
TransVG: End-to-End Visual Grounding with Transformers

Jiajun Deng†, Zhengyuan Yang‡, Tianlang Chen‡, Wengang Zhou†,§, Houqiang Li†,§
† CAS Key Laboratory of GIPAS, University of Science and Technology of China, Hefei, China

‡ University of Rochester
§ Institute of Artificial Intelligence, Hefei Comprehensive National Science Center

dengjj@mail.ustc.edu.cn

Abstract

In this paper, we present a neat yet effective transformer-
based framework for visual grounding, namely TransVG,
to address the task of grounding a language query to the
corresponding region onto an image. The state-of-the-art
methods, including two-stage or one-stage ones, rely on
a complex module with manually-designed mechanisms to
perform the query reasoning and multi-modal fusion. How-
ever, the involvement of certain mechanisms in fusion mod-
ule design, such as query decomposition and image scene
graph, makes the models easily overfit to datasets with spe-
cific scenarios, and limits the plenitudinous interaction be-
tween the visual-linguistic context. To avoid this caveat,
we propose to establish the multi-modal correspondence
by leveraging transformers, and empirically show that the
complex fusion modules (e.g., modular attention network,
dynamic graph, and multi-modal tree) can be replaced by a
simple stack of transformer encoder layers with higher per-
formance. Moreover, we re-formulate the visual grounding
as a direct coordinates regression problem and avoid mak-
ing predictions out of a set of candidates (i.e., region pro-
posals or anchor boxes). Extensive experiments are con-
ducted on five widely used datasets, and a series of state-
of-the-art records are set by our TransVG. We build the
benchmark of transformer-based visual grounding frame-
work and make the code available at https://github.
com/djiajunustc/TransVG.

1. Introduction
Visual grounding (also known as referring expression

comprehension [31, 60], phrase localization [23, 38], and
natural language object retrieval [21, 25]) aims to predict
the location of a region referred by the language expression
onto an image. The evolution of this technique is of great
potential to provide an intelligent interface for the natural
language expression of human beings and the visual com-
ponents of the physical world. Existing methods addressing
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Figure 1. A comparison of (a) two-stage pipeline, (b) one-stage
pipeline, and (c) our proposed TransVG framework. TransVG per-
forms intra-modality and inter-modality relation reasoning with a
stack of transformer layers in a homogeneous way, and grounds
the object by directly regressing the box coordinates.

this task can be broadly grouped into the two-stage and one-
stage pipelines shown in Figure 1. In specific, the two-stage
approaches [31, 34, 46, 60] first generate a set of sparse re-
gion proposals and then exploit region-expression matching
to find the best one. The one-stage approaches [9, 27, 56]
perform visual-linguistic fusion at intermediate layers of an
object detector and output the box with the maximal score
over pre-defined dense anchors.

Multi-modal fusion and reasoning is widely studied in
the literature [1, 35, 49, 54, 65], and it is the core problem
in visual grounding. In general, the early two-stage and one-
stage methods address multi-modal fusion in a simple way.
Concretely, the two-stage Similarity Net [46] measures the
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similarity between region and expression embedding with
an MLP, and the one-stage FAOA [56] encodes the language
vector to visual feature by direct concatenation. These sim-
ple designs are efficient but lead to sub-optimal results, es-
pecially on long and complex language expressions. Fol-
lowing studies have proposed diverse architectures to im-
prove the performance. Among two-stage methods, mod-
ular attention network [59], various graphs [48, 52, 53],
and multi-modal tree [28] are designed to better model the
multi-modal relationships. The one-stage method [55] has
also explored better query modeling by proposing a multi-
round fusion module.

Despite the effectiveness, these complicated fusion mod-
ules are built on certain pre-defined structures of language
queries or image scenes, inspired by the human prior. Typi-
cally, the involvement of manually-designed mechanisms in
fusion module makes the models overfit to specific scenar-
ios, such as certain query lengths and query relationships,
and limits the plenitudinous interaction between visual-
linguistic contexts. Moreover, even though the ultimate
goal of visual grounding is to localize the referred object,
most of the previous methods ground the queried object in
an indirect fashion. They generally define surrogate prob-
lems of language-guided candidates prediction, selection,
and refinement. Typically, the candidates are sparse region
proposals [60, 31, 46] or dense anchors [56], from which the
best region is selected and refined to get the final grounding
box. Since these methods’ predictions are made out of can-
didates, the performance is easily influenced by the prior
knowledge to generate proposals (or pre-defined anchors)
and by the heuristics to assign targets to candidates.

In this study, we explore an alternative approach to
avoid the aforementioned problems. Formally, we introduce
a neat and novel transformer-based framework, namely
TransVG, to effectively address the task of visual ground-
ing. We empirically show that the structurized fusion mod-
ules can be replaced by a simple stack of transformer en-
coder layers. Particularly, the core component of transform-
ers (i.e., attention layer) is ready to establish intra-modality
and inter-modality correspondence across visual and lin-
guistic inputs, despite that we do not pre-define any specific
fusion mechanism. Besides, we find that directly regressing
the box coordinates works better than previous methods to
ground the queried object indirectly. Our TransVG directly
outputs 4-dim coordinates to ground the object instead of
making predictions based on a set of candidate boxes.

