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Abstract

In this work, we devote to address the challenging
problem of scene parsing. It is well known that pixels in
an image are highly correlated with each other, especially
those from the same semantic region, while treating pixels
independently fails to take advantage of such correlations.
In this work, we treat each respective region in an image
as a whole, and capture the structure topology as well
as the affinity among different regions. To this end, we
first divide the entire feature maps to different regions
and extract respective global features from them. Next,
we construct a directed graph whose nodes are regional
features, and the bi-directional edges connecting every two
nodes are the affinities between the regional features they
represent. After that, we transfer the affinity-aware nodes
in the directed graph back to corresponding regions of the
image, which helps to model the region dependencies and
mitigate unrealistic results. In addition, to further boost
the correlation among pixels, we propose a region-level
loss that evaluates all pixels in a region as a whole and
motivates the network to learn the exclusive regional feature
per class. With the proposed approach, we achieves new
state-of-the-art segmentation results on PASCAL-Context,
ADE20K, and COCO-Stuff consistently.

1. Introduction
Scene parsing (or semantic segmentation), as one of

the most fundamental tasks in computer vision, targets at
segmenting an image to different regions and assigning each
region a specific class label. Parsing errors exist widely
in previous methods, due to the diverse appearances and
the complicated topology structures among objects. In
this paper, we propose an approach that constructs affinity
dependency among different semantic regions, helps to
reason global affinities among objects/stuff in the given
image and mitigates the deviated segmentation results.

The scene parsing can be regarded as a pixel-level
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Image Prediction Ground Truth

Figure 1: Common errors in scene parsing: “spot”, ambi-
guous, and unrealistic predictions.

classification task (i.e., recognition) as well as a region
cluster task (i.e., segmentation). Previous works pay more
attention to recognition than region cluster, resulting in
“spot” predictions, ambiguous results and unrealistic re-
sults, as shown in Figure 1. Previous attempts to these
issues mainly revolved around capturing large receptive
fields for each pixel, like the pyramid [8, 81] and the non-
local [20] receptive fields. These context methods, though
build implicit connections among different pixels, aim at
aggregating context for each pixel and thereby do not take
advantage of the region-level correlations.

In this work, we focus more on region clustering and
attribute the errors in Figure 1 to the lack of region-
level constrains for each pixel and insufficient regional
correlations. Concretely we boost scene parsing by ap-
plying region-level constraints and establishing connections
among regions. We split the feature maps to various regions
and regard pixels in each respective region as a whole
to explore the region-level correlations. This approach
helps cluster the features from the same region and thus
remove the “spot” pieces in prediction. To this end,
we first generate a coarse segmentation mask (e.g., the
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prediction in Figure. 1) to define the regions in feature
maps. We then propose a graph-based region affinity
reasoning (GRAr) module to place region-level constraints
onto these split regions. The occurrence of the error spots
and ambiguous/unrealistic results is significantly reduced.

The edges are vital for determination of the connections
among nodes in a graph. Unlike previous graph-based
works [10, 40, 27] that learn edges from scratch, we utilize
affinity information from training samples via statistics.
Different affinities among semantic classes are observed,
as some objects frequently co-occur in images, while some
objects never appear together. Therefore, it is advantageous
to model the complicated affinities and spatial dependencies
among different objects. However, the class-affinity has
not been well investigated in previous graph methods.
Here, we calculate the coexistence times between each two
classes and list them as a confusion matrix to represent the
affinities. For each category, its supporters and opponents
are achieved by examining the confusion matrix, intuitively
watching who supports and who suppresses its existence.
For instance, the class “pillow” in ADE20K [83], has
supporters of “bed” and “sofa” and opponent of “bus”.
Using these category affinity information, we capture the
topology structure among different regions and the affinity
dependency of different categories. A directed graph is
constructed then, in which each node represents a semantic
region and each edge represents the directed affinity con-
nection between the two nodes.

Furthermore, we propose a semantic region loss to
facilitate the region-level feature clustering. From the
discussion in [4], the training objectives of FCN-based
segmentation networks is always based on the assumption
that pixels are independent. Whereas, it is also well known
that each pixel in a given scene image is highly correlated
with other pixels, and treating them independently during
training fails to utilize the correlation among pixels. Some
context works exploit such correlation implicitly, while
their training objective functions still regard pixels as in-
dependent. In this work, we propose a semantic region loss
(SR-Loss) that treat pixels in the same region as a whole
to explicitly boost the inner correlations. The SR-Loss
formulates a region-level recognition task and prompts the
network to learn the regional-level features for respective
class.

