
RFNet: Region-aware Fusion Network for Incomplete Multi-modal
Brain Tumor Segmentation

Yuhang Ding1,2 Xin Yu2 Yi Yang2*

1 Baidu Research 2 ReLER, University of Technology Sydney
dyh.ustc.uts@gmail.com, {xin.yu, yi.yang}@uts.edu.au

Abstract

Most existing brain tumor segmentation methods usually
exploit multi-modal magnetic resonance imaging (MRI) im-
ages to achieve high segmentation performance. However,
the problem of missing certain modality images often hap-
pens in clinical practice, thus leading to severe segmenta-
tion performance degradation. In this work, we propose a
Region-aware Fusion Network (RFNet) that is able to ex-
ploit different combinations of multi-modal data adaptively
and effectively for tumor segmentation. Considering dif-
ferent modalities are sensitive to different brain tumor re-
gions, we design a Region-aware Fusion Module (RFM)
in RFNet to conduct modal feature fusion from available
image modalities according to disparate regions. Benefit-
ing from RFM, RFNet can adaptively segment tumor re-
gions from an incomplete set of multi-modal images by ef-
fectively aggregating modal features. Furthermore, we also
develop a segmentation-based regularizer to prevent RFNet
from the insufficient and unbalanced training caused by
the incomplete multi-modal data. Specifically, apart from
obtaining segmentation results from fused modal features,
we also segment each image modality individually from
the corresponding encoded features. In this manner, each
modal encoder is forced to learn discriminative features,
thus improving the representation ability of the fused fea-
tures. Remarkably, extensive experiments on BRATS2020,
BRATS2018 and BRATS2015 datasets demonstrate that our
RFNet outperforms the state-of-the-art significantly.

1. Introduction

Brain tumor segmentation, aiming to segment different
brain tumor regions, is vital for clinical assessment and sur-
gical planning. In order to improve the segmentation accu-
racy, most existing methods [16, 43, 17, 29, 11, 4, 38] use
four modalities simultaneously, namely Fluid Attenuation
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Figure 1. Illustration of different sensitivities of modalities to dif-
ferent brain tumor regions. From left to right: Images of four
modalities, i.e., Flair, T1c, T1 and T2, and the corresponding la-
bels of three patients are shown. In the segmentation results, dif-
ferent colors denote different brain tumor regions.

Inversion Recovery (Flair), contrast enhanced T1-weighted
(T1c), T1-weighted (T1) and T2-weighted (T2). However,
the missing modality problem is very common in clinical
practice due to different scanning protocols and patient con-
ditions. Therefore, these standard brain tumor segmentation
networks cannot be deployed directly in practice.

Incomplete multi-modal brain tumor segmentation ap-
proaches [3, 10, 14, 44] have been proposed to deal with
various missing situations. Havaei et al. [14] and Dorent
et al. [10] compute the mean and variance across accessi-
ble multi-modal features as fused features. However, this
fusion treats each modality equally regardless of different
missing scenarios and thus may fail to aggregate features ef-
fectively. Later, Chen et al. [3] and Zhou et al. [44] leverage
attention mechanisms to emphasize contributions from dif-
ferent accessible modalities. However, they do not fully ex-
ploit the relations between tumor regions and image modal-
ities. In particular, different modalities contain distinct ap-
pearances and thus have different sensitivities to diverse tu-
mor regions. For example, as visible in Fig. 1, T1c is more
sensitive to the red and blue tumor areas while Flair and T2
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provide more information for the green tumor area. This
observation motivates us that we should pay different atten-
tion to different modalities and different regions in order to
achieve accurate brain tumor segmentation.

Taking the relations between modalities and regions
into account, we propose a Region-aware Fusion Network
(RFNet) to aggregate various accessible multi-modal fea-
tures from different regions adaptively. Our RFNet is con-
structed by an encoder-decoder architecture, where four
encoders are employed to extract features from different
modal images. In order to establish the relations be-
tween image modalities and tumor regions, we introduce a
Region-aware Fusion Module (RFM) into our RFNet. RFM
first divides modal features into different regions (i.e., tu-
mor sub-structure) via a learned probability map. The prob-
ability map indicates the probabilities of tumor regions at
each pixel. Then, RFM generates corresponding attention
weights in each region to adaptively control the contribu-
tions of different image modalities.

