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Abstract

The performance of surface registration relies heavily on
the metric used for the alignment error between the source
and target shapes. Traditionally, such a metric is based on
the point-to-point or point-to-plane distance from the points
on the source surface to their closest points on the target
surface, which is susceptible to failure due to instability of
the closest-point correspondence. In this paper, we propose
a novel metric based on the intersection points between the
two shapes and a random straight line, which does not as-
sume a specific correspondence. We verify the effectiveness
of this metric by extensive experiments, including its direct
optimization for a single registration problem as well as un-
supervised learning for a set of registration problems. The re-
sults demonstrate that the algorithms utilizing our proposed
metric outperforms the state-of-the-art optimization-based
and unsupervised learning-based methods.

1. Introduction
Rigid registration aligns a source shape S with a target

shape T by applying a rigid transformation (R, t), where
R ∈ R3×3 is a rotation matrix and t ∈ R3 is a translation
vector. It is an important task in numerous applications such
as 3D scene reconstruction and localization. The transfor-
mation is often computed by minimizing a function that
measures the alignment error. In practice, the shapes are
often represented as point clouds, and the alignment error is
measured using a distance metric D(·, ·) evaluated between
the points on the source surface and their corresponding
points on the target surface:

h(R, t) =
∑

(x,y)∈C

D(x̃,y), (1)

where C is the set of corresponding points between S and
T , and x̃ denotes the new position of x after the transfor-
mation. To perform registration in this way, we must first
define the corresponding point. Many traditional methods
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such as the iterative closest point (ICP) algorithm [6] defines
yσ(i) as the current closest point to xi, which needs to be
updated in each iteration along with the transformation. It
is easy for such iterations to fall into a local optimal solu-
tion, especially when noises, outliers, and partial overlaps in
the point clouds. Some methods [17, 32, 13, 48] compute
local shape descriptors for some sample points, and find the
corresponding point on the target surface by matching the
descriptors. However, the ambiguity of these hand-crafted
descriptors can make them challenging to match, especially
for the point clouds with noises and outliers.

Besides point correspondence, another key component of
the alignment error measure in Eq. (1) is the distance metric
D(·, ·) between the corresponding pairs. Traditional ICP
methods [6, 8] use the ℓ2-norm of the point-to-point or point-
to-plane distance as the metric, where D(xi,yσ(i)) is the
squared Euclidean distance from xi to yσ(i) or to the tangent
plane of T at yσ(i). To accommodate noise, outliers, and
partial overlaps, other methods [7, 5, 48, 46] applied a robust
function to the distance values to disregard or down-weight
erroneous corresponding pairs. Although such strategies are
more robust against noise and partial overlaps, they still rely
on the correct point correspondence to some extent.

In this work, we propose an alignment error metric that
does not rely on accurate point correspondence. Our key idea
is to intersect the source and target shapes with a random
straight line that is uniformly distributed in their bounding
sphere. We locate the intersection points from the source
shape and the target shape, and use the distance between
them as a proxy for the alignment error. We apply Welsch’s
function [15] to the distance values to obtain a robust mea-
sure, and compute its expected value as our alignment error
metric. Different from traditional methods, our approach
does not assume a specific correspondence rule while still
attaining rich information about the alignment from multiple
directions thanks to the uniform distribution of the straight
lines. Using our metric, optimization-based registration is
less susceptible to getting stuck at a local minimum and
more likely to obtain a robust solution.

Recently, various deep learning-based approaches for
rigid registration have been proposed [49, 39, 40, 16]. How-
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Figure 1. We propose an error metric for rigid registration based on the intersection between the input shapes and random straight lines
that are uniformly distributed. Top: registration by minimizing an error metric based on the Chamfer distance leads to a sub-optimal result.
Bottom: with our new metric, the optimization becomes more robust to the local minimum and identifies the correct alignment.

ever, most of them train the network in a supervised manner
and require ground-truth alignment. Our proposed metric
can also be used to replace the ground-truth labels and allow
a supervised framework to be trained on unlabeled data. It
also can fine-tune the model trained by a supervised metric
for use on unlabeled datasets in the real world.

