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Figure 1: Differentiable Semantic Rendering (DSR). A state-of-the-art approach [14] (purple) fails to estimate accurate
3D pose and shape for in-the-wild scenarios. We address this by exploiting the clothing semantics of the human body. Our
approach, DSR, (blue) captures more accurate 3D pose and shape compared to previous work.

Abstract

Learning to regress 3D human body shape and pose
(e.g. SMPL parameters) from monocular images typically
exploits losses on 2D keypoints, silhouettes, and/or part-
segmentation when 3D training data is not available. Such
losses, however, are limited because 2D keypoints do not su-
pervise body shape and segmentations of people in clothing
do not match projected minimally-clothed SMPL shapes. To
exploit richer image information about clothed people, we
introduce higher-level semantic information about clothing
to penalize clothed and non-clothed regions of the human
body differently. To do so, we train a body regressor using
a novel “Differentiable Semantic Rendering (DSR)” loss.
For Minimally-Clothed (MC) regions, we define the DSR-
MC loss, which encourages a tight match between a ren-
dered SMPL body and the minimally-clothed regions of the
image. For clothed regions, we define the DSR-C loss to en-
courage the rendered SMPL body to be inside the clothing
mask. To ensure end-to-end differentiable training, we learn
a semantic clothing prior for SMPL vertices from thousands
of clothed human scans. We perform extensive qualitative
and quantitative experiments to evaluate the role of clothing

semantics on the accuracy of 3D human pose and shape es-
timation. We outperform all previous state-of-the-art meth-
ods on 3DPW and Human3.6M and obtain on par results
on MPI-INF-3DHP. Code and trained models are available
for research at https://dsr.is.tue.mpg.de/.

1. Introduction

Estimating 3D human pose and shape from in-the-wild
images has received great research interest [5, 14, 15, 18,
20, 30, 34, 54] because of its varied applications in anima-
tion, games, and the fashion industry. One aspect that makes
this problem challenging is the difficulty of obtaining accu-
rate 3D ground-truth annotations, as they require either spe-
cialized —mostly indoors— MoCap systems or careful cali-
bration and setup of IMU sensors [46]. Such data would
facilitate training robust regressors paving the way for esti-
mating human-scene interaction with greater granularity.

Given the lack of in-the-wild 3D ground-truth, the vast
majority of previous methods focus on 2D keypoints [5, 14]
with some learned 3D priors. Even though sparse 2D key-
points give useful constrained, relying only on these leads
to unrealistic poses because of depth ambiguities and occlu-
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sion. They also do not provide reliable information about
body shape. On the other hand, relying too strongly on 3D
priors introduces bias. To circumvent this problem, recent
approaches [30, 34, 50] propose to use part-segmentations
or silhouettes. However, there is a mismatch between part-
segmentations/silhouettes and projected SMPL bodies since
segmentation covers clothed bodies while the common 3D
body models are minimally clothed. We propose an alter-
native approach to compensate for limited 3D supervision
that leverages high-level 2D image cues.

Specifically, we propose more detailed clothing segmen-
tation labels to supervise a neural network. Traditional
multi-class clothing segmentation approaches cannot be di-
rectly applied as the segmentation loss tries to exactly match
the rendered SMPL body. Hence, to make use of such la-
bels, we need to reason about which parts of the SMPL
body model correspond to which clothing label. This is
non-trivial to obtain because a body part can be covered by
many clothing types. Therefore, we learn a semantic cloth-
ing prior from a large-scale clothed human scan dataset,
which has varied subjects, poses and camera views to which
the SMPL body is fitted [31]. This prior encodes the like-
lihood of clothing types given a vertex on the SMPL body
model, which gives the correspondence between segmen-
tation labels and the SMPL body surface. Then, we use
this prior to calculate a loss between the SMPL body and
observed clothing labels in images. To achieve this we in-
troduce Differentiable Semantic Rendering (DSR), a novel
loss that supervises the training of 3D body regression with
clothing semantics using weak supervision [8].