Since brain tumors usually occupy a small part of brains,
we introduce a region-norm pooling operation to obtain a
normalized global feature from each region. Thereby, we
prevent the global feature from being numerically too small.
Then, we employ two fully-connected layers and a sigmoid
activation to attain attention weights from the global feature
for image modalities and tumor regions. In this fashion,
RFM will generate larger weights for the modalities which
are more sensitive to certain tumor regions, thus leading to
discriminative fused features for accurate segmentation.

Due to the missing hetero-modal data, RFNet will face
the problem of unbalanced training. To be specific, RFNet
might try to seek the easiest way to segment brain tumors
from the multi-modal data. In other words, the network
segments each region mainly by exploiting the modalities
which are sensitive to the region rather than all the modality
information. However, this will lead to poor segmentation
accuracy when some modalities are missing. To tackle this
problem, we develop a segmentation-based regularizer. In
particular, a weight-shared decoder is employed to segment
each modality individually. In this manner, each modal
encoder is forced to learn discriminative features for all
the tumor regions. Therefore, RFNet can segment differ-
ent regions well even when some modalities are missing.
Benefit from the proposed fusion module and regularizer,
RFNet achieves higher accuracy than the state-of-the-art
methods on BRATS2020, BRATS2018 and BRATS2015.
This demonstrates the superiority of our method.

Overall, our contributions are threefold:

• We propose a Region-aware Fusion Network (RFNet)
for incomplete multi-modal brain tumor segmentation.
Particularly, we introduce a novel a Region-aware Fu-
sion Module (RFM) by explicitly taking the relations
between modalities and regions into account. With

the help of RFM, RFNet effectively aggregates diverse
combinations of modal features and produces discrim-
inative fused features for segmentation.

• To address the unbalanced training problem of RFNet,
we propose a segmentation-based regularizer. The pro-
posed regularizer enforces each modal encoder to pro-
duce discriminative features for segmenting all the tu-
mor regions, thus further improving the discrimina-
tiveness of the fused features.

• Taking advantage of the proposed fusion module and
regularizer, RFNet achieves superior segmentation ac-
curacy compared to the state-of-the-art on the widely-
used BRATS2020, BRATS2018 and BRATS2015
benchmarks.

2. Related Work

In this section, we briefly review the most related
works on incomplete multi-modal brain tumor segmenta-
tion. Moreover, as we propose a feature fusion module to
tackle the missing modality problem, existing deep multi-
modal fusion methods are also reviewed.

2.1. Incomplete Multi-modal Tumor Segmentation

Incomplete data is very common in practical applica-
tions, such as scarce annotation problems [40, 31, 8] and
missing modality problems [37, 28, 19, 42]. In this work,
we focus on incomplete multi-modal brain tumor segmen-
tation, which aims to segment brain tumors from various
missing hetero-modal MRI images. Therefore, compared
with the standard brain tumor segmentation [13, 21, 41, 23],
segmenting brain tumors from incomplete multi-modal data
is more practical but more challenging.

Shen et al. [24] treat various missing modalities as dif-
ferent domains and then leverage adversarial learning to
project images from these domains into a unified feature
space during segmentation. However, since it is difficult
to align distinct and diverse distributions simultaneously,
their method can only handle a small number of missing
modalities. Zhou et al. [44] generate the features of miss-
ing modalities according to the correlations between differ-
ent modalities. However, their method may be not suitable
when few modalities are available, because only one or two
modalities are not enough to generate reliable features for
the missing modalities.

In addition to feature alignment [24] and feature comple-
tion [44], several prior works [10, 3, 14] attempt to lever-
age feature fusion to solve the missing modality problem:
Havaei et al. [14] aggregate partial modalities by calculat-
ing the mean and variance of the available features. Dorent
et al. [10] embed all observed modalities into a shared la-
tent representation by employing a multi-modal variational
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auto-encoder. Chen et al. [3] aggregate incomplete modali-
ties via concatenation and leverage feature disentanglement
jointly to obtain a modality-invariant and discriminative
representation. However, these prior arts all do not fully
consider the relations between brain tumor regions and dif-
ferent modalities and thus do not aggregate features effec-
tively. In contrast, our RFNet fuses features in a region-
aware manner and thus obtains discriminative information
for each region segmentation. Besides, we also propose a
segmentation-based regularizer to facilitate the training pro-
cess of RFNet.