The main contributions of this paper are summarized as
follows:

• We propose a bi-directional graph according to statis-
tics of class-correlations in training samples, and infer
region affinity based on this graph.

• We provide the computed affinity-aware features for
corresponding regions to improve feature representa-
tions and mitigate the unrealistic results.

• We propose a semantic region loss that offers region-
level recognition supervision, motivating the network
to learn the discriminative region-level features for
each class.

• The proposed approach achieves new state-of-the-art
performance consistently on three popular scene pars-
ing benchmarks, PASCAL-Context, ADE20K, and
COCO-Stuff.

2. Related Work
2.1. Scene Parsing

Scene parsing, or semantic segmentation, is one of
the challenging and fundamental tasks in computer vision.
Recently, deep-learning-based scene parsing methods have
achieved excellent progress, benefiting from the great suc-
cess of deep convolutional neural networks on computer
vision [37, 25, 62, 46, 65, 63, 50, 13, 45, 18, 66, 77, 30]. The
seminal work FCN [49] introduces the fully convolutional
networks (FCN) to semantic segmentation. Plenty of FCN-
based segmentation works are proposed then, including
the encoder-decoder approaches (e.g., DecovNet [52], U-
Net [54], EFCN [57], CGBNet [17] and SegNet [3]) that
extract high-level features by encoder and then gradually
restore the spatial details by decoder, and Dilated-FCN [8,
71, 81] that retains more spatial details in encoder, by
discarding some downsampling operations in CNNs and
utilizing dilated convolutions to compensate the receptive
fields.

Contextual modeling plays a vital role in scene parsing.
A plenty of works in segmentation focus on aggregating
better context. Multi-scale pyramid representation is one of
the common methods. For example, the DeepLab [8] pro-
poses an Atrous Spatial Pyramid Pooling module, known as
ASPP; the PSPNet [81] introduces Pyramid Pooling Mod-
ule (PPM) to capture multi-scale contextual information
from different regions; and the DenseASPP [68] utilizes
denser dilated rates to cover much larger scale ranges.
Self-attention [61, 64], as another popular method, has
representatives like the DANet [20] which applies non-local
operation over both spatial and channel dimensions, while
CCNet [28] enables non-local attention lightweight by
decomposing the non-local attention into two consecutive
criss-cross attentions.

Unlike the previous methods that aggregate context for
each pixel, our method focuses on regional-level affinity
and treats each region in a given image as a whole. In
addition, we captured the structural topology and affinity
between different sub-regions of the input image to en-
hance well-parsed regions and correct wrongly predicted
pieces. Besides, our approach shares the spirit of coarse-
to-fine strategies, by employing coarse segmentation mask
to divide the image to different regions and construct
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Figure 2: The overall architecture of our proposed approach. We first employ a segmentation network to generate the initial
segmentation mask, and use this prediction to split the feature maps to different regions. Next, we feed these region features
to our graph-based region affinity reasoning (GRAr) module to boost the region representation of these features under the
guidance of an affinity matrix, which is collected via doing statistics on datasets. Further, Semantic Region Loss (SR-Loss),
which extracts class-specific features using ground truth mask, is employed as region-level classification supervision to boost
the correlations of pixels within the same semantic region.

graph based on these regions, as differed from previous
LRN [33], AFNet [74] and OCR [72] that utilize coarse-to-
fine strategy to refine their initial segmentation prediction.
Our approach is flexible in the input division approach of
input image, with other methods like super-pixel [1, 31] and
contour detection [2, 7, 5] also compatible.

2.2. Graphical Models

Graphic models have a long history in computer vision
and have drawn lots of attentions till now. Probabilistic
graphical model [22, 39, 38, 36, 8, 48], e.g., Markov
Random Fields (MRF) and Conditional Random Fields
(CRF), is proposed to capture the long-range dependencies
based on undirected graphs. DAG-RNN [58], SPN [47] and
BFP [14] employs directed acyclic graphs to recurrently
propagate information. AAF [34] devotes to replacing
the pixel-wise cross-entropy loss by adversarial learning
loss to capture affinity based on CRF. Graph Convolution
Networks (GCN) [35, 12] is proposed to conduct convo-
lution on graphs and have have achieved great success in
computer vision tasks [11]. Several GCN-based methods
are proposed for semantic segmentation [10, 40, 27]. Dif-
ferent from previous scene parsing methods using graphical

models, in this work, we utilize affinity knowledge to
establish a bi-directional graph for the affinity reasoning
among different semantic regions.