Our novel loss has two components: DSR-C for super-
vising the clothing region and DSR-MC for the minimally-
clothed region. A high-level illustration of our idea is shown
in Fig. 2. While the former ensures that the rendered SMPL
mesh stays inside the observed clothing label, the latter
tries to tightly match the rendered SMPL mesh to the 2D
minimal-clothing mask. The loss between the rendered out-
put and the target mask is back-propagated using a dif-
ferentiable renderer. Specifically, for the DSR-MC term,
we apply pixel-level supervision for tight-fitting with the
minimal-clothing regions, while for DSR-C, we minimize
the negative log probability of a SMPL semantic part label
being inside the respective segmentation mask. For exam-
ple, there will be a high penalty if the rendered vertices with
a high probability of being “shirt” fall in the “pants” seg-
mentation pixels. To ensure that our method is fast and dif-
ferentiable, we render the semantic class probabilities com-
puted from 3D scans as textures of the SMPL mesh.

While training, DSR can be used as an additional loss in
any neural network-based human body estimator that pre-
dicts SMPL parameters. First, we examine the effect of
our approach over a baseline full-body mask supervision
and 3D joint only supervision which verifies our hypothe-
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Figure 2: DSR Idea - For more accurate human body es-
timation, we supervise 3D body regression training with
clothed and minimal-clothed regions differently using our
novel DSR loss and our learned semantic prior. The seman-
tic prior represents a distribution over possible clothing la-
bels for each vertex. For easier illustration, we depict the
most likely labels per-vertex here.

sis about the value of clothing semantics. Then, we perform
extensive comparisons and show that DSR outperforms pre-
vious state-of-the-art methods as shown in Fig. 1. In sum-
mary:

1. We explore the importance of clothing semantics for
3D human body estimation by introducing a novel dif-
ferentiable semantic rendering loss that distinguishes
between clothed and minimally-clothed regions.

2. We estimate a semantic clothing prior for SMPL from
3D scans of clothed people for our method which can
be used also for other cases when a vertex clothing
probability for a 3D SMPL body is required.

3. We outperform all state-of-the-art methods on 3DPW
and Human3.6M and obtain on par results on MPI-
INF-3DHP, suggesting the value of using human pars-
ing and semantics for more accurate human body esti-
mation.

2. Related Work

Estimating human pose and shape is a vastly growing
field using different sources of supervision and input (im-
age, video, keypoints, etc.). Here, we focus on different
works that estimate 3D human pose and shape from an RGB
image. We refer to recent surveys [7, 38] for more details.
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2.1. Image cues and 2D/3D joints

Towards estimating 3D human pose and shape, initial at-
tempts focus on estimating the coordinates of 3D joints or
heatmaps [12, 21, 33, 39-41, 43] from images using ge-
ometric assumptions for the human body and 3D training
data. However, those approaches require 3D ground-truth
data, which are limited in terms of pose variation, quantity
and background, and lack generalization to in-the-wild im-
ages. The vast progress in 2D pose detection [6, 29, 42, 49],
along with the introduction of parametric body models of
pose and shape [3, 24] lead to significant progress and high-
quality in-the-wild 3D humans. In [5] the authors use 2D
keypoints to obtain SMPL parameters with an optimization-
based approach, while this process improves via human an-
notations on predicted fits [20]. Martinez et al. [27] show
that lifting the predictions of a 2D keypoint detector pro-
vides a reasonable baseline for the 3D pose. Pavlakos et
al. [32] use additional ordinal depth annotations for weak
3D supervision. Kolotouros et al. [19] regress vertex loca-
tions using a sub-sampled SMPL mesh and Graph-CNNss.
Xiang et al. [47] extract joint confidence maps and 3D ori-
entation information via CNNs and pair them with a de-
formable body model. Furthermore, in HMR [15], a re-
gressor from 2D joints to SMPL parameters is trained, us-
ing a discriminator with unpaired 3D data [26] to encourage
plausible poses. Along these lines, some recent approaches
using video as input, have applied similar methods to pre-
dict temporal kinematics of 3D bodies [16] and estimate
the body using temporal features and a motion discrimina-
tor [17]. Another approach [51], uses a disentanglement
of the skeleton from the 3D human mesh paired with a self-
attention network to ensure temporal coherence. SPIN [ 18],
revisits optimizations methods in collaboration with neural
networks as it uses a network [15] that provides an initial
estimate to the optimization process (SMPLify). Moreover,
aregressor-based alternative suggests the use of the 3D neu-
ral regressor as a pose prior [14]. Although such methods
produce promising results, they typically estimate average
body shapes, are not robust to occlusion, and produce poses
that are only approximate. Without 3D training data the
problem is hard.