2.2. Deep Multi-modal Fusion

In recent years, the proliferation of multi-modal ap-
plications [36, 12, 2, 30, 1] has been witnessed, such
as multi-view classification [12, 39], multi-view localiza-
tion [25, 26, 27], visual question answering [2] and visual
language navigation [1, 33, 5] Accordingly, effective multi-
modal fusion techniques [34, 22, 9] have also received sub-
stantial research attention.

Wang et al. [34] propose a channel-exchanging network
to aggregate modalities in a parameter-free manner, while
Perez-Rua et al. [22] adopt the architecture search to de-
sign an optimal feature fusion module for a given dataset.
Dolz et al. [9] introduce dense connections not only in each
modal network but also between two modal embedding net-
works for feature fusion. Unlike previous work, we explic-
itly take the relationships between image modalities and tu-
mor regions/sub-structure into account and then design a
fusion module based on this observation. Thus, our RFM
is able to fuse different modal features adaptively and thus
generates more discriminative features for segmentation.

3. Proposed Method
In this work, we design RFNet for incomplete multi-

modal brain tumor segmentation. In particular, we develop
an RFM module to take advantage of available modalities
effectively during feature fusion. In addition, we also pro-
pose a segmentation-based regularizer to further improve
the feature representations of each modal encoder, thus fa-
cilitating the final segmentation performance. In this sec-
tion, we will introduce our designed RFNet as well as the
proposed regularization term in detail.

3.1. Task Definition

Incomplete multi-modal brain tumor segmentation aims
to segment three brain tumor areas, i.e., the whole tumor,
the tumor core and the enhancing tumor, from various com-
binations of multi-modal MRI images, including Flair, T1c,
T1 and T2. The whole tumor is composed of all the three
tumor sub-regions, i.e., the necrotic and non-enhancing tu-
mor core (NCR/NET), the peritumoral edema (ED), and
the GD-enhancing tumor (ET). The tumor core consists of
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Figure 2. Illustration of our proposed RFNet. Four encoders, i.e.,
EFlair, ET1c, ET1 and ET2, are employed to extract features from
four modalities individually. Dsep is our segmentation-based reg-
ularizer network, while Dfuse with the designed RFM is used to
attain the final segmentation predictions. δm simulates different
missing scenarios.

NCR/NET and ET while the enhancing tumor involves ET.
Figure 1 illustrates NCR/NET, ED and ET in red, green and
blue, respectively.

In order to measure the robustness of our proposed
method against various missing scenarios, we evaluate its
segmentation results on all the fifteen combinations of the
four image modalities and the average score is reported
for comparisons. During training, all modalities and labels
are available and we simulate missing scenarios by setting
missing modal features to zero.

3.2. Architecture Overview

We adopt a 3D U-Net [6] architecture with a late fu-
sion strategy to construct our RFNet. As shown in Fig. 2,
four encoders, i.e., {Em}m∈{Flair,T1c,T1,T2}, are employed
to extract features from four modalities separately. The
decoder Dsep is designed to segment each modality sepa-
rately, thus assisting our four encoders in learning represen-
tative region features. Furthermore, Dsep shares weights for
the four image modalities, so that four modal features can
be projected into a shared latent space. This also signifi-
cantly facilitates the later feature aggregation and fusion.

The decoder Dfuse is designed to obtain the final seg-
mentation results from the aggregated features, as visible in
Fig. 2. In each stage, the encoder features are fused by the
designed RFM. Note that, RFM takes not only four encoder
features but also the features from the prior layer as input.
This is because that the previous layer features can be used
to embed semantic information of tumor regions, thus mak-
ing RFM region-aware. In the bottleneck (i.e., the fourth
stage S4 ), there are no previous layer features available for
RFM. Therefore, we leverage an additional convolutional
layer to embed the encoder features into semantic features
for the fusion module in Fig. 2.
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3.3. Region-aware Fusion Module

