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Abstract

High-level understanding of stories in video such as
movies and TV shows from raw data is extremely chal-
lenging. Modern video question answering (VideoQA) sys-
tems often use additional human-made sources like plot
synopses, scripts, video descriptions or knowledge bases.
In this work, we present a new approach to understand
the whole story without such external sources. The secret
lies in the dialog: unlike any prior work, we treat dia-
log as a noisy source to be converted into text description
via dialog summarization, much like recent methods treat
video. The input of each modality is encoded by transform-
ers independently, and a simple fusion method combines
all modalities, using soft temporal attention for localization
over long inputs. Our model outperforms the state of the
art on the KnowIT VQA dataset by a large margin, with-
out using question-specific human annotation or human-
made plot summaries. It even outperforms human evalu-
ators who have never watched any whole episode before.
Code is available at https://engindeniz.github.
io/dialogsummary-videoqa

1. Introduction

Deep learning has accelerated progress in vision and lan-
guage tasks. Visual-semantic embeddings [18, 9] have al-
lowed zero-shot learning, cross-modal retrieval and gener-
ating new descriptions from embeddings. Image caption-
ing [33] and visual question answering (VQA) [2] have
demonstrated generation of realistic natural language de-
scription of images and a great extent of multimodal seman-
tic understanding. The extension to video captioning [19,
32] and video question answering (VideoQA) [29, 20] has
enabled further progress because video requires a higher
level of reasoning to understand complex events [37].

VideoQA systems typically have similar architecture fo-
cusing on multimodal embeddings/description, temporal at-
tention and localization, multimodal fusion and reasoning.
While it is often hard to isolate progress in individual com-
ponents, there are some clear trends. For instance, custom
self-attention and memory mechanisms for fusion and rea-

Scene Description
(Scene B)

Kripke: ...his name is gonna be Scrap Metal.
Leonard: Come on. Is that really necessary?
Sheldon: Leonard, I believe it is. This is trash
talk. Trash talk is a traditional component in all

sporting events.
...

Sheldon: Kripke... ...your robot is inferior and
it will be defeated by ours... ...because ours
exceeds yours in both design and execution.

Dialog

Kripke is going to name his robot Scrap Metal.
Sheldon and Leonard are going to defeat

Kripke's robot because theirs is better in design and
execution.

Scene Dialog Summary

... Leonard and Raj have built a robot
called Monte. Kripke is going to enter him in

the Southern California Robot Fighting
League Round Robin Invitational. ...

Episode Dialog Summary

What did the guys name their robot?

A) Killer Robot
B) Terminator
C) Monte
D) Crippler

QA (Scene B)

Monte

Predicted Answer

Raj: ...but he does it with real sensitivity.
No one: (LISPING)

Kripke (arriving): Hey, Hofstadter. Word around
the plasma lab is you built a robot?

Leonard: - Yes, we did, Kripke.
Sheldon: - His name is Monte.

Kripke: Well, if you have any delusions about
entering him against the Kripke Crippler... ...in the
Southern California Robot Fighting League Round
Robin Invitational... ...AKA the SCRFLRRI... ...his

name is gonna be Scrap Metal.

Leonard and Raj have built a robot called Monte.
Kripke is going to enter him in the Southern

California Robot Fighting League Round Robin
Invitational.

Scene Dialog Summary

Dialog

Scene BScene A

Dialog
(Scene B)

VideoQA

Figure 1: In VideoQA, a question is associated with Scene
B, but it can only be answered by information from Scene
A. We generate episode dialog summaries from subtitles
and give them as input to our VideoQA system, dispensing
with the need for external knowledge.

soning [24, 17, 7] are gradually being streamlined by using
transformer architectures [30, 16, 36]; while visual embed-
dings [29] are being replaced by semantic embeddings [20]
and text descriptions by captioning [14, 3].

Datasets are essential for progress in the field, but of-
ten introduce bias. For instance, questions from text sum-
maries are less relevant to visual information [29]; super-

2064



vised temporal localization [20] biases system design to-
wards two-stage localization→answering [21, 16]; fixed
question structure focusing on temporal localization [20]
often results in mere alignment of questions with subti-
tles and matching answers with the discovered context [14],
providing little progress on the main objective, which is to
study the level of understanding.

Bias can be removed by removing localization supervi-
sion and balancing questions over different aspects of com-
prehension, for instance visual, textual, or semantic [11].
However, the requirement of external knowledge, which
can be in the form of hints or even ground truth, does not
leave much progress in inferring such knowledge from raw
data [11]. Even weakening this requirement to plain text
human-generated summaries [10], still leaves a system un-
usable in the absence of such data.