3. Approach

The main innovation of this work is that we treat every
region as a whole, and capture the structure topology and
affinity among different regions of the input image to
enhance the well-parsed pieces and correct the wrongly-
parsed pieces. We first propose a directed graph whose
nodes are features of semantic regions and edges are affini-
ties between these regions, in the section 3.1 and sec-
tion 3.2. Specifically, we explain how to derive the affinities
among regions from the given directed graph, in section 3.2.
Then, we define a semantic region loss in section 3.3 to
facilitate the network to learn discriminative features for
each semantic region. The overall architecture is shown in
Figure 2. We employ a segmentation network to generate
the coarse segmentation mask, which is used to extract
node representations from corresponding regions. The
proposed directed graph is utilized for affinity reasoning.
Semantic region loss and segmentation loss are both adopt
for supervision.
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Figure 3: The connections are directed. The aeroplane
strongly supports the existence of sky, but the sky only
weakly support the existence of aeroplane.

3.1. Semantic Region Inferring

To begin with, we explain our approach of semantic
region inferring. The split regions are extracted respectively
to be the nodes in graphs. Previous graph-based methods,
e.g., GloRe [10] and SpyG [40], do not define explicit nodes
for their graph reasoning. Instead, their graph reasoning
simply leaves the problem to the model itself and relies on
implicit nodes. It is rather difficult to capture what kind of
graph the model has learned and how the information flows
in feature maps. Each pixel may act as a node in the learned
graph, under which case, the graph reasoning works in the
same way as non-local attention [20, 64]. As opposed to
previous graph reasoning, we apply region-level constrains
and treat each region as a separate node in our graph. By
this way, we give a clear definition for the graph nodes.

There are alternative ways to segment the feature maps
and define the regions, e.g., superpixel. We adopt segmen-
tation mask because it is easily obtained from our network
itself. Once the roughly-predicted mask is obtained, we
utilize it to define the regions, and use the proposed affinity
reasoning to refine the prediction in reverse. It is inherently
a coarse-to-fine progress, in which a coarse prediction is
obtained before the final refined prediction. The detailed
process is as follows. We divide the feature maps into
respective parts according to the initial predicted segmen-
tation mask. Average global pooling is then performed
on each split region to extract region-level features, which
constitute the node representations for our directed graph.
The region affinity is inferred based on these region-level
features under mutual restraint, as explained below.

3.2. Semantic Region Affinity Reasoning with Bi-
directional Graph

Here, we illustrate how to construct the connecting edges
in the bi-directional graph based on the acquired node
representations, and then conduct the Graph-based Region
Affinity Reasoning (GRAr). We observe that in exist-
ing segmentation datasets like PASCAL-Context [51] and

ADE20K [83], the pre-defined categories can be clustered
to different groups, e.g., indoors and outdoors. Moreover,
some categories are frequently co-occurrent, e.g., cow and
grass, while some categories never appear together, e.g.,
bed and airplane. Hence, we consider collecting category
affinity in the segmentation data set by statistics, and use
this affinity to construct directed edges in the graph. We
count the co-occurrence times of every two classes, and
calculate their co-occurrence frequency by:

fi,j =


ti,j∑N

k tk,j − tj,j
, i ̸= j,

1, i = j,

(1)

where ti,j is co-occurrence times of class i and class j, and
fi,j represents the frequency that class i is co-occurrent
with class j. The co-occurrence frequency matrix of
Pascal-Context [51] is shown in Figure 3. If category i
frequently co-occurs with class j, we assume it as one of
the supporters of class j and assign stronger connections to
them in the graph. These connections are directed because
such supports are not bilateral. For example, the aeroplane
strongly supports the existence of the sky, because the
appearance of the aeroplane is always accompanied by
the sky as a background, while the sky only supports the
existence of the aeroplane weakly, because the sky also co-
occurs frequently with other objects like bird and people,
as shown in Figure 3. Therefore, for every two categories,
e.g., i and j, there are bi-directional connections, fi,j and
fj,i, that represent the support probability from i to j and
from j to i respectively.