Considering different sensitivities of image modalities to
different regions, as shown in Fig. 1, our RFNet aims to pay
different attention to different modalities in each region. In
this fashion, discriminative features for tumor regions can
be obtained, leading to the improvement of segmentation
accuracy. To this end, we develop an RFM module that
is designed to fuse available modal features in a region-
aware fashion, as visible in Fig. 3. RFM mainly consists of
two parts: probability map learning and region-aware multi-
modal feature fusion.
Probability Map Learning: To achieve the region-aware
characteristics, our RFM first learns a probability map
which indicates the probabilities of brain tumor structure
(including healthy brain regions) at each location. As shown
in Fig. 3, the probability map is obtained from the decoder
feature of the previous layer fde and the available encoder
features ©m∈Ω [fm·δm]. Employing the encoder features
in RFM is because that they offer more detailed spatial in-
formation and can improve the accuracy of the probability
maps. © denotes the concatenation operation while Ω de-
notes the modality set, including Flair, T1c, T1 and T2. δm

is set to either 0 or 1, indicating whether the m modality is
missing or not. The probability map learning procedure is
defined as:

ŷpmi,j =
exp(ϕj(f

pm
i,j ; θj))∑

k∈K exp(ϕj(f
pm
i,j ; θj)k)

, (1)

where fpmi,j represents the features from fdei,j and
©m∈Ω

[
fmi,j·δm

]
. i and j denote the i-th subject and the

j-th stage/level of the network, respectively. ŷpmi,j is the
learned probability map. ϕj denotes the region classifier
in the j-th stage and θj is the corresponding parameters.
K denotes the brain tumor region set, including BG (back-
ground), NCR/NET, ED and ET.

The probability map (shown in Fig. 4) is learned under
the supervision of the ground truth by a weighted cross-
entropy loss LWCE [3] and a Dice loss LDL, expressed as:

Lpm =

N∑
i=1

Snum∑
j=1

(
LWCE(ψj(ŷ

pm
i,j ), yi)+LDL(ψj(ŷ

pm
i,j ), yi)

)
,

(2)
where N and Snum denote the number of training data and
stages. ψj denotes the up-sampling operation in the j-th
stage, aiming to match the resolution of the probability map
ŷpmi,j and the ground-truth mask yi. LWCE is formulated as:

LWCE(ŷ, y) =
∑
k∈K

∥ − αk · yk · log(ŷk)∥1
H ·W · Z

, (3)

where ∥ · ∥1 denotes the L1 norm, and W, H and Z de-
note the width, height and slice number of the 3D vol-
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Figure 3. Illustration of our region-aware fusion module (RFM).
The probability map is firstly learned to divide multi-modal fea-
tures into different regions. Then, an attention mechanism is de-
signed to aggregate features in a region-aware manner.

umes, respectively. αk is the weight for the region k and
αk = 1− ∥yk∥1∑

k′∈K ∥yk′∥1
. LDL is formulated as:

LDL(ŷ, y) = 1−
∑
k∈K

2 · ∥ŷk
⋂
yk∥1

Knum · (∥ŷk∥1 + ∥yk∥1)
, (4)

where
⋂

denotes the overlap between predictions and
ground-truth masks, and Knum denotes the number of re-
gions in K.
Region-aware Multi-modal Fusion: With the help of the
probability map, RFM has managed to divide multi-modal
features into different regions. Thus, the region-aware fu-
sion is conducted on the divided features in each region.

The feature division is implemented by multiplying fea-
tures with the probability map, written as:

fk = ©m∈Ω [fm·δm] · ŷpmk , (5)

where fk
1 denotes the divided features of the available

modalities in the tumor region k and fm denotes the en-
coder feature of the modality m.

As shown in Fig. 3, after feature division, modal-wise at-
tention weights are learned individually in different regions

1For simplicity, we omit the subscripts i and j without causing any
confusion.
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Figure 4. Visualization of the probability maps in four stages.
Left: four image modalities. Right: Estimated probability maps
from different combinations of image modalities in different
stages/levels of our network and the corresponding ground truth.

to aggregate the corresponding features. Figure 5 illustrates
the generation procedure of the attention weight in the re-
gion k. Specifically, the global feature of the region k is ob-
tained via an average pooling operation and is then normal-
ized by the probability map ŷpmk . Employing this region-
norm pooling can prevent the averaged global feature from
being numerically too small, given the fact that brain tu-
mors usually occupy only a small area in a brain. Then,
two fully-connected layers, along with a Leaky ReLU layer
and a sigmoid activation, are adopted to embed the normal-
ized feature into a modal-wise attention weight. As shown
in Fig 5, the generated attention weights are then applied
to the divided feature fk to adjust the contributions from
available modalities to obtain discriminative fused features.