In many cases, as illustrated in Figure 1, a question on
some part of a story may require knowledge that can be re-
covered from dialog in other parts of the story. However,
despite being textual, raw dialog is often informal and repet-
itive; searching over all available duration of such noisy
source is error-prone and impractical. Inspired by the trend
of video captioning, we go a step further and apply the same
idea to dialog: We summarize raw dialog, converting it into
text description for question answering.

Our finding is astounding: our dialog summary is not
only a valid replacement for human-generated summary in
handling questions that require knowledge on a whole story,
but it outperforms them by a large margin.

Our contributions can be summarized as follows:

1. We apply dialog summarization to video question an-
swering for the first time (Subsection 5.1).

2. Building on a modern VideoQA system, we convert all
input sources into plain text description.

3. We introduce a weakly-supervised soft temporal atten-
tion mechanism for localization (Subsection 6.2).

4. We devise a very simple multimodal fusion mechanism
that has no hyperparameters (Section 7).

5. We set a new state of the art on KnowIT VQA dataset
[11] and we beat non-expert humans for the first time,
working only with raw data (Section 8).

2. Related Work
Video Question Answering Progress on video ques-
tion answering has been facilitated and driven by several
datasets and benchmarks. VideoQA by Tapaswi et al. [29]
addresses answering questions created from plot synopses
using a variety of input sources, including video, subti-
tles, scene descriptions, scripts and the plot synopses them-
selves. Methods experimenting on MovieQA focus on
memory networks capturing information from the whole
movie by videos and subtitles [24, 15], scene-based memory

attention networks to learn joint representations of frames
and captions [17], and LSTM-based sequence encoders to
learn visual-text embeddings [23].

TVQA [20] and TVQA+ [21] address scene-based ques-
tions containing temporal localization of the answer in TV
shows, using video and subtitles. The questions are struc-
tured in two parts: one specifying a temporal location in
the scene and the other requesting some information from
that location. This encourages working with more than one
modalities. Methods experimenting on these datasets fo-
cus on temporal localization and attention [21, 16], cap-
tioning [14, 3] and transformer-based pipelines capturing
visual-semantic and language information [36, 30].

KnowIT VQA [11] is a knowledge-based dataset, includ-
ing questions related to the scene, the episode or the entire
story of a TV show, as well as knowledge annotation re-
quired to address certain questions, in the form of hints.
Transformer-based methods are proposed to address this
task by employing knowledge annotation [11] or external
human-generated plot summaries [10]. Our method differs
in substituting human-generated knowledge by summaries
automatically generated from raw dialog.

Dialog Summarization Dial2Desc dataset [25] addresses
generating high-level short descriptions from dialog using
a transformer-based text generator. SAMSum corpus [12]
is a human-annotated dialog summarization dataset pro-
viding speaker information. Methods experimenting on
this dataset include existing document summarization meth-
ods [12], graph neural networks integrating cross-sentence
information flow [39] and graph construction from utter-
ance and commonsense knowledge [8]. Since dialog dif-
fers from structured text and requires extraction of the con-
versation structure, recent work focuses on representing the
dialog from different views by sequence to sequence mod-
els [4]. We follow this approach.

3. Overview

We address knowledge-based video question answering
on TV shows. Each episode is split in scenes. For each
scene, we are given the video (frames) and dialog (speaker
names followed by subtitle text) and a number of multiple-
choice questions. Certain questions require high-level un-
derstanding of the whole episode or show. Garcia et al. [10]
rely on human-generated plot summaries (or plot for short),
which we use only for comparison. Our objective is to ex-
tract the required knowledge from raw data.

As shown in Figure 2, we first convert inputs into plain
text description, including both video (by visual recogni-
tion) and dialog (by summarization) (Section 5). A num-
ber of separate streams then map text to embeddings, at
the level of both scene (video and scene dialog summary)
and episode (episode dialog summary and plot). The ques-
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What did the guys name their robot?

A) Killer Robot      B) Terminator
C) Monte                D) Crippler

Inputs

Kripke is going to name his robot 
Scrap Metal. Sheldon and Leonard are
going to defeat Kripke's robot because
theirs is better in design and execution.

Sheldon, Dr. Beverly Hofstadter,
Leonard and Barry are sitting at a table

at The Caltech cafeteria.
(...)

Scene Dialog Summary

Video DescriptionVideo

Kripke: ...his name is gonna be
Scrap Metal.
Leonard: Come on. Is that really
necessary?
Sheldon: Leonard, I believe it is. 