2.2. Image alignment and pixel-level supervision

Concurrently, there is a line of research that uses addi-
tional constraints, in addition to image features and 2D/3D
joints, to better align the body with the image such as
dense body landmarks, silhouettes, body part segmentation
or pixel aligned implicit functions. Initial seminal lines of
work, use a few keypoints along with the SCAPE body
model and optimize 3D body shape with silhouettes and
smooth shading [9]. Along these lines, Balan et al. [4] pro-
pose a distance function for the connected silhouette to en-
sure the rendered 3D model falls inside the mask. Later

work uses 2D keypoints, background segmentation, and
SMPL to extract 3D bodies from images [44], similar to
[34] who use silhouettes for supervision. Even silhouettes,
although they provide supervision when keypoints fail, are
often ambiguous in the case of self-occlusion. Towards a
detailed alignment of the 3D human body surface and pix-
els the authors in [10] introduce a dataset with image-to-
surface correspondence from MS-COCO [22] and a vari-
ant of Mask-RCNN that regresses UV coordinates from
images. Part-segmentation masks and IUV are also used
in [30] and [54], respectively, as dense supervision. A con-
tinuous UV map of SMPL for direct pixel correspondence
of the image and the 3D mesh is introduced in [54]. In a
similar approach [50], exploits IUV maps as a proxy rep-
resentation. It estimates SMPL parameters by minimis-
ing dense body landmarks and human part masks and also
by using motion discriminator. While a large majority of
the aforementioned work leverages a parametric 3D body
model, there is some recent work that uses voxel represen-
tations along with 2D pose and part segmentation super-
vision [45] or employs implicit functions with surface re-
construction techniques to reconstruct clothed humans. Al-
though these approaches output fine-grain details, they are
unable to capture the shape under clothing and are prone
to occlusion [11, 36, 37]. An interesting approach is pro-
posed in [55] where a partial UV map of the person is used
and the human pose estimation is formulated as an image
inpainting problem. Another work that explores scene se-
mantics [35], predicts the label of an occluding object and
employs this information to detect invisible joints. Finally,
Zanfir et al. [52] represent the body with a normalizing
flows-based latent space and use body part segmentation su-
pervision to estimate 3D human body pose from videos and
images, unifying different previous approaches. Clothing
segmentation is used in [48] for clothing deformation to pe-
nalize the vertex offset of the clothed body if the rendered
vertex falls outside the clothing boundary.

Most of these approaches are based on joints, silhouettes
and part-segmentation masks using approximate supervi-
sion for the pose of a person in clothing. We claim that there
is more that an image can tell us about human pose. Our
key insight is that clothing for different parts of the body
conveys important information for detailed fitting. We em-
ploy an off-the-shelf 2D semantic segmentation method [8]
and a semantic clothing prior to apply these labels in 3D.
Given those, we supervise clothed and minimal-clothed re-
gions separately, yielding more aligned fits of 3D humans.

3. Method

DSR uses high-level semantic information for more ac-
curate pose and shape estimation using two additional loss
terms DSR-MC and DSR-C, as shown in Figure 3. DSR
takes an image I as input which passes through a CNN.
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Figure 3: Illustration of DSR - SMPL is rendered with the semantic prior learned from RenderPeople scans. The two novel
loss terms are calculated based on different semantic regions of the clothed person. DSR-MC tightly fits the minimal-clothed
region, while DSR-C ensures that the rendered body lies within the clothing boundaries.