Considering the distinct sensitivities of different modal-
ities in various regions, RFM employs separate attention
modules for each region to generate corresponding atten-
tion weights, as shown in Fig. 3. By paying larger attention
to more sensitive modalities, RFM is able to generate more
representative features for each region. To feed these region
features to the decoder, in Fig. 3, RFM adopts a concate-
nation operation followed by a convolutional bottleneck. A
shortcut connection is also employed, similar to the residual
learning [15].

3.4. Segmentation-based Regularizer

The phenomenon of missing multi-modal data usually
introduces unbalanced training issues [32]. To be specific,
deep neural networks usually opt to segment tumor regions
mainly based on the discriminative modalities. Therefore,
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Figure 5. Illustration of the attention module. The region-norm
pooling normalizes the global feature of fk by the average proba-
bility of ŷk to obtain the features to generate the attention weights.

some modal encoders are well trained to be able to iden-
tify the corresponding tumor regions while other encoders
are not. This would lead to severe accuracy degradation in
tumor segmentation when the discriminative modalities are
missing.

To solve this problem, we propose a segmentation-based
regularizer. As illustrated in Fig. 2, RFNet adopts a weight-
shared decoder Dsep to segment each modal image sepa-
rately. The corresponding weighted cross-entropy loss and
Dice loss are employed as the regularization term, written
as:

Lreg =

N∑
i=1

∑
m∈Ω

(
LWCE(ŷ

sep
i,m, yi) + LDL(ŷ

sep
i,m, yi)

)
, (6)

where ŷsepi,m denotes the predicted segmentation mask of the
i-th subject from the modality m. The segmentation-based
regularizer enforces each modal encoder to be discrimina-
tive to each tumor region. In this manner, RFNet is able to
obtain representative encoder features, thus improving the
segmentation performance.

3.5. Overall Loss

As shown in Fig. 2, Dfuse is employed to predict the final
segmentation mask from the fused features. The weighted
cross-entropy loss and Dice loss are used to align the predic-
tions to the corresponding ground-truth segmentation maps,
expressed as:

Lfuse =

N∑
i=1

(
LWCE(ŷ

fuse
i , yi) + LDL(ŷ

fuse
i , yi)

)
, (7)

where ŷfusei is the predicted segmentation mask from the
i-th subject. Therefore, the overall loss of our RFNet is
defined as:

L = Lpm + Lreg + Lfuse. (8)

4. Experiments
4.1. Implementation Details

RFNet adopts 3D-Unet [6] with four-stage encoders
({Em}m∈Ω) and decoders (Dsep and Dfuse). The architec-
ture details can be referred to the supplementary material.
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Table 1. Comparisons with the state-of-the-art methods, including HeMIS [14], U-HVED [10] and RobustSeg [3], on BRATS2020. Com-
plete, Core and Enhancing denote the Dice scores of the whole tumor, the tumor core and the enhancing tumor, respectively. All the results
are reproduced by using the authors’ codes.