We use the affinity matrix to construct the directed
edges in graph. From the affinity matrix, we infer two
different affinity edges, one is positive and another is
negative. The positive edge represents the support from
the frequent co-occurrent objects, e.g., aeroplane and sky,
while the negative one represents the suppress from the
objects that hardly co-occurs, e.g., grass and bed. The
positive edge from i to j is epi,j and epi,j = fi,j , the
corresponding negative edge is eni,j and eni,j = 1− fi,j . We
perform affinity reasoning using the edges in the graph (see
Figure 4). Suppose there are N nodes in our graph, and the
representation for each node is Fj , where j ∈ {1, 2, ..., N}.
The positive affinity reasoning for each node is derived by:

F p
j = Fj + λConv(

N∑
i=1

Fie
p
i,j ,Θ) (2)

where epi,j represents the positive affinity edge from ith

node to jth node, e.g., from airplane to sky. Conv is a
convolution and Θ is its parameter, we add a residual skip
and λ is set to its learnable parameter. The existence of
a node’s class is supported by receiving positive affinities
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Figure 4: We extract region features according to coarse
segmentation mask, and these region features are used as
node representations in our graph. The graph edges are bi-
directional affinities between each two nodes. We conduct
affinity reasoning based on this directed graph and map the
nodes features back to their corresponding regions.

from other nodes, which indicates that when the class
is mapped back, the corresponding regional features are
enhanced.

In addition to the positive affinity, we also introduce a
negative affinity that inhibits the existence of a class. For
example, the “airplane” and “grass” indicate outdoor scene
and their co-occurrence suppresses the existence of indoor
objects like “bed”. Specifically, the negative affinity is
used to remove some unrealistic pieces/spots in the coarse
prediction. The negative affinity reasoning for each node
can be formulated as:

Fn
j = Fj − λ̂Conv(

N∑
i=1

Fie
n
i,j , Θ̂) (3)

where eni,j represents the negative affinity edge from ith

node to jth node. The feature expression of mapping a
node to a specific category will be somehow weakened, if
it obtains negative affinity from other nodes, which helps
correct the wrongly predicted pieces/spots in the coarse
prediction. The node representation is concatenated with
its positive and negative affinity reasoning to perform the
final representation,

Ḟj = Conv(Fj ⊕ Fn
j ⊕ F p

j , Θ̇) (4)

where ⊕ denotes concatenation. Finally, we map these
nodes features Ḟj back to their corresponding regions. By
affinity reasoning, the features in the same region are better
clustered, and also capture the context from other regions.
Moreover, the correctly predicted pieces are boosted while
incorrectly predicted pieces are suppressed and rectified.

3.3. Semantic Region Loss

It is more widely accepted that every pixel in a given
scene image is highly correlated with other pixels, despite
the claim that the training of FCN-based segmentation

networks is based on the assumption of pixel indepen-
dence. Therefore, treating pixels independently in training
results wastes pixel correlations. Previous context-related
works [8, 81, 20] exploit pixel correlations implicitly, while
keeping objective training functions pixel-independent. We,
however, propose a semantic region loss (SR-Loss) that
regard pixels in the same region as a whole, for boosting
the pixel correlations. The proposed semantic region loss
motivates the network to learn discriminative region-level
features for each class, and meanwhile clusters features that
belongs to the same class.

To extract global features for each class that presents in
the given image, we perform global mask average pooling
over CNN features, using the ground truth segmentation
mask:

F̂k =
1∑

1(M = k)

∑
1(M = k)F (5)

where M is ground truth segmentation mask, 1(∗) is the
binary indicator that outputs 1 when ∗ is True. F is CNN
features with spatial size of H × W , F̂k is a vector with
spatial size of 1× 1 that represents global features for class
k. Then we feed F̂k to an additional fully connected layer
with softmax for classification of class k, supervised by the
cross-entropy loss Lk. If there are K classes that exist in the
given image, there will be L1,L2, ...,LK , i.e., each class
that presents in the given image is assigned with a region-
level classification loss. Each SR-Loss Lk acts on a certain
region that corresponds to class k.

As differed from pixel-level cross-entropy loss in FCN
segmentation methods, our proposed Semantic Region Loss
treats the pixels with same label as a whole, which fa-
cilitates the network to learn the class-specific clustering
features and enlarges the feature distinction among various
categories. It is a region-level classification between the
pixel-level and the image-level. Our SR-loss also differs
from the SE-Loss in EncNet [75] which treats all categories
as a multi-label image-level classification problem, in that
we treat each semantic region as a single-label multi-class
image classification. Suppose these are K classes in the
given image, the final loss is:

L = Ls +
wsr

K

K∑
k=1

wkLk (6)

where Ls is pixel-wise segmentation loss, wsr is the weight
for our SR-Loss, K is the number of classes existing in the
given image, wk is the loss weight for Lk.