Then, the image features ®(I) are fed to an iterative re-
gressor, similar to HMR [15], to estimate the parameters of
SMPL body model, ©. Given the rendered SMPL mesh,
we apply our novel DSR-MC and DSR-C losses in addition
to standard loss terms used in EFT [14]. SMPL is a para-
metric body model that represents body pose and shape by
© = [0 € R™,3 € R']. The pose parameters 6 include
the global rotation and rotations of 23 body joints in axis-
angle format and the shape parameters /3 consist of the first
10 coefficients of a PCA shape space. SMPL model is a dif-
ferentiable function M (6, 3) € R%¥99%3 that outputs a 3D
mesh according to the pose and shape parameters.
Clothing Semantic Information. Ground-truth cloth-
ing segmentations are expensive to obtain for in-the-wild
datasets, which limits the scalability of such an approach.
Hence, to analyze the importance of clothing semantics for
human pose and shape estimation, we employ an off-the-
shelf segmentation model to generate pseudo ground-truth
clothing semantics. Graphonomy [&] is a state-of-the-art
clothing segmentation model that uses inter and intra graph
transfer learning for unifying different clothing datasets and
produces 20 clothing labels and body part segmentations.
As DSR-MC reasons about the minimal-clothing region,
we use a binary mask comprised of 5 labels - LeftArm,
RightArm, LeftShoe, RightShoe and Face from Graphon-
omy as ground-truth (whenever available). For DSR-C,
we use 4 labels - UpperClothes, LowerClothes, Minimal-
Clothing and Background. We run the Universal Model of
Graphonomy on all the datasets to generate pseudo-truth
clothing segmentations. For more details on the genera-
tion of pseudo-ground truth, cleaning of obtained masks and
mapping of graphonomy labels for DSR-C and DSR-MC,

please refer to the Sup. Mat.

Semantic Prior for SMPL. To use the semantic infor-
mation obtained from Graphonomy as pseudo ground-truth
training labels, we need a semantic prior of clothing for
SMPL 3D bodies. To achieve this, we use thousands of
scans from Renderpeople [1] with varied clothing, subject,
pose and 10 camera views for which we have ground-truth
SMPL fits from AGORA [31]. We run the universal model
of Graphonomy on the rendered images of the scan with 20
clothing and body part segmentation labels. Next, we use
the ground-truth SMPL mesh to compute the visible face tri-
angles given the mesh and camera parameters. Then, each
visible triangular face is assigned the corresponding seg-
mentation label. We repeat this process for all the available
scans. We compute the probability of each vertex being a
particular label out of the 20 labels from Graphonomy. This
probabilistic label for each vertex is referred to as semantic
prior. For more details refer to Sup. Mat.

Differentiable Semantic Rendering. We use Soft-
Ras [23] as the differentiable renderer to supervise the esti-
mation of the 3D parametric model using semantic informa-
tion. It uses a differentiable aggregation process for render-
ing, which fuses the probabilistic contributions of all mesh
triangles with respect to rendered pixels. The semantic prior
obtained from AGORA [31] is used as a texture. Specifi-
cally, for each semantic label, we render the probability of
that label for each visible vertex. Once the semantic proba-
bility is rendered as images by SoftRas, the loss is computed
on the 2D image output by comparing with the semantic im-
age segmentation and this is backpropagated to change the
vertices, in turn, changing the network to give more accu-
rate SMPL parameters.
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Standard Losses. As we use the EFT [14] data for train-
ing, we use the standard supervision loss Lgp similar to
EFT which is defined as:

Lop(T(M(0)), ) + L3p(M(O),]) + Lo(0,0) (1)

where, © are the estimated SMPL parameters, Lop is the
joint reprojection loss, L3p and Lg are losses on 3D joints
and SMPL parameters, respectively. Ground truth 2D joints
are represented by j, 3D joints by J, SMPL parameters by
© and the camera projection function by II.