The pipeline of our proposed TransVG is illustrated in
Figure 1(c). We first feed the RGB image and language ex-
pression into two sibling branches. The visual transformer
and linguistic transformer are applied in these two branches
to model the global cues in vision and language domains,
respectively. Then, the abstracted visual tokens and linguis-
tic tokens are fused, and the visual-linguistic transformer

is exploited to perform cross-modal relation reasoning. Fi-
nally, the box coordinates of a referred object are directly
regressed to make grounding. We benchmark our frame-
work on five prevalent visual grounding datasets, including
ReferItGame [23], Flickr30K Entities [38], RefCOCO [60],
RefCOCO+ [60], RefCOCOg [31], and our method sets a
series of state-of-the-art records. Remarkably, our proposed
TransVG achieves 70.73%, 79.10% and 78.35% on the
test set of ReferItGame, Flickr30K and RefCOCO datasets,
with 6.13%, 5.80%, 6.05% absolute improvements over the
strongest competitors.

In summary, we make three-fold contributions:
• We propose the first transformer-based framework for

visual grounding, which holds neater architecture yet
achieves better performance than the prevalent one-
stage and two-stage frameworks.

• We present an elegant view of capturing intra- and
inter-modality context homogeneously by transform-
ers, and formulating visual grounding as a direct coor-
dinates regression problem.

• We conduct extensive experiments to validate the mer-
its of our method, and show significantly improved re-
sults on several prevalent benchmarks.

2. Related Work

2.1. Visual Grounding

Recent advances in visual grounding can be broadly cat-
egorized into two directions, i.e., two-stage methods [19,
20, 28, 46, 48, 52, 59, 63, 68] and one-stage methods [9,
27, 42, 55, 56]. We briefly review them in the following.

Two-stage Methods. Two-stage approaches are char-
acterized by generating region proposals in the first stage
and then leveraging the language expression to select the
best matching region in the second stage. Generally, the
region proposals are generated using either unsupervised
methods [37, 46] or a pre-trained object detector [59, 63].
The training loss of either binary classification [46, 64] or
maximum-margin ranking [31, 34, 47] is applied in the sec-
ond stage to maximize the similarity between the positive
object-query pair. Pioneer studies [31, 47, 60] obtain good
results with the two-stage framework. The early work Mat-
tNet [59] introduces the modular design and improves the
grounding accuracy by better modeling the subject, loca-
tion, and relation-related language description. Some re-
cent studies further improve the two-stage methods by bet-
ter modeling the object relationships [28, 48, 52], enforcing
correspondence learning [29], or making use of phrase co-
occurrences [3, 7, 13].

One-stage Methods. One-stage approaches get rid of
the computation-intensive object proposal generation and
region feature extraction in the two-stage paradigm. In-
stead, the linguistic context is densely fused with the visual
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Figure 2. An overview of our proposed TransVG framework. It
consists of four main components: (1) a visual branch, (2) a lin-
guistic branch, (3) a visual-linguistic fusion module, and (4) a pre-
diction head to regress the box coordinates.

features, and the language-attended feature maps are further
leveraged to perform bounding box prediction in a sliding-
window manner. The pioneering work FAOA [56] encodes
the text expression into a language vector, and fuses the lan-
guage vector into the YOLOv3 detector [40] to ground the
referred instance. RCCF [27] formulates the visual ground-
ing problem as a correlation filtering process [4, 17], and
picks the peak value of the correlation heatmap as the cen-
ter of target objects. The recent work ReSC [55] devises a
recursive sub-query construction module to address the lim-
itations of FAOA [56] on grounding complex queries.

2.2. Transformer

Transformer is first proposed in [45] to tackle the neu-
ral machine translation (NMT). The primary component of
a transformer layer is the attention module, which scans
through the input sequence in parallel and aggregates the
information of the whole sequence with adaptive weights.
Compared to the recurrent units in RNNs [18, 32, 44], the
attention mechanism exhibits better performance in pro-
cessing long sequences. This superiority has attracted a
surge of research interest in applications of transformers in
NLP tasks [11, 12, 39, 66] and speech recognition [33, 50].

Transformer in Vision Tasks. Inspired by the great suc-
cess of transformers in neural machine translation, a series
of transformers [5, 6, 8, 14, 22, 51, 62, 67] applied to vision
tasks have been proposed. The infusive work DETR [5]
formulates object detection as a set prediction problem. It

introduces a small set of learnable object queries, reasons
global context and object relations with attention mecha-
nism, and outputs the final set of predictions in parallel.
ViT [14] shows that a pure transformer can achieve excel-
lent performance on image classification tasks. More re-
cently, a pre-trained image processing transformer (IPT) is
introduced in [6] to address the low-level vision problems,
e.g., denoising, super-resolution and deraining.