4. Experiments
4.1. Implementation Details

All our experiments are based on the open source
platform Pytorch [53]. We test our approach based on
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ResNet [25] and ResNest [78] (pre-trained on ImageNet
[55]). The CNN backbone is truncated from last Pooling
layer and the last two downsampling operations are
discarded, i.e., the output stride is 8. Dilated convolutions
are used to compensate the shrinkage of receptive fields
caused by discarding the down-sampling. The network is
fully convolutional and trained end-to-end with mini-batch
at a batchsize of 16. Batch Normalization [32] is used after
new added convolutional layers to accelerate training. For
training data augmentation, we flip the images horizontally,
resize the images between 0.5 and 2, and rotate them
between -10 and 10 degrees, randomly. Following prior
works [8, 81, 70, 76], we adopt the “poly” scheduling to
adjust the learning rate: lrc = lrb×(1 − iter

total iter )
0.9,

where lrc is the current learning rate and lrb is the initial
base learning rate, total iter is the number of total training
iterations and iter is current iteration step. Momentum and
weight decay are fixed to 0.9 and 0.0001 respectively.

4.2. Datasets and Evaluation Metrics

We report our results on 3 challenging scene pars-
ing benchmarks, PASCAL-Context, ADE20K, and COCO-
Stuff. All three of them provide pixel-wise segmentation
mask with diverse scenes and categories. We collect their
affinity matrix by performing statistics over all images.

• PASCAL-Context [51] provides dense pixel-wise
segmentation maps for whole scenes. It has 10103
scene images from Pascal VOC [19]. There are 4998
training images and 5105 testing images. The most
frequent 59 object/stuff categories and background are
used for evaluation. In training, we resize and crop
images from PASCAL-Context as 544× 544 for batch
processing. Batch size is set to 16, the base learning
rate lrb is set to 0.001 and total iter is 50K.

• ADE20K [83] contains 20210 training images, 2000
validation images and 3352 test images. In this dataset,
there are 150 categories, including 35 stuff categories
and 115 discrete objects categories, annotated to each
pixel. In training, images are resized and cropped to
544×544 for batch processing. Batch size is set to 16,
the base learning rate lrb is set to 0.01 and total iter
is 200K.

• COCO-Stuff [6] provides detailed pixel-level
annotations for 10000 images from Microsoft COCO
dataset [44]. There are 9000 training images and 1000
testing images. In Microsoft COCO segmentation
dataset [44], images are annotated with 80 objects
labels, the unlabeled stuff concepts are further labeled
with the new added 91 stuff categories in COCO-Stuff.
We report our results on 171 categories, including
all the objects and stuff categories. In our training,

Backbone GRAr SR-Loss MS mIoU%

ResNet-50 42.3
ResNet-50 ✓ 51.7
ResNet-50 ✓ ✓ 53.0
ResNet-101 ✓ ✓ 54.8
ResNet-101 ✓ ✓ ✓ 55.7
ResNest-101 ✓ ✓ ✓ 57.0

Table 1: Ablation Study on PASCAL-Context. Baseline is
dilated FCN, MS means multi-scale testing.

Backbone Pos Neg Affinity Method mIoU %

ResNet-50 N.A. 42.3
ResNet-50 ✓ Conv 48.1
ResNet-50 ✓ Conv 47.9
ResNet-50 ✓ ✓ Conv 48.2

ResNet-50 ✓ Graph 49.7
ResNet-50 ✓ Graph 49.3
ResNet-50 ✓ ✓ Graph 51.7

Table 2: Ablation Study of the proposed Affinity Reasoning
with Directed Graph.

Method Parameters Memory Time mIoU%

PPM [81] 23.2M 226M 75ms 49.2
ASPP [8] 15.5M 81M 74ms 49.9
DANet [20] 10.6M 668M 101ms 50.6
OCR [72] 10.5M 93M 41ms 50.4

GRAr (ours) 2.4M 95M 42ms 51.7

Table 3: FCN+“module” comparison. We compare with
the plug-in “module” of some previous methods in terms of
efficiency/effectiveness based on our re-implementations.
The size of input feature map is 1× 2048× 68× 68.

images are resized and cropped to 544× 544 for batch
processing. Batch size is set to 16, the base learning
rate lrb is set to 0.001 and total iter is 100K.

We evaluate the proposed segmentation network with mean
Intersection-over-Union (mIoU), please refer to [49] for its
mathematical definition.