DSR - Minimal-Clothing. For minimal-clothing, we
choose five labels from Graphonomy namely, LeftArm,
RightArm, LeftShoe, RightShoe and Face, which often ap-
pear similar in shape to the rendered SMPL bodys; i.e. look
roughly “naked.” For a particular image, we take the cloth-
ing segmentation mask given by Graphonomy and create a
binary mask GG comprising of the valid labels for that image
from the available five labels. This forms the ground-truth
for DSR-MC denoted by GT - DSR-MC in Fig. 3. We render
the probability distribution of vertex labels for SMPL pre-
computed from RenderPeople as textures; these are shown
as Rendered Semantics in Fig. 3. We only take the prob-
ability distribution of vertices that are visible and set the
others as zero. Thus, we define the DSR-MC loss to tightly
match the corresponding rendered minimal-clothing region
of SMPL to the available semantic binary mask as shown in
Fig. 3 (bottom).

We study two variants of the loss for DSR-MC: soft-
DistM and soft-IOU. Soft-DistM is inspired by the DistM
loss of Naked Truth [4] which was originally proposed for
estimating body shape under-clothing. Since we render the
semantic probability instead of silhouettes, we call it soft-
DistM. It is a distance measure function that takes the ren-
dered image R and target binary Graphonomy mask G and
is defined as:

Lyc—spistm = Z(Ri,j “di ; (G))/(Z Ri,j>3/2 @
iJ

]

where R; ; are the pixels inside rendered human body and
d; ; is a distance function which is zero if pixel (¢, j) is in-
side GG. For points outside, it is defined as the Euclidean dis-
tance to the closest point on the boundary of G. Soft-DistM
can pull the output inside the target because of the sharp dif-
ference in penalization between pixels inside the mask and
pixels outside. Given a good initial estimate, the Soft-DistM
loss ignores spurious and scattered labels outside the region
of interest because the loss is high for pixels far away. This
is particularly helpful, when using an off-the-shelf segmen-
tation model without instance segmentation, which can give
the wrong output for hard examples.

However, soft-DistM cannot fully ensure that the ren-
dered output exactly matches the target as it gives the same

penalty for outputs with different percentages of overlap
when it is inside the boundary. Hence, we studied soft-IoU,
which ensures tight fitting and is calculated as:

1 Z(i,j) Pi;-Gi,
N> upbiitGij—Pij G

3)

Lyc—siov =

where P, ; is the rendered vertex probability at pixel (i, 7),
G ; is the graphonomy label for that pixel. Soft-IoU suf-
fers from spurious and scattered labels outside the region
of interest and also suffers from the lack of instance seg-
mentation in the off-the-shelf model. However, we choose
soft-IoU for the metric for DSR-MC due to better quantita-
tive results in the baseline experiments in Table 1.

DSR - Clothing. The rendered SMPL body mesh can-
not exactly match all the target pixels for the clothing re-
gion. Hence, for a more accurate estimate of the 3D body
model, we want to encourage the rendered SMPL mesh to
stay inside the clothing mask. Previous methods [4] define
a distance function to deal with such scenarios. However,
we have higher-level semantic information than a silhouette
to better address this. We have additional boundaries other
than the body outline to enforce that a particular semantic
part of the SMPL mesh should fall inside the corresponding
semantic part of the segmentation mask. Clothing segmen-
tation provides additional boundaries, such as between the
upper and lower body or between clothing and skin.

Specifically, we define four labels, UpperClothes, Low-
erClothes, MinimalClothing and Background, shown as
four color masks in Fig. 3 (top). We introduce a Minimal-
Clothing label for DSR-C to avoid confusion between the
background and minimal-clothing region. Without it, the
DSR-C loss would give the same penalty when the minimal-
clothing region falls on the corresponding target region or
the background. As the semantic prior learned from Ren-
derPeople has 20 probability labels per vertex, we add all
the probabilities of upper body clothing labels for Upper-
clothes, lower body clothing labels for LowerClothes and
body part segmentation labels for MinimalClothing. We de-
fine DSR-C loss as the negative log-likelihood (NLL) of the
rendered probability distribution of each vertex belonging
to one of the four labels. The rendered probability distribu-
tion is first sent through log softmax before applying NLL
loss for numerical stability. So, Lpsr—c is defined as

w H
Lpsp-c =Y —log(yi;) )

i=1 j=1

where y; ; is the probability output for the vertex at pixel
(i,7), H is the height and W is the width of the im-
age. Hence, the total loss Liota; = Lsp + Laic—siou +
Lpsr—c-
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Figure 4: Are 3D joints enough? We over-fit a batch
of H36M samples on ground-truth (GT) joints (green) and
joints with DSR (blue). The weak supervision with seman-
tic information improves accuracy.