Transformer in Vision-Language Tasks. Motivated by
the powerful pre-trained model of BERT [12], some re-
searchers start to investigate visual-linguistic pre-training
(VLP) [10, 26, 30, 43, 57] to jointly represent images and
texts. In general, these models take the object proposals and
text as inputs, and devise several transformer encoder lay-
ers for joint representation learning. Plenty of pre-training
tasks are introduced, including image-text matching (ITM),
word-region alignment (WRA), masked language modeling
(MLM), masked region modeling (MRM), etc.

Although with similar base units (i.e. transformer en-
coder layers), the goal of VLP is to learn a generalizable
vision-language representation with large-scale data to fa-
cilitate down-stream tasks. In contrast, we focus on devel-
oping a novel transformer-based visual grounding frame-
work, and learning to perform homogeneous multi-modal
reasoning with a small amount of visual grounding data.

3. Transformers for Visual Grounding
In this work, we present Transformers for Visual

Grounding (TransVG), a novel framework for the visual
grounding task based on a stack of transformer encoders
with direct box coordinates prediction. As shown in Fig-
ure 2, given an image and a language expression as in-
puts, we first separate them into two sibling branches, i.e.,
a visual branch and a linguistic branch, to generate visual
and linguistic feature embedding. Then, we put the multi-
modal feature embedding together and append a learn-
able token (named [REG] token) to construct the inputs
of visual-linguistic fusion modules. The visual-linguistic
transformer homogeneously embeds the input tokens from
different modalities into a common semantic space by mod-
eling intra-modality and inter-modality context with the
self-attention mechanism. Finally, the output state of the
[REG] token is leveraged to directly predict the 4-dim co-
ordinates of a referred object in the prediction head.

In the following subsections, we first review the prelimi-
nary for transformer and then elaborate our designs of trans-
formers for visual grounding.

3.1. Preliminary

Before detailing the architecture of TransVG, we briefly
review the conventional transformer proposed in [45] for
machine translation. The core component in a transformer
is the attention mechanism. Given the query embedding f q ,
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key embedding fk and value embedding fv , the output of
a single-head attention layer is computed as:

Attn(f q,fk,fv) = softmax(
f qfk

√
dk

) · fv, (1)

where dk is the channel dimension of fk. Similar to clas-
sic neural sequence transduction models, the conventional
transformer has an encoder-decoder structure. However, in
our approach, we only use transformer encoder layers.

Concretely, each transformer encoder layer has two sub-
layers, i.e., a multi-head self-attention layer and a simple
feed forward network (FFN). The multi-head attention is a
variant of single-head attention (as in Function 1), and self-
attention indicates the query, key and value are from the
same embedding set. FFN is an MLP composed of fully
connected layers and ReLU activation layers.

In the transformer encoder layer, each sub-layer is put
into a residual structure, where layer normalization [2] is
performed after the residual connection. Let us denote the
input as xn, the procedure in a transformer encoder layer is:

x′n = LN(xn + FMSA(xn)), (2)
xn+1 = LN(x′n + FFFN(x

′
n)), (3)

where LN(·) indicates layer normalization, FMSA(·) is the
multi-head self-attention layer, and FFFN(·) represents the
feed forward network.

3.2. TransVG Architecture

As depicted in Figure 2, there are four main components
in TransVG: (1) a visual branch, (2) a linguistic branch, (3)
a visual-linguistic fusion module, and (4) a prediction head.
Visual Branch. The visual branch starts with a convo-
lutional backbone network, followed by the visual trans-
former. We exploit the commonly used ResNet [16] as the
backbone network. The visual transformer is composed of
a stack of 6 transformer encoder layers. Each transformer
encoder layer includes a multi-head self-attention layer and
an FFN. There are 8 heads in the multi-head attention layer,
and 2 FC layers followed by ReLU activation layers in the
FFN. The output channel dimensions of these 2 FC layers
are 2048 and 256, respectively.

Given an image z0 ∈ R3×H0×W0 as the input of this
branch, we exploit the backbone network to generate a 2D
feature map z ∈ RC×H×W . Typically, the channel di-
mension C is 2048, and the width and height of the 2D
feature map are 1

32 of the original image size (H = H0

32 ,
W = W0

32 ). Then, we leverage a 1×1 convolutional layer to
reduce the channel dimension of z to Cv = 256 and obtain
z′ ∈ RCv×H×W . Since the input of a transformer encoder
layer is expected to be a sequence of 1D vectors, we fur-
ther flatten z′ into zv ∈ RCv×Nv , where Nv = H ×W is
the number of input tokens. To make the visual transformer

sensitive to the original 2D positions of input tokens, we fol-
low [5, 36] to utilize sine spatial position encodings as the
supplementary of visual feature. Concretely, the position
encodings are added with the query and key embedding at
each transformer encoder layer. The visual transformer con-
ducts global vision context reasoning in parallel, and out-
puts the advanced visual embedding fv , which shares the
same shape as zv .
Linguistic Branch. The linguistic branch is a sibling to
the visual branch. Our linguistic branch includes a token
embedding layer and a linguistic transformer. To make the
best of the pre-trained BERT model [12], the architecture of
this branch follows the design of the basic model of BERT
series. Typically, there are 12 transformer encoder layers in
the linguistic transformer. The output channel dimension of
the linguistic transformer is Cl = 768.