In summary, the main contributions of our work are:

• We propose a novel error metric for rigid alignment
based on intersections between the input shapes and a
uniform random straight line, which can improve the
robustness of optimization-based rigid registration.

• We use the proposed metric to turn various supervised
learning frameworks into unsupervised ones that can
be trained on real unlabeled data.

2. Related works
Geometry Processing Using Line Intersection Intersec-
tion with straight lines has been utilized to process and an-
alyze geometric shapes in the past. In [21, 22], the authors
used intersections with random straight lines to compute
surface areas of geometric shapes from the perspective of
integral geometry [35]. In [30], a method was proposed
to sample a point cloud by intersecting with uniformly dis-
tributed straight lines. To the best of our knowledge, our
work is the first to perform shape registration using intersec-
tions with random straight lines.

Optimization-based Registration A classical registra-
tion method is Iterative Closest Point (ICP) algorithm [6],

which obtains the optimal transformation by alternately find-
ing the closest points and updating the transformation. Many
variants of ICP have been proposed to improve its effi-
ciency [8, 32, 27, 31]. Another issue of the classical ICP
is its robustness to outliers and partial overlaps that often
occur in real-world data. Some methods tackled this issue by
disregarding some point pairs using heuristics based on their
distance or normals [47, 32, 3]. Another popular approach
is to use robust metrics such as the ℓp-norm (p < 1) [7] or
Welsch’s function [46] to measure the alignment error and
improve robustness. Others solved the problem from a statis-
tical perspective and aligned the point clouds via their Gaus-
sian mixture representations [25, 18]. The above approaches
formulate registration as an optimization problem and search
for a local minimum using a numerical solver, which require
proper initialization. Some other methods formulate a global
optimization problem and solve it via either branch-and-
bound [43] or semi-definite relaxation [24, 10, 20]. They
are often computationally more expensive, especially on
large-scale problems. Some methods align point clouds by
matching their local shape descriptors [14, 33, 34]. However,
the quality of such hand-craft descriptors can be affected by
the point density and outliers.

Learning-based Registration Recently, various deep
learning approaches have been proposed for registration.
PointNetLK [4] uses an iterative framework which combines
the PointNet feature [28] and Lucas-Kanade algorithm [23].
DCP [39] utilizes a sub-network to address difficulties in
the classical ICP pipeline, which improves the point cloud’s
features by using DGCNN [41] to extract and merge local
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features. RPM-Net [44] extracts the hybrid features by learn-
ing from spatial coordinates and local geometry, and uses
the differentiable Sinkhorn layer and annealing to obtain soft
correspondence. PR-Net [40] uses Gumbel–Softmax with
straight-through gradient estimation to obtain a sharp and
near-differentiable mapping function. MFG [38] combines
the shape features and the spatial coordinates to guide cor-
respondence search independently and fuse the matching
results to obtain the full matching. DGR [9] uses a differen-
tiable framework for pairwise registration of real-world 3D
scans, adding an optimization module to fine-tune the align-
ment produced by the weighted Procrustes solver. All of the
above approaches train their models in a supervised manner,
which restricts their applications on real-world unlabeled
data. Recently, FMR [16] takes a semi-supervised approach
for point cloud registration, by minimizing a feature-metric
projection error. In this paper, we propose a new alignment
error metric that is suitable for unsupervised learning and
achieves better results than the one used in FMR.

3. Algorithm
3.1. Problem Statement

Point cloud registration is generally posed as an optimiza-
tion problem. Consider two points clouds X = {xi}mi=1 on
the source surface S and Y = {yj}nj=1 on the target surface
T , where xi,yj ∈ R3 are the points. Let X̃ = {x̃i}mi=1

denote the deformed source point cloud with the rigid trans-
formation (R, t), where

x̃i = Rxi + t.