Dialog

Streams Fusion

Episode Dialog
Summary Stream

Scene Dialog
Summary Stream

Video Stream

Converted Inputs

QA

QA

A) Killer Robot      
B) Terminator
C) Monte                
D) Crippler

Prediction

Fusion
Answer1

Fusion
Answer2

Fusion
Answer3

Fusion
Answer4

C
oncat

Fusion
Answer3

Fusion
Answer4

Fusion
Answer2 Softm

ax

QA

 (...) 
Leonard and Raj have built a robot

called Monte. 
(...)

Episode Dialog Summary
QA

Figure 2: Our VideoQA system converts both video and dialog to text descriptions/summaries, the latter at both scene and
episode level. Converted inputs are processed independently in streams, along with the question and each answer, producing
a score per answer. Finally, stream embeddings are fused separately per answer and a prediction is made.

tion and answers are embedded together with the input text
of each stream. A temporal attention mechanism localizes
relevant intervals from episode inputs. Finally, question an-
swering is addressed both in a single-stream (Section 6) and
a multi-stream (Section 7) scenario. The latter amounts to
multi-modal fusion. We begin our discussion with trans-
former networks (Section 4), which we use both for dialog
summarization and text embeddings in general.

4. Transformers

The transformer [31] is a network architecture that al-
lows for efficient pairwise interaction between input ele-
ments. Its main component is an attention function, which
acts as a form of associative memory. Multi-head atten-
tion is a fusion of several attention functions. The architec-
ture is a stack of multi-head attention, element-wise fully-
connected and normalization layers with residual connec-
tions. Originally developed for machine translation, it in-
cludes an encoder and a decoder stack. The decoder addi-
tionally attends over the output of the encoder stack and is
auto-regressive, consuming previously generated symbols
when generating the next.

BERT [6] is a transformer bidirectional encoder only,
mapping a sequence of tokens to a sequence of d-
dimensional vectors. It is pre-trained on unsupervised tasks
including prediction of masked tokens and next sentence,
and can be also fine-tuned on supervised downstream tasks.
It can take a number of sentences as in input, where a sen-
tence is an arbitrary span of contiguous text.

We use BERT as the backbone of our model architec-
ture to represent text, using two sentences at a time. Given

strings A and B, the input is given as

tokk([CLS] +A+ [SEP] +B + [SEP]), (1)

where + is string concatenation and tokk is tokenization
into k tokens, with zero padding if the input length is less
than k and truncation if it is greater. Tokens are represented
by WordPiece embeddings [28, 35], concatenated with po-
sition embeddings representing their position in the input
sequence and segment embeddings, where segments corre-
spond to sentences and are defined according to occurrences
of the separator token [SEP]. The output vector in Rd cor-
responding to token [CLS] is an aggregated representation
of the entire input sequence and we denote it as

f(A,B). (2)

Sentence-BERT [26] takes a single sentence as input and
is trained by metric learning objectives, e.g. in a siamese
or triplet structure, facilitating efficient sentence similar-
ity search. It is learned by fine-tuning a pre-trained BERT
model on supervised semantic textual similarity.

BART [22] combines a bidirectional encoder and an
auto-regressive decoder. It is pre-trained as an unsupervised
denoising autoencoder, i.e., corrupting input text and learn-
ing to reconstruct the original, and fine-tuned on supervised
classification, generation or translation tasks. It is particu-
larly effective on text generation, including abstractive dia-
log, question answering and summarization tasks.

Following [4], we use sentence-BERT and BART to seg-
ment and summarize dialog respectively.
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5. Input description
All input sources, i.e., video, dialog and plot, are con-

verted into plain text description before being used for ques-
tion answering. Video is first converted into a scene graph
by a visual recognition pipeline and then to text description
by a set of rules. Importantly, although already in textual
form, dialog is also converted into text description by dialog
summarization. The plot, already in text description form,
is used as is, but for comparison only: Our main contribu-
tion is to replace human-generated plots by automatically
generated descriptions.

5.1. Dialog

As the main form of human communication, dialog is
an essential input source for video understanding and ques-
tion answering. We use dialog in three ways: raw dialog
per scene, dialog summary per scene and the collection of
dialog summary over a whole episode.

Raw scene dialog As in all prior work, we use the raw
dialog associated to the scene of the question, as is. Al-
though in textual form, it is not a text description. It may
still contain more information than dialog summary, which
is important to investigate.