Given a language expression as the input of this branch,
We first convert each word ID into a one-hot vector. Then,
in the token embedding layer, we tokenize each one-hot
vector into a language token by looking up the token ta-
ble. We follow the common practice in machine transla-
tion [11, 12, 39, 45] to append a [CLS] token and a [SEP]
token at the beginning and end positions of the tokenized
language expression. After that, we take the language to-
kens as inputs of the linguistic transformer, and generate
the advanced language embedding fl ∈ RCl×Nl , where Nl

is the number of language tokens.
Visual-linguistic Fusion Module. As the core component
in our model to fuse the multi-modal context, the architec-
ture of the visual-linguistic fusion module (abbreviated as
V-L module) is simple and elegant. Specifically, the V-L
module includes two linear projection layers (one for each
modality) and a visual-linguistic transformer (with a stack
of 6 transformer encoder layers).

Given advanced visual tokens fv ∈ R256×Nv out of the
visual branch and advanced linguistic tokens fl ∈ R768×Nl

out of the linguistic branch, we apply a linear projection
layer to project them into embedding with same channel di-
mension. We denote the projected visual embedding and
linguistic embedding as pv ∈ RCp×Nv and pl ∈ RCp×Nl ,
where Cp = 256. Then, we pre-append a learnable embed-
ding (namely a [REG] token) to pv and pl, and formulate
the joint input tokens of the visual-linguistic transformer as:

x0 = [ p1v, p
2
v, · · · , pNv

v︸ ︷︷ ︸
visual tokens pv

,

linguistic tokens pl︷ ︸︸ ︷
p1l , p

2
l , · · · , p

Nl

l , pr ], (4)

where pr ∈ RCp×1 represents the [REG] token. The [REG]
token is randomly initialized at the beginning of the training
stage and optimized with the whole model.

After obtaining the input x0 ∈ RCp×(Nv+Nl+1) in the
joint embedding space as described above, we apply the
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visual-linguistic transformer to embed x0 into a common
semantic space by performing intra- and inter-modality re-
lation reasoning in a homogeneous way. To retain the po-
sitional and modal information, we add learnable position
encodings to the input of each transformer encoder layer.

Thanks to the attention mechanism, the correspondence
can be freely established between each pair of tokens from
the joint entities, regardless of their modality. For example,
a visual token can attend to a visual token, and it can also
freely attend to a linguistic token. Typically, the output state
of the [REG] token develops a consolidated representation
enriched by both visual and linguistic context, and is further
leveraged for box coordinates prediction.
Prediction Head. We leverage the output state of [REG]
token from the V-L module as the input of our prediction
head. To perform box coordinates prediction, we attach a
regression block to the [REG] token. The regression block
is implemented by an MLP with two ReLU activated 256-
dim hidden layers and a linear output layer. The output of
the prediction head is the 4-dim box coordinates.

3.3. Training Objective

Unlike many previous methods that ground referred ob-
jects based on a set of candidates (i.e., region proposals in
two-stage methods and anchor boxes in one-stage methods),
TransVG directly infers a 4-dim vector as the coordinates
of the box to be grounded. This simplifies the process of
target assignment and positive/negative examples mining at
the training stage, but it also involves the scale problem.
Specifically, the widely used smooth L1 loss tends to be a
large number when we try to predict a large box, while tends
to be small when we try to predict a small one, even if their
predictions have similar relative errors.

To address this problem, we normalize the coordinates
of the ground-truth box by the scale of the image, and in-
volve the generalized IoU loss [41] (GIoU loss), which is
not affected by the scales.

Let us denote the prediction as b = (x, y, w, h), and the
normalized ground-truth box as b̂ = (x̂, ŷ, ŵ, ĥ). The train-
ing objective of our TransVG is:

L = Lsmooth-l1(b, b̂) + λ · Lgiou(b, b̂), (5)

where Lsmooth-l1(·) and Lgiou(·) are the smooth L1 loss and
GIoU loss, respectively. λ is the weight coefficient of GIoU
loss to balance these two losses.