Using the alignment error given in Eq. (1), ICP-based meth-
ods can be described as

(R∗, t∗) = argmin
(R,t)

∑
xi∈X

D(x̃i,yσ(i)),

where σ(i) denotes the index of the corresponding point
in Y for the point xi ∈ X. The above formulation only
considers the distance from the source point cloud to the
target point cloud. Considering the distance from the target
to the source as well, the Chamfer distance has also been
used to measure the deviation between two point clouds [11,
16]. The alignment error based on the Chamfer distance can
be written as:

h(X̃,Y) =
∑
xi∈X

D(x̃i,yσ(i)) +
∑
yj∈Y

D(x̃ρ(j),yj), (2)

where ρ(j) denotes the index of the corresponding point
in X for the point yj ∈ Y. The choices of σ(·) and ρ(·)
can affect the quality of registration. In ICP-based methods,
yσ(i) is chosen to be the closest point to xi. But such closest-
point correspondence is often incorrect when there is large

misalignment or a low overlap ratio between the two point
clouds. Therefore, we would like to use an alignment error
that does not presume a pre-defined rule of point correspon-
dence while still being effective in guiding the alignment.
Our key observation is that for two shapes that are perfectly
aligned, any straight line that intersects with one shape will
also intersect the other shape at the same points. When the
two shapes are close, their intersection points with the same
line will also be close to each other. Moreover, if we use a
set of random straight lines to intersect with the two shapes,
then the intersection points along each line can inform us
about the difference between the two shapes from a particu-
lar viewpoint along a view ray that corresponds to the line. In
the past, such random straight lines have been utilized in in-
tegral geometry to determine geometric properties of a given
shape such as surface area [21, 22]. In the following, we
propose an alignment error metric based on the intersection
with random straight lines.

3.2. Error Metric Based on Line Intersection

To measure the alignment error between a source shape
S and a target shape T , our basic idea is to intersect both
shapes with a set of random straight lines with a uniform
distribution, and compare the intersection points along each
line. Specifically, given a straight line l that intersects with
both shapes, we denote the set of intersection points with
the source shape and the target shape as Sl = {xl

i} and
Tl = {yl

j}, respectively. Then we measure the deviation
between the two sets of intersection points as:

Fl(S, T ) = wl

 ∑
xl
i∈Sl

D(xl
i,y

l
σl(i)

) +
∑
yl
j∈Tl

D(xl
ρl(j)

,yl
j)

 ,

(3)
where D is an error metric that will be explained later, and

σl(i) = argmin
k

∥xl
i − yl

k∥, ρl(j) = argmin
k

∥xl
k − yl

j∥,

i.e., yl
σl(i)

is the closest point in Tl to xl
i, and xl

ρl(j)
is the

closest point in Sl to yl
j . The weight wl is defined as wl =

exp(−| |Sl|−|Tl|
2 |). This reduces the weight for a line with

a large difference between the numbers of its intersection
points with the two shapes, which may indicate an erroneous
correspondence between them along the line. Finally, the
alignment error between S and T is defined as the expected
value of Fl(S, T ) over the distribution of the lines:

h(S, T ) = E(Fl(S, T )). (4)

To apply this in point cloud registration, we evaluate the error
metric in Eq. (4) for the transformed source point cloud X̃
and the target point cloud Y, and use it as the target function
for an optimization-based method or as a loss function term
for a learning-based approach. In the following, we present
the details for evaluating the error metric on point clouds.
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Choice of D in Eq. (3) With Eq. (3), we effectively es-
tablish correspondence between points on the source and
target shapes along a straight line. However, since the line
is chosen randomly, the correspondence may be inaccurate.
Therefore, we define D to be a robust metric to alleviate the
impact of inaccurate correspondence as well as outliers. We
choose Welsch’s function as the metric:

D(x,y) = ψν(∥x− y∥2), (5)

where ψν(x) = 1 − exp(− x2

2ν2 ), and ν > 0 is a parameter.
To take into account the scale of input point clouds, we set
ν = ν0dmed, where dmed is the median distance between all
corresponding point pairs and ν0 is a user-specified parame-
ter. We choose ν0 in all experiments. We treat ν as a constant
term during optimization/training and do not evaluate/back-
propagate its gradient. The value dmed is updated in each
iteration according to the latest alignment.