Modalities Dice scores (%)
Complete Core Enhancing

F T1 T1c T2 HeMIS U-HVED RobustSeg Ours HeMIS U-HVED RobustSeg Ours HeMIS U-HVED RobustSeg Ours
# # #  79.85 80.75 82.20 86.05 54.22 57.43 61.88 71.02 31.43 28.70 36.46 46.29
# #  # 64.58 68.54 71.39 76.77 69.41 73.01 76.68 81.51 63.24 66.59 67.91 74.85
#  # # 63.01 54.93 71.41 77.16 42.42 36.73 54.30 66.02 16.53 12.33 28.99 37.30
 # # # 52.29 82.69 82.87 87.32 24.97 51.15 60.72 69.19 9.00 20.87 34.68 38.15
# #   84.45 83.37 85.97 87.74 77.60 77.85 82.44 83.45 70.30 68.74 71.42 75.93
#   # 72.50 71.58 76.84 81.12 75.59 76.49 80.28 83.40 70.71 67.82 70.11 78.01
  # # 65.29 85.01 88.10 89.73 41.58 55.10 68.18 73.07 13.99 22.53 39.67 40.98
#  #  82.31 81.58 85.53 87.73 56.38 59.29 66.46 73.13 28.58 28.73 39.92 45.65
 # #  81.56 87.40 88.09 89.87 55.89 61.87 68.20 74.14 28.91 30.48 42.19 49.32
 #  # 69.37 86.13 87.33 89.89 70.86 76.86 81.85 84.65 68.31 69.53 70.78 76.67
   # 73.31 87.10 88.87 90.69 75.07 79.51 82.76 85.07 70.80 71.32 71.77 76.81
  #  83.03 88.07 89.24 90.60 57.40 63.46 70.46 75.19 29.53 30.60 43.90 49.92
 #   84.64 88.33 88.68 90.68 77.69 78.68 81.89 84.97 71.36 69.84 71.17 77.12
#    85.19 84.27 86.63 88.25 79.05 79.99 82.85 83.47 71.67 69.74 71.87 76.99
    85.19 88.81 89.47 91.11 78.58 80.40 82.87 85.21 71.49 70.50 71.52 78.00

Average 75.10 81.24 84.17 86.98 65.45 67.19 73.45 78.23 47.73 48.55 55.49 61.47

For the image pre-processing, the MRI images are skull-
stripped, co-registered and re-sampled to 1mm3 resolution
by the data collector. In this work, following [3, 10], we
additionally cut out the black background area outside the
brain and normalize each MRI modality to zero mean and
unit variance in the brain area.

During training, input images are randomly cropped to
80×80×80 and are then augmented with random rotations,
intensity shifts and mirror flipping. We train our network for
300 epochs with the batch size of 2. Adam [18] is leveraged
to optimize the network with β1 and β2 of 0.9 and 0.999
respectively, and the weight decay is set to 1e−5. Besides,
we adopt the “poly” learning rate policy where the initial
learning rate 2e−4 is multiplied by (1 − epoch

max epoch )
p with

p = 0.9.
Following [3], we firstly segment the 80×80×80 patches

which slide on the test images and have 50% overlaps over
the neighboring patches. Then, the final segmentation map
is obtained by fusing the predictions of these patches. Since
not all brain tumors contain enhancing areas, we employ
a post-processing strategy to reduce the false alarm of en-
hancing tumors. To be specific, when the number of the
pixels predicted as the enhancing tumor is too small (i.e.,
less than 500), we believe this is a false alarm and we will
treat these pixels as non-enhancing tumors as in [10].

4.2. Datasets and Evaluation Metric

Datasets: We evaluate RFNet on three datasets
from Multimodal Brain Tumor Segmentation Challenge
(BRATS) [20], i.e., BRATS2020, BRATS2018 and
BRATS2015. The subjects in the three datasets all contain
four distinct MRI modalities, i.e., Flair, T1c, T1 and T2.

BRATS2020 contains 369 training subjects which are
randomly split by us into 219, 50 and 100 subjects for train-
ing, validation and test, respectively. BRATS2018 contains
285 training subjects which are split into 199, 29 and 57
subjects for training, validation and test, respectively. Be-
sides, we use a three-fold validation with the same split lists
as [10] in BRATS2018. BTATS2015 contains 274 training
subjects. Following [14, 3], we divide the dataset into 242,
12 and 20 subjects for training, validation and test, respec-
tively. Since BRATS2020 is the newest and largest dataset,
in this work, we mainly focus on BRATS2020.

Evaluation Metric: Dice coefficient [7] is used to mea-
sure the segmentation performance of the proposed method,
defined as:

Dicek̄(ŷ, y) =
2 · ∥ŷk̄

⋂
yk̄∥1

∥ŷk̄∥1 + ∥yk̄∥1
, (9)

Where k̄ denotes different tumor classes, including the
whole tumor, the tumor core and the enhancing tumor.
Dicek̄ denotes the Dice score of the tumor class k̄. Larger
Dice scores represent that predictions are more similar to
the ground truth, and thus indicate better segmentation ac-
curacy.