4. Experiments
4.1. Datasets

ReferItGame. ReferItGame [23] includes 20,000 images
collected from the SAIAPR-12 dataset [15], and each im-
age has one or a few regions with corresponding referring
expressions. We follow the common practice to divide this

dataset into three subsets, i.e., a train set with 54,127 refer-
ring expressions, a validation set with 5,842 referring ex-
pressions and a test set with 60,103 referring expressions.
We use the validation set to conduct experimental analysis
and compare our method with others on the test set.
Flickr30K Entities. Flickr30K Entities [38] augments the
original Flickr30K [58] with short region phrase correspon-
dence annotations. It contains 31,783 images with 427K
referred entities. We follow the previous works [38, 37, 46,
55] to separate the these images into 29,783 for training,
1000 for validation, and 1000 for testing.
RefCOCO/ RefCOCO+/ RefCOCOg. RefCOCO [60] in-
cludes 19,994 images with 50,000 referred objects. Each
object has more than one referring expression, and there are
142,210 referring expressions in this dataset. The samples
in RefCOCO are officially split into a train set with 120,624
expressions, a validation set with 10,834 expressions, a
testA set with 5,657 expressions and a testB set with 5,095
expressions. Similarly, RefCOCO+ [60] contains 19,992
images with 49,856 referred objects and 141,564 referring
expressions. It is also officially split into a train set with
120,191 expressions, a validation set with 10,758 expres-
sions, a testA set with 5,726 expressions and a testB set
with 4,889 expressions. RefCOCOg [31] has 25,799 im-
ages with 49,856 referred objects and expressions. There
are two commonly used split protocols for this dataset. One
is RefCOCOg-google [31], and the other is RefCOCOg-
umd [34]. We report our performance on both RefCOCOg-
google (val-g) and RefCOCOg-umd (val-u and test-u) to
make comprehensive comparisons.

4.2. Implementation Details

Inputs. We set the input image size as 640 × 640 and the
max expression length as 40. When performing image re-
sizing, we keep the original aspect ratio of each image. The
longer edge of an image is resized to 640, while the shorter
one is padded to 640 with the mean value of RGB channels.
Meanwhile, We cut off the language query if its length is
longer than 38 (leaving one position for the [CLS] token and
one position for the [SEP] token). Otherwise, we pad empty
tokens after [SEP] token to make the input length equal to
40. For both the input image and language expression, the
padded pixel/word is recorded with a mask and will not be
involved in the computation of transformers.
Training Details. The whole architecture of our TransVG
is end-to-end optimized with AdamW optimizer. We set the
initial learning rate of the V-L module and prediction head
to 10−4, the visual branch and linguistic branch to 10−5,
and set weight decay to 10−4. Our visual branch is initial-
ized with the backbone and encoder of DETR model [5],
and our linguistic branch is initialized with the basic BERT
model [12]. For the other components, the parameters are
randomly initialized with Xavier init. On all the datasets ex-
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cept Flickr30K Entities, our model is trained for 90 epochs
with a learning rate dropped by a factor of 10 after 60
epochs. As for the Flickr30K Entities, our model is trained
for 60 epochs, with a learning rate drops after 40 epochs.
We set the batch size to 64. The weight coefficient λ is set
to 1. To avoid overfitting, we exploit dropout operation af-
ter the multi-head self-attention layer and the FFN of each
transformer encoder layer. The dropout ratio is set to 0.1 by
default. We follow the common practice in [27, 55, 56] to
perform data augmentation at the training stage.
Inference. Since our TransVG directly outputs the box co-
ordinates, there is no extra operation at the inference stage.

4.3. Comparisons with State-of-the-art Methods

To validate the merits of our proposed TransVG, we re-
port our performance and compare it with other state-of-the-
art methods on five visual grounding benchmarks, including
ReferItGame [23], Flickr30K Entities [38], RefCOCO [60],
RefCOCO+ [60], and RefCOCOg [31]. We follow the stan-
dard protocol to report the performance in terms of top-1 ac-
curacy (%). Specifically, once the Jaccard overlap between
the predicted region and the ground-truth box is above 0.5,
the prediction is regarded as a correct one.
ReferItGame. Table 1 shows the result comparison be-
tween state-of-the-art methods on the ReferItGame test set.
We group the methods into two-stage methods, one-stage
methods, and transformer-based methods. Among all the
methods, TransVG achieves the best performance as the
first transformer-based approach. With ResNet-50 back-
bone, TransVG achieves 69.76% top-1 accuracy and out-
performs ZSGNet [42] with the same backbone network by
11.13%. By replacing ResNet-50 with a stronger ResNet-
101, the performance boosts to 70.73%, which is 6.13%
higher than the strongest competitor ReSC-Large for one-
stage methods and 7.73% higher than the strongest com-
petitor DDPN for two-stage methods, respectively.