Generation of Random Straight Lines Following [22],
we first compute a bounding sphere Sr that covers both the
source and the target point clouds. Then we sample two
independent uniformly distributed points on Sr and connect
them to generate a random straight line. Each point on the
sphere can be parameterized as:

Sr(u, α) = (r
√
1− u2 cosα, r

√
1− u2 sinα, ru),

where r is the radius, u ∈ [−1, 1], and α ∈ [0, 2π). The
random points on the sphere are generated by uniformly sam-
pling the parameters u and α in their domains [22]. In each
iteration of optimization or training, we use this approach to
generate 15000 straight lines.

Line Intersection with Point Clouds Since a point cloud
contains discrete samples of the underlying shape, a straight
line that intersects with the underlying shape does not neces-
sarily intersect with the points in the point cloud. Therefore,
we use the following steps to approximate the intersection be-
tween the straight line and the underlying shape (see Fig. 2).
First, similar to [22], we enlarge the line into a cylinder that
is centered at the line and has radius δ, and include all the
points contained within the cylinder as candidate points for
the intersection (Fig. 2 (b)). Then for each candidate point
p0 whose k-nearest neighbors in the point cloud are also can-
didate points, we compute a convex combination of p0 and
it’s k-nearest neighbors as an intersection point (Fig. 2 (c)):

p′
0 =

∑
p∈N (p0)

dpp∑
p∈N (p0)

dp
, (6)

where the set N (p0) contains p0 and its k-nearest neighbors,
and dp is the distance from the point p to the line. In our
implementation, we set k = 2, and choose δ =

√
3
2 dnei

where dnei is the average distance across the whole point
cloud between a point and its k-nearest neighbors.

𝛿
p1𝑑1

p2
𝑑2

𝛿

p0
′

p0
p𝑛
𝒩

: p𝑐𝑎𝑛−𝑖𝑛𝑠𝑒𝑐

: p𝑛𝑜𝑛−𝑠𝑒𝑐

:𝒩

: p𝑠𝑜𝑓𝑡𝑒𝑛−𝑖𝑛𝑠𝑒𝑐

(𝑎) (𝑏) (𝑐)

Figure 2. Illustration of the process of generating the intersections
between the point cloud and a straight line. (a) shows the local
point cloud and the straight line; (b) shows the selection of the
candidate points (black dots); (c) shows the process of softening
the candidate points to obtain the final intersections (red dot).

4. Experiments

In this section, we apply our alignment error metric to
different registration problems, include both optimization-
based and learning-based methods, and test it on on both
synthetic and real datasets to verify its effectiveness.

4.1. Datasets

Synthetic Datasets Our synthetic datasets are generated
from the ModelNet40 dataset [42] and the Axyz-pose human
dataset [1]. The ModelNet40 dataset contains CAD models
from 40 artificial object categories. We select 625 cases
from the Airplane category to construct an Airline dataset,
randomly sampling 500 cases for training and using the
remaining 125 for testing. The Axyz-pose human dataset
contains 110 clothed human mesh models. We randomly
choose 110 models to construct a Human dataset, using 100
models for training set and the remaining 10 for testing.

Using the datasets above, we generate point cloud pairs
for training and testing. To make the generated point clouds
similar to the type of data captured by an RGBD camera,
we use the following steps to generate the data. Firstly,
we sample a complete model from different perspectives to
generate partially overlapping data. Specifically, we choose
a certain axis and rotate an imaginary camera around it to
derive N camera locations with rotation angles at regular
intervals (we set N to 50 for the Human dataset and 18 for
the Airplane dataset). We then save the visible part of the
model from each camera location as a source point cloud.
For each source point cloud of the Airplane dataset, we rotate
the camera by a random angle in the range [−75◦, 75◦] with
respective to a random axis, and save the visible part as the
corresponding target point cloud. For the Human dataset,
we use the whole model to construct the target point cloud.
Then we scale each point cloud pair to be contained within
[−1, 1]3. Secondly, we generate composite transformations
between the source and target point clouds. We follow [39]
to generate rotations by sampling three Euler angle rotations
in the range [0, 45◦] and translations in the range [−0.2, 0.2]
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Table 1. Comparison between different optimization-based methods
on the Human dataset [1].

