.04
SL-CCRF [38] Flickr30K Entities 46.4 +1.07
MAIttNet [67] RefCOCOg 24.1 +0.92
UNITER [10]  Multiple [36, 30, 44, 56] 34.2 + 1.02
Random - 30.9 +£0.99
Big—Small - 48.2 +1.07
L—R (All) - 38.4 £+ 1.04
L—R (Largest) - 57.7 + 1.06
Ours Who'’s Waldo 63.5 +1.03

Table 1. Evaluation on the Who’s Waldo test set. We compare
against prior grounding methods using multiple configurations,
varying according to how names are processed. We also compare
to several simple baselines, detailed in the text.

binary cross-entropy loss L4 over images containing such
positive and negative matches.

This loss, in addition to providing us a means of directly
estimating whether or not a given box is referred to in a
caption, also implicitly encourages the contextualized rep-
resentations of insignificant and blurry faces to be distin-
guishable from others. As we show in our results, this im-
proves the accuracy of identifying referred people, allowing
the model to focus on more relevant boxes.

6. Results and Evaluation

We compare our model to other visual grounding meth-
ods trained on a variety of datasets. We study four key ques-
tions: How well do previous methods for visual grounding
perform on our proposed task? To what extent is our model
reasoning over complex multimodal signals? What is the
impact of our design choices? And, what has our model
learned? We also present qualitative results (Figure 6 and
supplemental material), which highlight the complexity and
unique challenges of our proposed task.
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Schiitza:

U.S. Air Force Colonel Clay Garrison goes over
some final instructions with U.S. Congressman

National Guard Base May 27, 2015.

(#20) behind

_ prior to take-off from the Fresno Air goalkeeper

Domenik Schierl . took to space to Rear Adm. _

Kathryn Hire, an astronaut and Navy
reserve component Sailor assigned to the
Office of Naval Research, presents items she

Figure 6. Box-name correspondences predicted by our model. We show predicted entities on top of the their associated box (in white).
Ground truth links are denoted by matching colors. Please refer to the supplemental material for additional qualitative results.

6.1. Comparison to Prior Work

We evaluate several recent visual grounding models on
the Who’s Waldo test set: a weakly-supervised framework
by Gupta et al. [24], a supervised neural chain condi-
tional random field that captures entity dependencies (SL-
CCRF) [38], and a supervised network that combines at-
tention from separate modules (MAttNet) [67]. We also
evaluate UNITER [10], a pretrained multi-task vision-and-
language framework, which our model is based on.

Table 1 shows test set accuracies for our approach and
for existing methods trained on different datasets. We re-
port 95% binomial proportion confidence intervals (Wilson
score intervals) with these accuracies. For existing models,
we vary how names are provided during inference because
these models are not automatically compatible with our
placeholder [NAME] token: (a) unmodified full names, (b)
random popular names, or (c) a constant “person” string—
e.g., “Harry met Sally” is modified to “person met person”.

We also evaluate several heuristics that illustrate the
challenges and biases in our data (Table 1), such as a
potential left-to-right bias for named individuals. In par-
ticular, we order the names in the caption from left to
right, and pair them with detections sorted by (a) decreas-
ing area (Big—Small), (b) left-to-right upper-left coordi-
nates (L—R (All)), or (c) left-to-right upper-left coordinates
with only the largest d detections (L—R (Largest)). We set
d = maz(m,n) for m detections and n names. We also
compare to random guessing. We observe that these heuris-
tics yield non-trivial, and even strong, performances. This
could be because realistic captions tend to follow a left-to-
right ordering (especially for posed people—but see Fig-
ure 6 for counterexamples) and filtering by detection size
can remove unreferred people. However, even the strongest
heuristic leaves much room for improvement. These heuris-

Method Accuracy
Input features
w/o visual features  55.4 £+ 1.07
w/o spatial features ~ 58.0 £ 1.06
w/o textual features  51.3 £ 1.07
spatial features only  31.2 4+ 0.99
Learning
W/0 Lintra 31.4 £ 1.00
W/0 Linter 61.9 + 1.04
w/o Ly 61.7 + 1.04
w/o pretraining 50.2 £ 1.07

Table 2. Ablation study, evaluating the effect of using different
input features, loss terms and the impact using a pretrained model.

tics are also useful to frame the performance of pretrained
visual grounding models. Supervised models (SL-CCRF
and MAttNet) perform similarly to Big—Small, illustrat-
ing that these models may be utilizing size-related cues—
especially MAttNet, which only processes names and not
full sentences. We show qualitative results for all baselines
in the supplemental material.