Scene dialog summary Given the dialog associated to
the scene of the question, we convert this input source into
text description by dialog summarization. Despite being
of textual form, dialog is very different from text descrip-
tion: conversations are often informal, verbose and repet-
itive, with few utterances being informative; while a de-
scription is a narrative in third-person point of view with
clear information flow structured in paragraphs [4]. Identi-
fying the speaking person is also substantial, especially with
multiple people in a conversation. Rather than generic doc-
ument summarization [12], we follow a dedicated dialog
summarization method [4], which blends character names
with events in the generated summaries.

A dialog is a sequence of utterances, each including a
speaker (character) name and a sentence (sequence of to-
kens). Each utterance is mapped to a vector embedding by
Sentence-BERT [26]. The sequence of embeddings over the
entire dialog is segmented according to topic, e.g. greetings,
today’s plan, etc. by C99 [5], as well as stage, e.g. opening,
intention, discussion, conclusion by a hidden Markov model
(HMM) [1]. As a result, for each view (topic or stage), the
dialog is represented by a sequence of blocks, each contain-
ing several utterances.

Given the above structure, the input is re-embedded and
the summary is generated using an extension of BART [22].
In particular, there is one encoder per view, mapping each
block to an embedding. An LSTM [13] follows, aggregat-
ing the entire view into one embedding, obtained as its last
hidden state. The decoder attends over the output of each

encoder using a multi-view attention layer to weight the
contribution of each view. It is auto-regressive, using pre-
vious tokens from ground truth at training and previously
predicted tokens by the encoder at inference.

We train the HMM on the dialog sources of our video QA
training set; otherwise, we use Sentence-BERT and BART
as used/trained by [4]. Once a scene dialog summary is gen-
erated, it is re-embedded by BERT [6] like all other input
sources, as discussed in Section 6.

Episode dialog summary We collect the scene dialog
summaries for all scenes of an episode and we concatenate
them into an episode dialog summary. Assuming that the
episode of the scene of the question is known, we make
available the associated episode dialog summary for ques-
tion answering. This is a long input source and requires
temporal attention, as discussed in Subsection 6.2. Impor-
tantly, episode dialog summary is our most important con-
tribution in substituting plot summary by an automatically
generated description.

5.2. Plot summary

As part of our comparison to [10], we use publicly avail-
able plot summaries1, already in text description form. As-
suming that the episode of the scene of the question is
known, we make available the associated plot as is, to help
answering knowledge-based questions. A plot is shorter and
higher-level than our episode dialog summary, but it is still
long enough to require temporal attention. It is important
to investigate whether we can dispense of such a human-
generated input and how much more information it contains
relative to what we can extract automatically.

5.3. Video

We use a visual recognition pipeline to convert raw input
video into text description. Following [10], this pipeline
comprises four components: character recognition [27],
place recognition [40], object relation detection [38], and
action recognition [34]. The outputs of these components
are character, place, object, relation and action nodes. A
directed video scene graph is generated by collecting all
nodes along with edges and then a textual scene description
is obtained according to a set of predefined rules.

6. Single-stream QA
As shown in Figure 2, there is one stream per input

source, using a transformer to map inputs to embeddings.
Following [10], we first attempt question answering on each
stream alone. In doing so, we learn a linear classifier while
fine-tuning the entire transformer representation per stream.
Unlike most existing works, this allows adapting to the data
at hand, for instance a particular TV show.

1https://the-big-bang-theory.com/
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We differentiate scene from episode inputs, as discussed
below. In both cases, the given question and candidate an-
swer strings are denoted as q and ac for c = 1, . . . , nc re-
spectively, where nc is the number of candidate answers.

6.1. Scene input sources

Scene input sources refer to the scene of the question,
i.e., raw scene dialog, scene dialog summary or video. The
input string is denoted by x. For each c = 1, . . . , nc, we
embed x, q and ac jointly to d-dimensional vector

yc := f(x+ q, ac), (3)

where + is string concatenation and f is BERT (2). A linear
classifier with parameters w ∈ Rd, b ∈ R yields a score per
candidate answer

zc := w⊤ · yc + b. (4)

The score vector z := (z1, ..., znc) is followed by softmax
and cross-entropy loss. At training, we use f as pre-trained
and we fine-tune it while optimizing W, b on the correct
answers of the QA training set. At inference, we predict
argmaxc z

c.

6.2. Episode input sources

Episode input sources refer to the entire episode of the
scene of the question, i.e., episode dialog summary and
plot. Because such input is typically longer than the trans-
former’s maximum sequence length k (1), we split it into
overlapping parts in a sliding window fashion. Each part
contains the question and one answer, so the window length
is w = k− |q| − |ac|. Given an input of length ℓ tokens, the
number of parts is n :=

⌈
ℓ−w
s

⌉
+ 1, where s is the stride.