Method
ErrR

(degrees)
Errt (·10−1)

(ℓ1, ℓ2)
Errpw (·10−1)

(ℓ1, ℓ2)

ICP [6] 10.015 0.139, 0.093 0.112, 0.082
FRICP [46] 6.001 0.096, 0.064 0.074, 0.054
FGR [48] 46.31 0.411, 0.274 0.616, 0.41

CD 5.863 0.148, 0.132 0.151, 0.14
CD-W (ν0 = 0.5) 4.84 0.086, 0.078 0.108, 0.087

Ours 0.576 0.017, 0.013 0.018, 0.015

on each axis. In total, the Airplane dataset contains 9000
pairs for training and 2250 for testing, while the Human
dataset contains 5000 pairs for training and 500 for testing.
For each point cloud, we use PCL to compute the point
normals [2], and use FPS [29] to sample 1024 points.

Real Dataset To test our metric on unlabeled data, we also
construct a real dataset based on the 3D-Match dataset [45],
the 7scenes dataset [36] and the RGB-D SLAM dataset [37].
Inevitably, our metric cannot handle point cloud pairs with
arbitrary pose differences and overlap ratios. And in prac-
tice, it is uncommon to have extremely large differences in
poses or extremely small overlap ratios. Therefore, we select
point cloud pairs separated by 20 frames from the RGB-D
SLAM dataset and the 7scenes dataset, respectively. For the
3D-Match dataset, we collect the pre-processed data pairs
from [9]1 where the overlap ratio is greater than 70%. All
point cloud pairs are scaled into [−5, 5]3. Finally, the real
dataset is divided into 8000 pairs for training and 2000 pairs
for testing. Similar to the synthetic dataset, we compute the
point normals and sample 2048 points for each point cloud.

Evaluation Criteria We evaluate the registration accuracy
on a point cloud pair using the isotropic rotation error ErrR
and translation error Errt inspired by [44], as well as the
pointwise error Errpw:

ErrR = ∠(R−1
GT R̂), Errt = ∥tGT − t̂∥∗,

Errpw =
1

|X|
∑
xi∈X

∥RGTxi + tGT − R̂xi − t̂∥∗,
(7)

where RGT and tGT are the ground-truth rotation and trans-
lation respectively, R̂ and t̂ are the computed rotation and
translation respectively, ∠(A) = arccos( tr(A)−1

2 ) is the an-
gle of the rotation matrix A in degrees, |X| is the number
of points in the source point cloud X, and ∥ · ∥∗ is either

1https://github.com/chrischoy/
DeepGlobalRegistration

FRICP FGR CD OursInput ICP

0.61 0.40 0.46 0.050.68

1.23 2.09 0.51 0.031.39

Figure 3. Comparison of registration results on the Human
dataset [1] using different optimization-based methods.

the ℓ1-norm or the ℓ2-norm. We use the mean values of
these metrics to measure the performance of a method on
a benchmark dataset. For the figures in this section and the
supplementary material, the number under each result is the
pointwise error with the ℓ2-norm.

4.2. Effectiveness of Our Metric

Comparison with Optimization-based Methods We op-
timize the Lie algebraic representation of rigid transfor-
mation with our metric as the target function using the
Adam optimizer [19] in Pytorch [26]. Using the Human test
dataset as the benchmark, we compare our results with other
optimization-based methods, including ICP [6], FRICP [46]
and FGR [48] with their open-source implementations 23.
We also compare with two optimization approaches that use
the Chamfer distance in Eq. (2) as the target function, with
the metric D chosen to be the Euclidean distance (denoted
as CD) and Welsch’s function in Eq. (5) (denoted as CD-W,
see also the supplementary material for more details), respec-
tively. Tab. 1 shows the performance of different methods
on the Human test dataset. We can see our proposed met-
ric can generate more accurate results than other traditional
optimization methods. Fig. 3 shows some examples of regis-
tration results from different methods, where other methods
converge to sub-optimal a local minimum while our metric
leads to more accurate alignment. Fig. 4 and Fig. 5 further
illustrate the effectiveness of our metric in avoiding local
minimum. In Fig. 4, we take the convergent results of other
optimization-based methods as initialization for optimization
using our metric as the target function. The plot of pointwise
ℓ2 error shows that our approach can often further reduce
the alignment error, which indicates its capability to escape