4.3. Comparisons with the State-of-the-art

In Table 1 and Fig. 6, we compare our RFNet with three
state-of-the-art methods, including HeMIS [14], U-HVED
[10] and RobustSeg [3]. HeMIS [14] leverages the mean
and variance of available modal features as the aggregated
feature for segmentation. U-HVED [10] introduces multi-
modal variational auto-encoders (MVAE) [35] to project
different incomplete multi-modal images into a shared la-
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Table 2. Ablation study on RFNet. The average Dice scores of fif-
teen multi-modal combinations are reported. “Reg”: the proposed
segmentation-based regularizer, “RFM”: the developed region-
aware fusion module, “PostPro”: the post-processing technique.

Methods Average Dice scores (%)
Complete Core Enhancing

Baseline 83.20 71.72 53.73
+RFM 85.07 75.91 56.78
+Reg 86.07 76.89 57.96
+Reg+RFM 86.98 78.23 59.05
+Reg+RFM+PostPro 86.98 78.23 61.47

Table 3. The necessity of our regularizer and RFM. “wi rec regu-
larizer’: employing a reconstruction-based regularizer rather than
the segmentation-based regularizer. “modal-wise” and “channel-
wise”: applying modal-wise and channel-wise attention to the fea-
ture maps instead of in a region-aware manner.

Methods Average Dice scores (%)
Complete Core Enhancing

wi rec regularizer 85.38 75.50 59.64
channel-wise 85.81 76.36 60.11
modal-wise 85.87 77.02 61.01
RFNet 86.98 78.23 61.47

tent space. RobustSeg [3] disentangles content codes from
appearance ones for segmentation and introduces a gated
feature fusion to aggregate multi-modal features. These
methods all do not explicitly take advantage of the relations
between modalities and regions, and neglect the unbalanced
training problem.

As shown in Table 1, our method achieves superior seg-
mentation performance. For example, compared with the
second best method, i.e., RobustSeg [3], our RFNet im-
proves the average Dice scores by 2.81%, 4.78% and 5.98%
in the whole tumor, the tumor core and the enhancing tumor,
respectively. Moreover, our method outperforms the state-
of-the-art methods on all fifteen multi-modal combinations.
This demonstrates the superiority of our method.

4.4. Ablation Study

In Table 2, we conduct ablation study on RFNet. The
baseline model leverages a 3× 3× 3 convolutional layer to
aggregate encoder features. As shown in Table 2, the pro-
posed region-aware fusion module and the segmentation-
based regularizer can both improve the network signifi-
cantly. For example, employing RFM increases the aver-
age Dice scores of three tumor areas by 1.87%, 4.19% and
3.05%, respectively. This is because RFM manages to ef-
fectively aggregate features and thus provides representa-
tive information for segmentation. Moreover, since the pro-
posed regularizer helps the modal encoders to be discrim-
inative to each region, applying the regularizer with RFM
further improves segmentation results, as visible in Table 2.
The post-processing technique is introduced to reduce false
alarms of enhancing tumors, thus improving the segmenta-
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T1c
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Input 
modalities

Flair+T1c+T1+T2

Flair+T1c+T2

T1c+T2

T2

HeMIS[14] U-HVED[10] RobustSeg[3] Ours Ground truth

Segmentation predictions and 
the ground truth

Figure 6. Comparisons with the state-of-the-art. Left: four im-
age modalities. Right: segmentation masks predicted by different
methods from different combinations of image modalities and the
corresponding ground truth.

tion performance of enhancing tumors.
To demonstrate the effectiveness of the region-aware op-

eration, we apply a modal-wise attention to each modal fea-
ture (i.e., a scalar for each modality) and a channel-wise
attention to all the concatenated features. As shown in Ta-
ble 3, the model without the proposed region-aware opera-
tion yields inferior segmentation accuracy. This is because
that applying the same attention weights, either modal-wise
or channel-wise attention, to the entire image does not en-
able a network to focus on the tumor regions. In Table 3,
a reconstruction-based regularizer is adopted to replace the
proposed segmentation-based regularizer and achieves infe-
rior performance. This is because the reconstruction-based
regularizer mainly focuses on restoring brain appearances
rather than learning discriminative representations for tu-
mor segmentation.