4.3. Ablation Study

We conduct ablation studies to showcase the effective-
ness of each module employed in the proposed approach.
First, as shown in Table 1, compared to the baseline FCN,
our bi-directional Graph-based Region Affinity Reasoning
(GRAr) module brings a mIoU performance improvement
of 9.4% on PASCAL-Context, which affirms the capability
of affinity inference to aggregate global clues and further
enhance segmentation results. Next, using SR-Loss, we
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achieve a mIoU gain of 1.3% in performance, which shows
that our segmentation network learn more precise class-
wise representations under the region-level classification
supervision. The proposed affinity reasoning extract useful
clues from coarse regions and correct the wrongly predicted
pieces. Additionally, we test our approach based on differ-
ent backbone, and demonstrate that stronger backbone can
extract more representative features and enhance the finial
segmentation performance.

In order to further investigate the proposed affinity rea-
soning module in detail, we conduct another ablation study
in Table 2. We study the affinity method, i.e. these two
positive and negative affinity in Eq (2) and Eq (3). Firstly
We use a simple Conv, i.e., discard the epi,j in Eq (2),
in this case our affinity reasoning is totally learnable and
initial from scratch. As shown in Table 2, Graph is
1.6% better than Conv based on positive affinity only,
and is 1.4% better than Conv based on both positive and
negative affinity reasoning. The results show that our
graph edges provide more explicit affinities among different
nodes, while the Conv that learns from scratch without
any supervision only captures limited and fuzzy affinities.
Next, we conduct experiments to study the positive and
negative affinities. Positive affinity is employed to boost
the correctly predicted regions, while negative affinity is
used to suppress the incorrectly predicted pieces. They
work together to enhance the final segmentation prediction.
As shown in Table 2, single graph, i.e., positive-only
or negative-only, already reaches encouraging results, for
example, positive-affinity-only achieves mIoU of 49.7%.
When we adopt positive affinity and negative affinity at the
same time, further performance improvement is obtained,
which shows that positive affinity and negative affinity
benefit each other. It is easy to understand by taking an
example that, when there is one “spot” with wrong label,
negative affinity removes the high response of the wrong-
class’s features and positive affinity improve the feature
response of correct class with clues from other regions.

To have a fair comparison with previous works, we
re-implement some state-of-the-art works based on our
backbone with ResNet-50. We conduct a FCN + “module”
comparison in Table 3. Besides the channel adaptation layer
and the final classifier, our approach mainly introduces three
new 1×1 convolution layers in Eq. (2) to ( 4) and is indeed
light-weight. We also report the increased parameters,
GPU memory, inference time by adding these modules
to backbone. The comparison in Table 3 demonstrates
the superiority of our proposed approach in terms of both
efficiency and effectiveness.

4.4. Comparison with State-of-the-Art Works

In this section, we present our segmentation results on
bencharmks and comparision with state-of-the-art works.

Methods Backbone mIoU %

FCN-8s [56] VGG16 39.1
PixelNet [4] VGG16 41.4
DAG-RNN [58] VGG16 43.7
FCRN [67] VGG16 44.5
DeepLab-v2[8] ResNet101 45.7
Global-Context[29] ResNet101 46.5
RefineNet [43] ResNet101 47.1
PSPNet [81] ResNet101 47.8
CCL [15] ResNet101 51.6
EncNet [75] ResNet101 51.7
DUpsampling [60] Xception-71 52.5
DANet [20] ResNet101 52.6
SpyGR [40] ResNet101 52.8
EMANet [42] ResNet101 53.1
BFP [14] ResNet101 53.6
CPNet [69] ResNet101 53.9
HRNet [59] HRNetV2-W48 54.0
ACNet [21] ResNet101 54.1
SPNet [26] ResNet101 54.5
RecoNet [9] ResNet101 54.8
OCR [72] ResNet101 54.8
OCR [72] HRNetV2-W48 56.2
Ours ResNet101 55.7
Ours ResNest101 57.0

Table 4: Testing results on PASCAL-Context.

The proposed approach achieves new state-of-the-art seg-
mentation results consistently on COCO-Stuff, ADE20K
and PASCAL-Context.

PASCAL-Context. We test our segmentation network
over 59 categories, our results and previous state-of-that-
art works are shown in Table 4. It can be seen that the
proposed approach outperforms previous methods based
on ResNet-101. And we further test our approach based
on stronger backbone ResNest-101, this achieves the best
mIoU performance 57.0%, outperforms the 56.2% of OCR
based on HRNetV2-W48.