4. Experimental Setup

Training Procedure. Following EFT [14], we train
a regressor similar to HMR [15] with mixed 3D and 2D
datasets. We use the pseudo-ground 3D annotations for 2D
datasets from EFT. For 2D data, we only use COCO [22]
as including other in-the-wild datasets did not give a perfor-
mance gain and for 3D datasets, we use Human3.6M [13]
and MPI-INF-3DHP [28]. We also use the 3DPW [46]
training set for fair comparisons and the same data ratio for
mixed 2D and 3D datasets as EFT. For baseline and ablation
experiments, we train only on COCO-EFT [14]. For faster
training, we initialize the network with SPIN pre-trained
weights and use the same hyper-parameters as SPIN [18]
and train the model for 100K iterations.

Evaluation Procedure. For state-of-the-art compar-
isons, we use 3DPW [21], Human3.6M [13] and MPI-INF-
3DHP [28]. As in prior work [14, 18], we use the gen-
der information for ground truth meshes on 3DPW. We re-
port results with and without 3DPW training on Procrustes-
aligned mean per joint position error (PA-MPJPE), mean
per joint position error (MPJPE) and Per Vertex Error
(PVE).

Differentiable Semantic Rendering. We use Soft-
Ras [23] to render the probability distribution for DSR-C
and DSR-MC. For SoftRas, we use a higher gamma value
of 1.0 x 10~ to ensure the loss affects the occluded part of
the body and a lower sigma value of 1.0 x 10~° to ensure
the error does not significantly affect the spatial region. For
more details, refer to SoftRas [23]. We render the proba-
bility distribution of each triangle face as textures and com-
pute the loss on the RGB channel of the rendered output.
We render 5 images for each sample in a batched manner: 1
for DSR-MC and 4 for DSR-C. However, the loss is calcu-
lated per individual sample to avoid calculating for samples
that do not have a valid segmentation mask. In such cases,

Method | PAMPIPE| MPJPE| PVE|
C-EFT 58.5 101.0 1193
+ DSR-FB 59.8 1021 1203
+ DSR-FB (s-DistM) 58.0 1002 1178
+ DSR-MC (s-DistM) 58.2 1006 1185
+ DSR-MC (s-IoU) 58.0 1003 118.1

+DSR-C 57.6 99.8 117.6
+ DSR-MVP 58.1 1003 1178
+ DSR-C + DSR-MC (Ours) 57.2 99.2 116.3

Table 1: Baseline Comparisons for DSR on 3DPW. C-
EFT is the regressor trained with COCO-EFT and standard
losses. DSR-FB is supervised with a full-body silhouette.
DSR-MC is minimal-clothing, DSR-C is clothing and DSR-
MVP is manual labelling of clothing and minimal-clothing.

the loss is set to zero. After using the heuristics to clean the
mask, a valid label set is created for DSR-C and DSR-MC.
The weighting parameters for both the components are set
to 0.01. As DSR depends on weak supervision from off the
shelf clothing segmentation model and hence not robust for
hard examples, we enable the loss after 10K iterations into
our training.