In particular, we find the recurrent architecture in ReSC
shares the same spirit with our stacking architecture in
the visual-linguistic transformer that fuses the multi-modal
context in multiple rounds. However, in ReSC, recurrent
learning is only performed to construct the language sub-
query, and this procedure is isolated from the sub-query at-
tended visual feature modulation. In contrast, our TransVG
embeds the visual and linguistic embedding into a com-
mon semantic space by homogeneously performing intra-
and inter-modality context reasoning. The superiority of our
performance empirically demonstrates the effectiveness of
our unified visual-linguistic encoder and fusion module de-
signs. It also validates that the complicated multi-modality
fusion module can be replaced by a simple stack of trans-
former encoder layers.
Flickr30K Entities. Table 1 also reports the performance
of our TransVG on the Flickr30K Entities test set. On this

Table 1. Comparisons with state-of-the-art methods on the test set
of ReferItGame [23] and Flickr30K Entities [38] in terms of top-1
accuracy (%). The previous methods follow the two-stage or one-
stage directions, while ours is transformer-based. We highlight the
best and second best performance in the red and blue colors.

Models Backbone
ReferItGame Flickr30K

test test

Two-stage:
CMN [20] VGG16 28.33 -
VC [63] VGG16 31.13 -

MAttNet [59] ResNet-101 29.04 -
Similarity Net [46] ResNet-101 34.54 60.89

CITE [37] ResNet-101 35.07 61.33
PIRC [24] ResNet-101 59.13 72.83
DDPN [61] ResNet-101 63.00 73.30
One-stage:

SSG [9] DarkNet-53 54.24 -
ZSGNet [42] ResNet-50 58.63 63.39
FAOA [56] DarkNet-53 60.67 68.71
RCCF [27] DLA-34 63.79 -

ReSC-Large [55] DarkNet-53 64.60 69.28
Transformer-based:

TransVG (ours) ResNet-50 69.76 78.47
TransVG (ours) ResNet-101 70.73 79.10

dataset, our TransVG achieves 79.10% top-1 accuracy with
a ResNet-101 backbone network, surpassing the recently
proposed Similarity Net [46], CITE [37], DDPN [61], ZS-
GNet [42], FAOA [56], and ReSC-Large [55] by a remark-
able margin (i.e., 5.80% absolute improvement over the pre-
vious state-of-the-art record).
RefCOCO/RefCOCO+/RefCOCOg. To further validate
the effectiveness of our proposed TransVG, we also con-
duct experiments to report our performance on the Ref-
COCO, RefCOCO+ and RefCOCOg datasets. The top-1
accuracy (%) of our method, together with other state-of-
the-art methods, is reported in Table 2. Our TransVG con-
sistently achieves the best performance on the RefCOCO
and RefCOCOg for all the subsets and splits. Remarkably,
we achieve 78.35% on the RefCOCO testB set, 6.05% ab-
solute improvement over the previous state-of-the-art re-
sult. When performing grounding on longer expressions
(on the RefCOCOg dataset), our method also works well,
which further validates our neat architecture’s effectiveness
to process complicated queries. On RefCOCO+, TransVG
also achieves comparable performance to that with the best
records. We study the failure cases and find some extreme
examples whose expressions are not suitable for generating
embedding with transformers. For example, a query that
just tells a number “32” in the annotation degenerates our
linguistic transformer to an MLP in this situation.

Among the competitors, MAttNet [59] is the most repre-
sentative method that devises multi-modal fusion modules
with re-defined structures (i.e, modular attention networks
to separately model subject, location and relationship).
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Table 2. Comparisons with state-of-the-art methods on RefCOCO [60], RefCOCO+ [60] and RefCOCOg [31] in terms of top-1 accuracy
(%). We highlight the best and second best performance in the red and blue colors.

Models Venue Backbone
RefCOCO RefCOCO+ RefCOCOg

val testA testB val testA testB val-g val-u test-u

Two-stage:
CMN [20] CVPR’17 VGG16 - 71.03 65.77 - 54.32 47.76 57.47 - -
VC [63] CVPR’18 VGG16 - 73.33 67.44 - 58.40 53.18 62.30 - -

ParalAttn [68] CVPR’18 VGG16 - 75.31 65.52 - 61.34 50.86 58.03 - -
MAttNet [59] CVPR’18 ResNet-101 76.65 81.14 69.99 65.33 71.62 56.02 - 66.58 67.27
LGRANs [48] CVPR’19 VGG16 - 76.60 66.40 - 64.00 53.40 61.78 - -

DGA [52] ICCV’19 VGG16 - 78.42 65.53 - 69.07 51.99 - - 63.28
RvG-Tree [19] TPAMI’19 ResNet-101 75.06 78.61 69.85 63.51 67.45 56.66 - 66.95 66.51
NMTree [28] ICCV’19 ResNet-101 76.41 81.21 70.09 66.46 72.02 57.52 64.62 65.87 66.44
One-stage:

SSG [9] arXiv’18 DarkNet-53 - 76.51 67.50 - 62.14 49.27 47.47 58.80 -
FAOA [56] ICCV’19 DarkNet-53 72.54 74.35 68.50 56.81 60.23 49.60 56.12 61.33 60.36
RCCF [27] CVPR’20 DLA-34 - 81.06 71.85 - 70.35 56.32 - - 65.73