ADE20K testing results are presented in Table 5. We
report our results on 2000 validation images. It can be
seen that the proposed approach achieves new state-of-the-
art performance, 47.1% based on ResNet-101 and 47.9%
based on ResNest-101, outperforming existing methods.

COCO-Stuff testing results are shown in Table 6. We
test the proposed scene parsing approach over 171 cate-
fories, and report our results on 1000 validation images.
As shown in Table 6, the proposed approach outperforms
previous methods. We achieve 41.9% based on ResNet-101
and 42.6% based on ResNest-101, significantly outperform-
ing previous state-of-the-art OCR [72] based on HRNetV2-
W48

Qualitative Results. We illustrate some segmentation
examples from PASCAL-Context, ADE20K, and COCO-
Stuff, as shown in Figure 5. The second column and
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Networks Backbone mIoU %

SegNet[3] VGG16 21.6
FCN [56] VGG16 29.4
DilatedNet [71] VGG16 32.3
DAG-RNN [58] VGG16 33.5
RefineNet [43] ResNet152 40.7
PSPNet [81] ResNet101 42.0
PSANet [82] ResNet101 43.8
SAC [80] ResNet101 44.3
EncNet [75] ResNet101 44.7
SFNet [41] ResNet101 44.7
CFNet [79] ResNet101 44.9
CCNet [28] ResNet101 45.2
ANNet [84] ResNet101 45.2
APCNet [24] ResNet101 45.4
OCNet [73] ResNet101 45.5
DMNet [23] ResNet101 45.5
RecoNet [9] ResNet101 45.5
SPNet [26] ResNet101 45.6
OCR [72] HRNetV2-W48 45.7
CPNet [69] ResNet101 46.3
Ours ResNet101 47.1
Ours ResNest101 47.9

Table 5: Testing results on ADE20K.

Networks Backbone mIoU %

FCN [6] VGG16 22.7
DeepLab [8] VGG16 26.9
DAG-RNN [58] VGG16 30.4
RefineNet [43] ResNet101 33.6
CCL [15] ResNet101 35.7
OCR [72] ResNet101 39.5
SVCNet [16] ResNet101 39.6
DANet [20] ResNet101 39.7
EMANet [42] ResNet101 39.9
SpyGR [40] ResNet101 39.9
ACNet [21] ResNet101 40.1
OCR [72] HRNetV2-W48 40.5
Ours ResNet101 41.9
Ours ResNest101 42.6

Table 6: Testing results on COCO-Stuff.

third column are our baseline’s results and the proposed
approach’s prediction. It can be seen that the proposed ap-
proach sigificiantly imporve the segmentation peformance
of our baseline, which shows that our approach could
correct most of the wrongly predicted pieces in predictions
of baseline.

5. Conclusion

In this work, we address the problem of scene parsing
from a new perspective. We regard all the pixels in the

Image Baseline Ours Ground Truth

Figure 5: Qualitative segmentation examples.

same semantic region as a whole, based on the recognition
that pixels in a given image, especially pixels belonging
to the same semantic area, are highly related to each
other. We also capture the structure topology and affinity
among different regions of the input image. The specific
approach is: 1) we divide the feature maps to different
regions according to the coarse segmentation prediction,
and then extract region-level features respectively. 2)
we build a bi-directional graph, in which nodes represent
regional features, and edges represent the affinity between
two connected nodes. The bi-directional graph is used
in region affinity reasoning. 3) The affinity-aware nodes
are applied back to corresponding regions of the image,
which help model the region dependencies and mitigate the
unrealistic results. Additionally, a semantic region loss is
proposed and employed to boost the pixel correlation and
motivate the network to learn discriminative region-level
and class-specific features. With the proposed approach,
we achieve new state-of-the-art segmentation results on
PASCAL-Context, ADE20K, and COCO-Stuff.
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[12] Michaël Defferrard, Xavier Bresson, and Pierre Van-
dergheynst. Convolutional neural networks on graphs with
fast localized spectral filtering. In Advances in neural
information processing systems, pages 3844–3852, 2016.

[13] Henghui Ding, Scott Cohen, Brian Price, and Xudong
Jiang. Phraseclick: toward achieving flexible interactive
segmentation by phrase and click. In European Conference
on Computer Vision, pages 417–435. Springer, 2020.

[14] Henghui Ding, Xudong Jiang, Ai Qun Liu, Nadia Magnenat
Thalmann, and Gang Wang. Boundary-aware feature
propagation for scene segmentation. In Proceedings of the

IEEE International Conference on Computer Vision, pages
6819–6829, 2019.