5. Results
5.1. Baseline Comparison and Ablation Studies

We perform baseline experiments to (1) motivate the use
of semantic rendering and (2) study how the different terms
and design choices contribute to the final result as shown
in Table 1. As a baseline, we use an HMR [15] based re-
gressor trained on EFT-COCO [14] data and report results
on 3DPW (C-EFT). Then, we supervise the baseline with
an additional full-body silhouette (DSR-FB) which is a per
pixel binary classification loss guided by differentiable ren-
dering. The results deteriorate as the rendered SMPL body
does not match the full body. We further train DSR-FB with
the Dist-M loss in contrast to per-pixel classification to en-
sure all body parts (irrespective of clothing) stay inside the
silhouette. The result in Table 1 shows that explicit supervi-
sion with clothing semantics (Ours) outperforms the naive
cloth-agnostic approach. We study the importance of esti-
mating clothing semantics from scans in contrast to man-
ual vertex painting (MVP) of semantic labels as the former
gives a distribution over possible clothing labels (20) for
each vertex whereas the latter would give only 1. To quan-
titatively verify the benefit of the probabilistic clothing se-
mantic prior, we take the most likely label per vertex (Fig. 2)
as a proxy for MVP. Since we have 1 label per vertex, we
use IoU instead of s-IoU. Table 1 shows low performance
of a fixed semantic prior (MVP) compared to a probabilis-
tic one (Ours). We also study the individual contribution of
DSR-C and DSR-MC on the overall performance and find
that the clothing term helps more than the minimal-clothing
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\ 3DPW

Human3.6M MPI-INF-3DHP

Models ‘ PA-MPJPE| MPIPE| PVE | ‘ PA-MPJPE | MPIJPE | ‘ PA-MPJPE | MPIJPE |
HMR [15] 76.7 130.0 - 56.8 88 89.8 124.2
NBF [30] - - - 59.9 - - -
Pavlakos et al. [34] - - - 759 - - -
CMR [19] 70.2 - - 50.1 - - -
SPIN [ 18] 59.2 96.9 116.4 41.1 62.5 67.5 105.2
EFT [14] 54.2 - - 43.7 - 68.0 -
Zanfir et. al [52] (w/ 3DPW train) 57.1 90.0 - - - - -
EFT [14] (w/ 3DPW train) 52.2 - - 43.8 - 67.0 -
DSR 54.1 91.7 105.8 40.3 60.9 66.7 105.3
DSR (w/ 3DPW train) 51.7 85.7 99.5 414 62.0 67.0 104.7

Table 2: Evaluation of state-of-the-art models on 3DPW, Human3.6M, and MPI-INF-3DHP datasets. DSR is our

proposed model trained on monocular images similar to [

]. DSR outperforms all state-of-the-art models, including

EFT [14] on the challenging datasets. “—” shows the results that are not available.
Method ‘ PAMPIPE| MPJPE| PVE| Method ‘ Ankle Knee Hip Wrist Elbow Head
Standard Loss (SD) | 99.3 546 20.0 109.5 81.1 81.8
Standard Loss (SD) 47.5 73.9 99.2 SD + DSR 9.1 504 195 1073 793 805
SD + DSR 45.1 71.3 96.6

Table 3: Potential of DSR. We train and test on a subset of
Human3.6M to evaluate the full potential of DSR loss. SD
refers to standard joint loss.

term. One possible explanation could be that the off-the-
shelf segmentation model is not robust for hands and feet
hence causing less gain. Empirically, we observe that soft-
IoU performs better than soft-DistM and hence use it as the
metric for DSR-MC for all subsequent experiments. Over-
all, the best accuracy is reached when both terms are used
showing that supervising minimally-clothed and clothed re-
gions differently helps improve 3D body estimation.

5.2. State-of-the-art comparison

We compare our approach with state-of-the-art methods
in Table 2. We use two variants of our model, with and with-
out the 3DPW training set, to be aligned with the training
data of other methods. In 3DPW, an in-the-wild challeng-
ing 3D dataset, we outperform previous work when using
3DPW training data, while performing on par with EFT [14]
when they are not used. Moreover, we clearly improve ac-
curacy on Human3.6M [13], a standard indoor benchmark,
over state-of-the-art SPIN [18] and EFT [14] methods. We
also report on par results in MPI-INF-3DHP [2]. We per-
form significantly better than previous approaches that use
ground-truth part-segmentation or silhouettes [30, 34, 52]
compared to our weak supervision. Overall, we consistently
perform better than previous approaches across different
datasets, both indoors and outdoors. In Fig. 5 we can see
different comparisons of DSR with the previous state-of-

Table 4: Per joint error for Human3.6M subset. SD
refers to standard joint loss used in 3D body estimation.

the-art and observe that the estimated mesh is more aligned
with image evidence. These observations validate our hy-
pothesis that clothing semantics, even when used as weak
supervision, provides additional information for estimating
more accurate 3D bodies.