2https://github.com/yaoyx689/Fast-Robust-ICP
3https://github.com/intel-isl/

FastGlobalRegistration
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Figure 5. α-recall rates and mean ℓ2-Errpw from different
optimization-based methods on a pair of point clouds with 100
random initial alignments. Optimization using our metric is less
sensitive to initialization.

from a local minimum of other methods. Fig. 5 demonstrates
the robustness of our approach to the initial alignment. We
use a point cloud pair generated from the Dragon model in
the Stanford 3D Scanning Repository4, and apply a random
transformation to one of them to derive 100 different initial
alignments. Then we perform registration using different
methods and compare their α-recall rates |Sα|/|S| for dif-
ferent α values, where |S| is the total number of test cases
and |Sα| is the number of test cases where the pointwise ℓ2
error is less than α [48] (i.e., for a given α, a larger α-recall
rate indicates better performance). The α-recall plot as well
as the mean ℓ2 pointwise error show that our method is less
sensitive to initialization than other methods.

4http://graphics.stanford.edu/data/3Dscanrep/

Table 2. Optimization using our metric with different settings on
the Human dataset [1], including an alternative line intersection
method (Insec1), two alternative line sample methods (Sample1
and Sample2), and different values of ν0.

Method
ErrR

(degrees)
Errt (·10−1)

(ℓ1, ℓ2)
Errpw (·10−1)

(ℓ1, ℓ2)

Insec1 (ν0 = 0.5) 49.27 0.831, 0.744 1.175, 0.772

Sample1 20.482 0.274, 0.175 0.419, 0.276
Sample2 5.201 0.151, 0.093 0.117, 0.075

ν0 = 100 7.786 0.289, 0.191 0.292, 0.195
ν0 = 10 8.181 0.288, 0.190 0.291, 0.194
ν0 = 1 2.814 0.044, 0.029 0.051, 0.034
ν0 = 0.01 10.814 0.326, 0.217 0.334, 0.223

Ours (ν0 = 0.5) 0.576 0.017, 0.011 0.018, 0.012

Ablation Studies In Tab. 2, we use the Human test dataset
as the benchmark to verify the effectiveness of different com-
ponents of our metric. The first row shows that the use of
convex combination for computing the intersection point in
Eq. (6) is important. Here Insec1 denotes an alternative ap-
proach where we simply take all the candidate points as the
final intersection points, which leads to worse performance
than our approach (shown in the last row). The second and
the third rows show two alternative sampling approaches
(Sample1 and Sample2) for the random straight lines. For
Sample1, we uniformly sample a point in the bounding box
and uniformly sample a direction, and construct a line that
goes through the sampled point along the sampled direc-
tion. For Sample2, we sample a point uniformly from the
source and the target point cloud, respectively, and make a
uniformly small perturbation, and connect them to obtain
a straight line. Both approaches are outperformed by our
sampling method (the last row). The fourth to the seventh
rows show the impact of different ν values on our metric.
For Welsch’s function, a larger ν makes it closer to the ℓ2-
norm, whereas a smaller ν makes it closer to the ℓ0-norm.
The results show that a choice of ν0 close to 0.5 is suitable.

4.3. Results for Unsupervised Learning

We also use the proposed metric for deep learning-based
registration. Specifically, we replace the alignment term in
the loss in the frameworks of DCP [39], FMR [16], and
RPM-Net [44], and train them in an unsupervised manner.
We compare the results with the original frameworks trained
on the same data with ground-truth alignment labels (de-
noted as DCP-GT, FMR-GT and RPM-GT respectively). For
comparison, we also include unsupervised variants of DCP
and RPM-Net using the ℓ2 Chamfer distance as the align-
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Table 3. Comparison between different optimization-based and
learning-based methods on the Airplane dataset [42].