[15] Henghui Ding, Xudong Jiang, Bing Shuai, Ai Qun Liu,
and Gang Wang. Context contrasted feature and gated
multi-scale aggregation for scene segmentation. In IEEE
Conference on Computer Vision and Pattern Recognition,
2018.

[16] Henghui Ding, Xudong Jiang, Bing Shuai, Ai Qun Liu,
and Gang Wang. Semantic correlation promoted shape-
variant context for segmentation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
2019.

[17] Henghui Ding, Xudong Jiang, Bing Shuai, Ai Qun Liu, and
Gang Wang. Semantic segmentation with context encoding
and multi-path decoding. IEEE Transactions on Image
Processing, 29:3520–3533, 2020.

[18] Henghui Ding, Chang Liu, Suchen Wang, and Xudong
Jiang. Vision-language transformer and query generation
for referring segmentation. In Proceedings of the IEEE
International Conference on Computer Vision, 2021.

[19] Mark Everingham, Luc Van Gool, Christopher KI Williams,
John Winn, and Andrew Zisserman. The pascal visual object
classes (voc) challenge. International journal of computer
vision, 88(2), 2010.

[20] Jun Fu, Jing Liu, Haijie Tian, Yong Li, Yongjun Bao,
Zhiwei Fang, and Hanqing Lu. Dual attention network for
scene segmentation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 3146–
3154, 2019.

[21] Jun Fu, Jing Liu, Yuhang Wang, Yong Li, Yongjun Bao,
Jinhui Tang, and Hanqing Lu. Adaptive context network
for scene parsing. In Proceedings of the IEEE international
conference on computer vision, pages 6748–6757, 2019.

[22] Stephen Gould, Richard Fulton, and Daphne Koller.
Decomposing a scene into geometric and semantically
consistent regions. In International Conference on Computer
Vision, pages 1–8. IEEE, 2009.

[23] Junjun He, Zhongying Deng, and Yu Qiao. Dynamic multi-
scale filters for semantic segmentation. In Proceedings of the
IEEE International Conference on Computer Vision, pages
3562–3572, 2019.

[24] Junjun He, Zhongying Deng, Lei Zhou, Yali Wang, and
Yu Qiao. Adaptive pyramid context network for semantic
segmentation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 7519–
7528, 2019.

[25] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, 2016.

[26] Qibin Hou, Li Zhang, Ming-Ming Cheng, and Jiashi Feng.
Strip pooling: Rethinking spatial pooling for scene parsing.
In CVPR, pages 4003–4012, 2020.

[27] Hanzhe Hu, Deyi Ji, Weihao Gan, Shuai Bai, Wei Wu,
and Junjie Yan. Class-wise dynamic graph convolution for
semantic segmentation. In ECCV, 2020.

15856



[28] Zilong Huang, Xinggang Wang, Lichao Huang, Chang
Huang, Yunchao Wei, and Wenyu Liu. Ccnet: Criss-cross
attention for semantic segmentation. In ICCV, 2019.

[29] Wei-Chih Hung, Yi-Hsuan Tsai, Xiaohui Shen, Zhe L
Lin, Kalyan Sunkavalli, Xin Lu, and Ming-Hsuan Yang.
Scene parsing with global context embedding. In IEEE
International Conference on Computer Vision, 2017.

[30] Jyh-Jing Hwang, Tsung-Wei Ke, Jianbo Shi, and Stella X
Yu. Adversarial structure matching for structured prediction
tasks. In CVPR, 2019.

[31] Jyh-Jing Hwang, Stella X Yu, Jianbo Shi, Maxwell D
Collins, Tien-Ju Yang, Xiao Zhang, and Liang-Chieh
Chen. Segsort: Segmentation by discriminative sorting of
segments. In ICCV, 2019.

[32] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal
covariate shift. In ICML, 2015.

[33] Md Amirul Islam, Shujon Naha, Mrigank Rochan, Neil
Bruce, and Yang Wang. Label refinement network
for coarse-to-fine semantic segmentation. arXiv preprint
arXiv:1703.00551, 2017.

[34] Tsung-Wei Ke, Jyh-Jing Hwang, Ziwei Liu, and Stella X Yu.
Adaptive affinity fields for semantic segmentation. In ECCV,
2018.

[35] Thomas N Kipf and Max Welling. Semi-supervised
classification with graph convolutional networks. arXiv
preprint arXiv:1609.02907, 2016.
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