5.3. Potential of DSR

To test the significance of high-level semantics on shape
and pose estimation, we use an off-the-shelf segmentation
model [8]. However, such models are not robust to in-the-
wild examples. Because we use the output of the model
as pseudo ground-truth for supervision, it is hard to deter-
mine the full potential of our approach. Hence, we exper-
iment on the Human3.6M dataset to test the DSR loss in a
more controlled setting. Human3.6M is an indoor dataset
with significantly less background complexity as compared
to outdoor datasets. Hence, it is ideal for testing the limit of
DSR. We study two different cases. First, we split the train-
ing set of Human3.6M, with SMPL parameters computed
by MoSh [25], into training and validation sets with S8 in
the validation set. This is done to evaluate the per-vertex-
error (PVE) using the MoSh ground truth SMPL parame-
ters, thus, giving insight into the shape estimation efficacy
of our method. As shown in Table. 3, the performance gain
with the DSR loss is significantly higher compared to the
standard joint loss. This emphasizes the importance of se-
mantic information. We also analyze the per joint error to
understand the source of a performance gain as shown in
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SPIN EFT DSR
Figure 5: Qualitative Results on COCO. From left to right - Input image, SPIN [18], EFT [14] and DSR results.

the Table. 4. Using the DSR, the maximum performance
gains are from Ankle, Knee, Wrist which are common fail-
ures in 3D pose estimation. Second, we take a step further
to examine whether ground truth 3D joints are enough for
accurate and pixel aligned body estimation. To this end, we
take a random batch of 64 samples from Human3.6M and
over-fit on only joints and joints with the DSR loss for 100
iterations with the same hyper-parameters used for other ex-
periments. The qualitative results are depicted in Fig. 4. As
we can see, supervision with ground 3D joints cannot al-
ways reason about all the pixels. Using DSR produces more
pixel-aligned fits, especially for hands and feet.

6. Conclusion

While huge progress has been made in estimating 3D hu-
man pose and shape, we are still far from estimating highly
accurate 3D humans in everyday scenes. We hypothesize
that clothing semantics is an under-explored feature that can
benefit 3D body estimation methods. Therefore, we intro-
duce a novel method to exploit clothing semantics as weak
supervision. Namely, we: (1) Introduce a novel differen-
tiable loss that supervises clothed and minimally-clothed
regions differently to ensure that the body lies inside the

SPIN EFT DSR

clothes for the former while tightly fitting for the latter. (2)
Learn a semantic clothing prior, i.e. a probability distribu-
tion over clothing labels for SMPL vertices, to apply our
method efficiently. This can also be used independently. (3)
Thoroughly evaluate our approach qualitatively and quan-
titatively, outperforming the state-of-the-art. (4) Analyze
our method’s components and show that clothing seman-
tics, even as weak supervision, is a valuable complementary
cue to 3D joints that improves the estimation of 3D bodies.
Our experiments show the importance of such semantics,
providing new insight into 3D human body estimation.
DSR uses clothing as weak supervision, which can be
limited in complex scenes with multiple people and occlu-
sion. Our method can be easily extended to pipelines that
account for multiple people in the scene [53]. In the future,
we should explore methods that model 3D clothing seman-
tics, build a better prior for SMPL bodies or incorporate
additional constraints to disambiguate scene semantics.
Acknowledgements: We thank Sergey Prokudin, Chun-
Hao P. Huang, Vassilis Choutas, Priyanka Patel, Radek
Danecek, Cornelia Kohler and all Perceiving Systems de-
partment members for their help, feedback and fruitful
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