6.2. Ablation study

Table 2 shows ablation results. We train models us-
ing only a subset of features by ablating (i) visual fea-
tures: set instead to a fixed representation, averaged over
1000 random detections; (ii) spatial features: fixed at im-
age center coordinates; (iii) textual embeddings: with all
words masked out, retaining only position features and spe-
cial [NAME] tokens; and (iv) textual and visual embed-
dings: retaining only spatial features. The impact of each
input modality is significant, with performance dropping
by 5.5% for (ii) and 12.2% for (iii). While these ablations
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significantly limit the information available for this task,
our model performs much better than random guessing in
all cases, suggesting that it learns some data biases. Both
(1) and (iii) are capable of learning a left-to-right associa-
tion. Indeed, their correct matches significantly overlap with
those of the “L—R (Largest)” heuristics, by 81.7% for (i)
and 82.4% for (iii). Finally, from (iv) we infer that spatial
features alone are not enough for learning such similarities.

We also quantify the importance of each proposed ob-
jective. Training without estimated correspondences (i.e.,
Lintra) yields the most significant drop in performance, re-
sulting in nearly random guessing. This illustrates the im-
portance of supervised data for our task. Ablating the other
losses (Linter and L) degrades performance by only 1.7%.
The relatively small impact of Ly, highlights the impor-
tance of having many samples that capture interactions be-
tween multiple people, rather than samples with just one
detection and referred person.

We also report the performance obtained by training
our full model from scratch, without UNITER’s pretrained
weights. This leads to a large drop in performance (> 13%).

6.3. Analysis of results

We analyze the performance of our model over different
test subsets to better understand what the model is learn-
ing. We observe that our model is more robust to a larger
number of faces compared to L—R (Largest). For instance,
in the case of only one referred person in an image, our
model retains high performance over an increasing number
of faces, while the heuristic drops by almost 20% (from an
accuracy of 84.5% for two detected people down to an ac-
curacy of 67.6% for four or more detected people). We fur-
ther demonstrate this breakdown in the supplemental mate-
rial. Another subset we consider is an interactive subset of
test samples (i.e. those with at least two detections and re-
ferred people and a verb in their caption). This potentially
more challenging subset constitutes nearly one-third of our
test set. Our model’s performance drops to 52.1%, while the
baseline performance drops to 45.0%.

We also analyzed whether having multiple mentions of
a person’s name affects performance. Approximately 3% of
referred people in the test set are mentioned multiple times
in the caption. For these identities, our model has a modest
improvement of 2.1% if provided additional mentions. This
illustrates that our model can leverage additional informa-
tion from co-occurrences in a caption to some extent. Fi-
nally, we also analyze the performance of our method over
several categories of identity occupations in the supplemen-
tal material, as we observe that these correlate well with
different situations captured by our dataset.

Left: “Butler’s | Andrew Smith and Siena’s Ryan Ressiter both try to an-

ticipate the rebound, as Butler’s Shawn Vanzant closes in from behind.”

Center: “ Joe Jonas and _ performing in the Jonas Broth-

ers Live In Concert.”

Right: [ Markus Heikkinen! blocks | Freddy Guarin

Figure 7. Examples our model predicted incorrectly, showing
detected named entities in bold and entities linked with image re-
gions in unique colors, corresponding to the boxes on the images.

6.4. Limitations

The complexity of certain interactions, such as in sports
games where players compete closely together, poses chal-
lenges, not only to our model, but also to the person detector
and our method for estimating ground truth links. Figure 7
(left) demonstrates an example of a basketball game where
the bodies of players overlap, thus some are not detected.
The example on the right illustrates a failure of our model,
where the interaction “blocks” is not correctly interpreted.

Further, some captions are insufficient to produce mean-
ingful links. For example, in Figure 7 (center), after re-
placing the names “Joe Jonas” and “Demi Lovato” with
[NAME ], it is impossible to tell which performer each cor-
responds to. Hence our model resorts to a simple left-to-
right heuristic.

7. Conclusion

We present a task, dataset, and method for linking peo-
ple across images and text. By masking out names of peo-
ple, we force methods to not memorize the appearance of
specific individuals, but to understand contextual cues and
interactions between multiple people. Our approach shows
encouraging performance on this task, but also indicates
that the underlying task is very challenging and, as such,
there is ample room for improvement via future methods
that leverage our data. In particular, the performance of all
methods drops given examples involving actions (as indi-
cated by captions with verbs) and as the number of people
referred to in a caption grows, indicating unresolved chal-
lenges in scaling to complex scenarios.
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