Method
ErrR

(degrees)
Errt (·10−1)

(ℓ1, ℓ2)
Errpw (·10−1)

(ℓ1, ℓ2)

ICP [6] 7.223 0.131, 0.087 0.136, 0.105
FRICP [46] 6.91 0.076, 0.051 0.123, 0.094
FGR [48] 13.72 0.099, 0.065 0.156, 0.114

DCP-GT 2.281 0.067, 0.044 0.073, 0.05
DCP-CD 6.612 0.165, 0.11 0.198, 0.139

DCP-Ours 3.808 0.082, 0.056 0.093, 0.063

FMR-GT 1.977 0.086, 0.055 0.099, 0.065
FMR-CD 5.819 0.215, 0.153 0.247, 0.19

FMR-Ours 2.51 0.117, 0.076 0.134, 0.091

RPM-GT 2.19 0.041, 0.034 0.043,0.03
RPM-CD 2.791 0.103, 0.089 0.102,0.083

RPM-Ours 1.673 0.042, 0.034 0.045, 0.031

Table 4. Comparison between different learning-based methods on
the Human dataset [1].

Method
ErrR

(degrees)
Errt (·10−1)

(ℓ1, ℓ2)
Errpw (·10−1)

(ℓ1, ℓ2)

DCP-GT 3.841 0.061, 0.039 0.068, 0.046
DCP-CD 7.021 0.185, 0.114 0.193, 0.130

DCP-Ours 4.841 0.07, 0.046 0.079, 0.054

FMR-GT 2.122 0.058, 0.039 0.064, 0.043
FMR-CD 6.207 0.187, 0.123 0.228, 0.134

FMR-Ours 1.521 0.089, 0.051 0.091, 0.063

RPM-GT 1.921 0.030, 0.021 0.033, 0.023
RPM-CD 8.373 0.197, 0.16 0.193,0.133

RPM-Ours 1.33 0.032, 0.024 0.034, 0.023

ment term, as well as the semi-supervised version of FMR
from [16] (denoted as DCP-CD, RPM-CD and FMR-CD re-
spectively). For all frameworks, we replace the batch normal-
ization with the group normalization for better-unsupervised
training. For the unsupervised variants of RPM-Net, we set
the weights of the regularization term and the alignment term
to 10 and 1 respectively, and the learning rate to 2× 10−6.
For the unsupervised variants of DCP, we set the weights
of the cycle term and the alignment term to 0.01 and 1.0
respectively, and the learning rate to 10−5. For the unsu-
pervised variant of FMR, we set the weights of the encoder
term and the alignment term to 0.001 and 1 respectively,
and the learning rate to 10−5. All frameworks are trained
using the Adam optimizer from Pytorch for 50 epochs, on a
workstation with two Intel Xeon Silver 4110 CPUs at 2.10
GHz, and four Tesla V100 GPUs.

Input

DCP-CD
0.52

RPM-CD
0.46

RPM-GT
0.22

DCP-GT
0.23

DCP-Ours
0.30

RPM-Ours
0.21

FGR
1.80

FMR-Ours
0.21

ICP
1.19

FMR-CD
0.50

FRICP
1.45

FMR-GT
0.21

Figure 6. Examples of registration results using different methods
on the Human dataset [1].

ICP FGRFRICP

DCP

RPM

CD

Input

FMR

GT Ours
2.42 0.420.60

0.40 0.170.04

1.30 0.140.21

0.34 0.350.27

Figure 7. Examples of registration results using different methods
on the Airplane dataset [42].

Different from supervised learning, training an unsuper-
vised model often requires suitable initialization [12]. We
use the following steps to derive initialization for the syn-
thetic datasets. During preprocessing, we first generate an
easier dataset with 100 data pairs and smaller pose differ-
ences between the source and target point clouds, and train
the model on them for 500 epochs to obtain an overfit model.
Then we train the model on 10% of the training dataset.
Finally, we train the model on the whole training dataset
with a reduced learning rate. For the real dataset, we gen-
erate an easier dataset consisting of pairs that are separated
by a smaller number of frames during preprocessing, while
the remaining training process is the same as the synthetic
datasets.