ReSC-Large [55] ECCV’20 DarkNet-53 77.63 80.45 72.30 63.59 68.36 56.81 63.12 67.30 67.20
Transformer-based:

TransVG (ours) - ResNet-50 80.32 82.67 78.12 63.50 68.15 55.63 66.56 67.66 67.44
TransVG (ours) - ResNet-101 81.02 82.72 78.35 64.82 70.70 56.94 67.02 68.67 67.73

When we compare our model with MAttNet in Table 1 and
Table 2, we can find that MAttNet shows comparable results
to our TransVG on RefCOCO/RefCOCO+/RefCOCOg, but
lags behind our TransVG on RefeItGame. The reason is
that the pre-defined relationship in multi-modal fusion mod-
ules makes it easy to overfit to specific datasets (e.g., with
specific scenarios, query lengths, and relationships). Our
TransVG theoretically avoids this problem by establishing
intra-modality and inter-modality correspondence with the
flexible and adaptive attention mechanism.

4.4. Ablation Study

In this section, we conduct ablative experiments to verify
the effectiveness of each component in our proposed frame-
work. We exploit ResNet-50 as the backbone network of the
visual branch, and all of the compared models are trained
for 90 epochs as described in the implementation details.
Design of the [REG] Token. We study the design of the
[REG] token on RefCOCO dataset, and report the results
in Table 3. There are several choices to construct the ini-
tial state of the [REG] token. We detail these designs and
analysis them as follows:
— Average pooled visual tokens. We perform average

pooling over the visual tokens and exploit the average-
pooled embedding as the initial state of [REG] token.

— Max pooled visual tokens. We take the max-pooled
visual token embedding as the initial [REG] token.

— Average pooled linguistic tokens. Similar to the first
choice, but using the linguistic tokens.

— Average pooled linguistic tokens. Similar to the second
choice, but using the linguistic tokens.

— Sharing with [CLS] token. We use the [CLS] token

Table 3. Ablative experiments on RefCOCO to study the [REG] to-
ken design in our framework. The initial state of the [REG] token
is either obtained from visual/linguistic tokens out of the corre-
sponding branch or by exploiting a learnable embedding.

Initial State of [REG] Token RefCOCO@val
Average pooled visual tokens 79.12
Max pooled visual tokens 78.37
Average pooled linguistic tokens 78.51
Max pooled linguistic tokens 78.74
Sharing with [CLS] token 77.90
Learnable embedding∗ 80.32

of linguistic embedding to pl the [REG] token. Con-
cretely, the [CLS] token out of the V-L module is fed
into the prediction head.

— Learnable embedding*. This is our default setting by
randomly initializing the [REG] token embedding at
the beginning of the training stage. And the parameters
of this embedding are optimized with the whole model.

Our proposed design to exploit a learnable embedding
achieves 80.32% top-1 accuracy on the validation set of Re-
fCOCO, which is the best performance among all the de-
signs. Typically, the initial [REG] token of other designs
is either generated from visual or linguistic tokens, which
involves biases to the specific prior context of the corre-
sponding modality. In contrast, the learnable embedding
tends to be more equitable and flexible when performing
relation reasoning in the visual-linguistic transformer.
Transformers in Visual and Linguistic Branches. We
study the role of the transformers in the visual branch and
the linguistic branch (i.e., visual transformer and linguis-
tic transformer). Table 4 summarizes the results of several
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(a) This is the giraffe on 
the right who is looking 
towards the camera

(c) Orange between 
other oranges and a 
banana

(d) A man is eating san-
dwich by sitting along 
with other members

(b) Bowl of tomato soup

Figure 3. Qualitative results of our TransVG on the RefCOCOg
test set (better viewed in color). We show the [REG] token’s at-
tention to visual tokens in the top row. Blue and red boxes are the
predicted regions and the ground truths, respectively.

models with or without the visual transformer and the lin-
guistic transformer. The baseline model without both vi-
sual transformer and linguistic transformer reports an ac-
curacy of 64.24%. When we only attach either the visual
transformer or the linguistic transformer, an improvement
of 68.48% and 66.78% are achieved, respectively. With the
complete architecture, the performance is further boosted to
69.76% on the ReferIt test set. This result demonstrates the
essential of transformers in the visual branch and linguis-
tic branch to capture intra-modality global context before
performing multi-modal fusion.

4.5. Qualitative Results

We showcase the qualitative results of four examples
from the RefCOCOg [31] test set in Figure 3. We observe
that our approach can successfully model queries with com-
plicated relationships, e.g., “orange between other oranges
and a banana” in Figure 3 (c). The first row of Figure 3 vi-
sualizes the [REG] token’s attention to the visual tokens in
the visual-linguistic transformer. TransVG generates inter-
pretable attentions on the referred object that corresponds
to the overall object shape and location.