4.5. Comparisons in BRATS2015 and BRATS2018

In addition to BRATS2020, we also compare our method
with the state-of-the-art on BRATS2015 and BRATS2018
in Table 4 and Table 5, respectively. Note that, U-HVED
[10] and RobustSeg [3] conduct experiments on only one
dataset, e.g., BRATS2018 or BRATS2015. Therefore, we
obtain the BRATS2015 accuracy of U-HVED [10] with
their official code and attain the BRATS2018 results of Ro-
bustSeg [3] from the authors. As shown in Table 4 and Table
5, our method improves the segmentation accuracy signifi-
cantly on both two datasets. For instance, the average Dice
scores of the three tumor areas on BRATS2018 are boosted
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Figure 7. Visualization of the predicted segmentation maps. Left: four image modalities. Right: segmentation maps predicted by our
RFNet from all fifteen combinations of image modalities and the corresponding ground truth. More visual results are provided in the
supplementary materials.

Table 4. Comparisons with the state-of-the-art on BRATS2015.
“†”: reproduced based on the authors’ code.

Methods Average Dice scores (%)
Complete Core Enhancing

HeMIS [14] 68.22 54.07 43.86
U-HVED† [10] 81.57 64.68 56.76
RobustSeg [3] 84.45 69.19 57.33
Ours 86.13 71.93 58.98
Ours+PostPro 86.13 71.93 64.13

Table 5. Comparisons with the state-of-the-art on BRATS2018.
“∗”: provided by the authors.

Methods Average Dice scores (%)
Complete Core Enhancing

HeMIS [14] 78.60 59.70 48.10
U-HVED [10] 80.10 64.00 50.00
RobustSeg∗ [3] 84.37 69.78 51.02
Ours 85.67 76.53 54.15
Ours+PostPro 85.67 76.53 57.12

by 1.30%, 6.75% and 6.10% by our RFNet. This validates
the superiority of our method.

4.6. Visualization

Visualization of the Segmentation Results: In Fig. 7, we
visualize the segmentation results of RFNet from all fif-
teen multi-modal combinations. Figure 7 illustrates that
our method is able to segment brain tumors well in various
missing scenarios. For example, RFNet predicts an accurate
segmentation map with only Flair and T1c modal images.
Visualization of the Attention Weights: In Fig. 8, we il-
lustrate our generated attention weights which are employed
to fuse available modalities adaptively in each region. Since
the deeper stage in RFNet encodes high-level semantic in-
formation which is vital for segmentation, we opt to visu-
alize the attention weights at the fourth stage. More exam-
ples can be refer to supplementary materials. During infer-
ence, since missing modal features (zero tensors) provides
no information, we set the corresponding attention weights
to zero. As shown in Fig. 8, T1c modality (in red) receives
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0.2420 0.6950
0.51720.4728

0.52140.4847
0.7871 0.4059

0.72250.2468
0.44610.8177

0.52460.45810.8370
0.9413 0.3500

0.77180.7701
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0.44390.8799
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Figure 8. Visualization of the generated attention weights by our
RFM at the fourth stage. The four panels demonstrate different
cases of missing modalities. In each panel, attention weights (in
numbers) are used to aggregate available modalities (in colors)
adaptively in diverse regions (in rows). Larger colored boxes de-
note larger attention weights for the corresponding modality.

more attention in NCR/NET and ET, while in ED, more at-
tention is paid to Flair (in blue) and T2 (in yellow) modali-
ties. This is consistent with the observation in Fig. 1, where
T1c is more sensitive to NCR/NET and ET while Flair and
T2 are sensitive to ED. Therefore, RFNet is able to provide
larger attention weights for the sensitive modalities and thus
obtains discriminative features for each region.

5. Conclusion

In this paper, we propose a region-aware fusion net-
work (RFNet) to aggregate various available modalities ef-
fectively for incomplete multi-modal brain tumor segmen-
tation. Our newly designed region-aware fusion module
(RFM) takes the fact that different modalities exhibit dis-
tinct sensitivities to brain tumor regions into account. Thus,
RFM achieves more representative fused features from dif-
ferent modal images for accurate segmentation. Moreover,
our developed segmentation-based regularizer not only im-
proves the feature representations extracted by our modal
encoders in each tumor region but also expedites the train-
ing of our RFNet. Extensive experiments demonstrate that
our method significantly outperforms the state-of-the-art.
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