Tab. 3 and Tab. 4 show the performance results on the
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Table 5. Comparison between different optimization-based and
unsupervised learning methods on the real dataset.

Method
ErrR

(degrees)
Errt (·10−1)

(ℓ1, ℓ2)
Errpw (·10−1)

(ℓ1, ℓ2)

ICP [6] 17.98 0.337, 0.23 0.238, 0.194
FRICP [46] 11.08 0.199, 0.139 0.151, 0.112
FGR [48] 12.79 0.211, 0.142 0.260, 0.21

FMR-CD 7.559 0.469, 0.34 0.531, 0.384
FMR-Ours 3.263 0.089, 0.065 0.101, 0.075

RPM-CD 11.28 0.342, 0.246 0.376, 0.272
RPM-Ours 2.972 0.057, 0.04 0.068, 0.05

FRICP: 2.41

RPM-CD: 2.44

FRICP: 1.33

RPM-CD:1.68

FGR: 0.23

RPM-Ours: 0.17

FGR: 2.32

RPM-Ours: 0.16

FMR-Ours: 0.16

ICP: 1.24

FMR-Ours: 0.18

ICP: 2.58

FMR-CD: 2.44

Input

FMR-CD: 1.58

Input

Figure 8. Comparison of different methods on the Real dataset with
deep learning frameworks with different metrics.

Airplane dataset and the Human dataset, respectively. They
show that our metric is suitable for unsupervised deep learn-
ing frameworks, with superior performance compared to un-
supervised variants with Chamfer distance, and even better
performance than the supervised versions in some cases. Es-
pecially for FMR, using our metric to their original unsuper-
vised framework greatly improves the performance. Figs. 6
and 7 show registration results using different methods on
two problems from the Human dataset and the Airplane
dataset respectively. For both problems, optimization-based
methods converge to local minima. Unsupervised learning
approaches using our metric produce much better alignment
than their counterparts using Chamfer distance.

Tab. 5 and Fig. 8 compare the performance of different
methods on our real dataset. Due to the lack of ground-
truth alignment labels, supervised learning approaches are
no longer applicable. As Fig. 8 shows that ICP-based meth-

Input OursICP FRICP CD CD-W

View1

View2

Figure 9. A failure case of optimization using our metric, as well
as results from other methods.

ods [46, 6] are prone to local minima due to sensitivity to
initial values, whereas the feature-based method of [48]
performs poorly due to the noisy normals in real data. Unsu-
pervised learning using our metric is more robust than the
Chamfer distance and performs the best in this benchmark.

5. Conclusion and Future Work
We have proposed a novel metric for point cloud regis-

tration. The main contributions of our work are two aspects.
First, the proposed metric is based on intersections of uni-
formly random straight lines set in space, which can obtain
richer information and more likely to achieve the global
minimum. Second, our proposed metric can turn various su-
pervised learning frameworks into unsupervised and has the
ability to train on massive real unlabeled suitable data sets.
Extensive ablation studies have verified the effectiveness of
each component of our metric. Experiments on synthetic and
real datasets show that our metric is competitive compared
to the previous metrics and can be used in the loss function
of deep learning frameworks.

Fig. 9 shows a failure case for our metric: after the sym-
metric bodies of two point clouds of a mug are aligned, our
method is unable to align the handles. This is because within
a set of random sample straight lines, only a small number
of them will hit the handles, and their alignment effect will
be dominated by other lines that tend to maintain the current
alignment between the mug bodies.

In the future, a possible avenue of research is to further
investigate why the proposed metric can achieve better per-
formance. Our conjecture is that the intersection with ran-
dom straight lines introduce randomness to the optimization
process and help the solver escape from local minima. This
has been observed in our experiments, but will need more
rigorous investigation to verify and understand. Another
potential direction is to use relevant mathematical theories
such as integral geometry to interpret our metric, which can
be a challenging and interesting future work.
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