Motivated by the correspondence between visual atten-
tion and predicted regions, we visualize the [REG] to-
ken’s attention score on the visual tokens in the visual-
linguistic transformer’s intermediate layers to better under-
stand TransVG. Figure 4 shows the [REG] token’s attention
score on the visual tokens from the second, forth and sixth
transformer encoder layers. In the early layer (layer 2), we
observe that the [REG] token captures the global context
by attending to multiple regions in the whole image. In the

Table 4. Ablative experiments of the visual transformer and lin-
guistic transformer in our framework. The performance is evalu-
ated on the test set of ReferItGame [23] in terms of top-1 accuracy
(%). “Tr.” represents transformer.

Visual Branch Linguistic Branch Accuracy Runtime
w/o Tr. w/ Tr. w/o Tr. w/ Tr. (%) (ms)

X X 64.24 33.67
X X 66.78↑3.54 47.57

X X 68.48↑4.24 40.14
X X 69.76↑5.52 61.77

Q: A white cow in a 
pasture with brown 
cows

Layer 2 Layer 4 Layer 6

Q: A baseball umpire 
with the number 15 
on his shirt

Figure 4. Visualization of the [REG] token’s attention score on
visual tokens from the second (layer 2), forth (layer 4) and sixth
(layer 6) encoder layer of the visual-linguistic transformer.

middle layer (layer 4), the [REG] token tends to attend the
discriminative regions which are closely related to the re-
ferred object (e.g., the bus behind the man in the first exam-
ple, which indicates the scene is on the road). In the final
layer (layer 6), TransVG attends to the referred object and
generates a more accurate attention prediction for the ob-
ject’s shape, which enables the model to regress the target’s
coordinates correctly.

5. Conclusion
In this paper, we present TransVG, a transformer-based

framework for visual grounding. Instead of leveraging com-
plex manually designed fusion modules, TransVG uses a
simple stack of transformer encoders to perform the multi-
modal fusion and reasoning for the visual grounding task.
Extensive experiments indicate that TransVG’s multi-modal
transformer layers effectively perform the step-by-step fu-
sion and reasoning, which enable TransVG to set a series
of new state-of-the-art records on multiple datasets. Our
TransVG serves as a new framework and exhibits huge po-
tential for future investigation.

Acknowledgements This work was supported in part by
the National Natural Science Foundation of China under
Contract 61836011, 61632019, and 62021001, and in part
by the Youth Innovation Promotion Association CAS under
Grant 2018497. It was also supported by the GPU cluster
built by MCC Lab of Information Science and Technology
Institution, USTC.

1776



References
[1] Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret

Mitchell, Dhruv Batra, C Lawrence Zitnick, and Devi Parikh.
Vqa: Visual question answering. In ICCV, pages 2425–2433,
2015. 1

[2] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton.
Layer normalization. arXiv:1607.06450, 2016. 4

[3] Mohit Bajaj, Lanjun Wang, and Leonid Sigal.
G3raphground: Graph-based language grounding. In
ICCV, pages 4281–4290, 2019. 2

[4] David S Bolme, J Ross Beveridge, Bruce A Draper, and
Yui Man Lui. Visual object tracking using adaptive corre-
lation filters. In CVPR, pages 2544–2550, 2010. 3

[5] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-
to-end object detection with transformers. In ECCV, pages
213–229, 2020. 3, 4, 5

[6] Hanting Chen, Yunhe Wang, Tianyu Guo, Chang Xu, Yip-
ing Deng, Zhenhua Liu, Siwei Ma, Chunjing Xu, Chao Xu,
and Wen Gao. Pre-trained image processing transformer.
arXiv:2012.00364, 2020. 3

[7] Kan Chen, Rama Kovvuri, and Ram Nevatia. Query-guided
regression network with context policy for phrase grounding.
In ICCV, pages 824–832, 2017. 2

[8] Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Hee-
woo Jun, David Luan, and Ilya Sutskever. Generative pre-
training from pixels. In ICML, pages 1691–1703, 2020. 3

[9] Xinpeng Chen, Lin Ma, Jingyuan Chen, Zequn Jie, Wei
Liu, and Jiebo Luo. Real-time referring expression compre-
hension by single-stage grounding network. arXiv preprint
arXiv:1812.03426, 2018. 1, 2, 6, 7

[10] Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed El Kholy,
Faisal Ahmed, Zhe Gan, Yu Cheng, and Jingjing Liu. Uniter:
Universal image-text representation learning. In ECCV,
pages 104–120, 2020. 3

[11] Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob
Uszkoreit, and Lukasz Kaiser. Universal transformers. In
ICLR, 2018. 3, 4

[12] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. Bert: Pre-training of deep bidirectional trans-
formers for language understanding. arXiv:1810.04805,
2018. 3, 4, 5

[13] Pelin Dogan, Leonid Sigal, and Markus Gross. Neural se-
quential phrase grounding (seqground). In CVPR, pages
4175–4184, 2019. 2

[14] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. In ICLR, 2021. 3

[15] Hugo Jair Escalante, Carlos A Hernández, Jesus A Gonzalez,
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