Because all inputs in a mini-batch must have the same num-
ber of parts np to be stacked in a tensor, certain parts are
zero-padded if n < np and discarded if n > np.

Embedding The input strings of the parts are denoted by
pj for j = 1, . . . , np. Each part pj is combined with each
candidate answer ac separately, yielding the d-dimensional
vectors

ycj := f(pj + q, ac) (5)

for c = 1, . . . , nc and j = 1, . . . , np. A classifier with
parameters w ∈ Rd, b ∈ R yields a score per candidate
answer c and part j:

zcj := w⊤ · ycj + b. (6)

Temporal attention At this point, unlike scene inputs (4),
predictions from (6) are not meaningful unless a part j
is known, which amounts to temporal localization of the
part of the input sequence that contains the information
needed to answer a question. In TVQA [20] and related

work [21, 14, 16], localization ground truth is available, al-
lowing a two-stage localize-then-answer approach. Without
such information, the problem is weakly supervised.

Previous work [10] simply chooses the part j corre-
sponding to the maximum score zcj over all answers c and
all parts j in (6), which is called hard temporal attention in
the following. Such hard decision may be harmful when the
chosen j is incorrect, especially when the predicted answer
happens to be correct, because then the model may receive
arbitrary gradient signals at training. To alleviate this, we
follow a soft temporal attention approach.

In particular, let S be the np × nc matrix with elements
zcj over all answers c and all parts j (6). For each part j, we
take the maximum score over answers

sj := max
c

zcj , (7)

giving rise to a vector s := (s1, . . . , snp
), containing a sin-

gle best score per part. Then, by soft assignment over the
rows of S—corresponding to parts—we obtain a score for
each answer c, represented by score vector z ∈ Rc:

z := softmax(s/T )⊤ · S, (8)

where T is a temperature parameter. With this definition of
z, we have a single score vector and we proceed as in (4).

7. Multi-stream QA
Once a separate transformer has been fine-tuned sepa-

rately for each stream, we combine all streams into a sin-
gle question answering classifier, which amounts to multi-
modal fusion. Here, we introduce two new simple solutions.

In both cases, we freeze all transformers and obtain d-
dimensional embeddings yc for each candidate answer c
and for each stream. For scene inputs, yc is obtained di-
rectly from (3). Episode input streams produce np em-
beddings per answer. Temporal localization is thus re-
quired for part selection, similar to single stream training.
Again, hard temporal attention amounts to choosing the
part with the highest score according to (6): yc := ycj∗
where j∗ := argmaxj(z

c
j ) and ycj is given by (5). Instead,

similar to (8), we follow soft temporal attention:

yc := softmax(s/T )⊤ · Y emb
c , (9)

where Y emb
c is a np × d matrix collecting the embeddings

ycj (5) of all parts j. Finally, for each answer c, the embed-
dings yc of all streams are stacked into a ns × d embedding
matrix Yc, where ns is the number of streams.

Multi-stream attention The columns of Yc are embed-
dings of different streams. We weight them according to
weights wc ∈ Rns obtained from Yc itself, using a multi-
stream attention block, consisting of two fully connected
layers followed by softmax:

Y att
c = diag(wc) · Yc. (10)
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For each answer c, a fully connected layer maps the d× ns

matrix Y att
c to a scalar score. All nc scores are followed by

softmax and cross-entropy loss, whereby the parameters of
all layers are jointly optimized.

Self-attention Alternatively, Yc is mapped to Y att
c ∈

Rd×ns by a single multi-head self-attention block, as in
transformers [31]:

Y att
c = MultiHeadAttention(Yc, Yc, Yc). (11)

The remaining pipeline is the same as in the previous case.

8. Experiments

8.1. Experimental setup

Datasets The KnowIT VQA [11] dataset contains 24,282
human-generated questions associated to 12,087 scenes,
each of duration 20 seconds, from 207 episodes of The Big
Bang Theory TV show. Questions are of four types: visual
(22%), textual (12%), temporal (4%) and knowledge (62%).
Question types are only known for the test set. Knowledge
questions require reasoning based on knowledge from the
episode or the entire TV show, which differs from other
video question answering datasets. Questions are multiple-
choice with nc = 4 answers per question and performance
is measured by accuracy, per question type and overall.

Implementation details For scene dialog summary gen-
eration, we set the minimum sequence length to 30 tokens
and the maximum to 100 in the BART [22] model. With
this setting, episode dialog summaries are 2078 tokens long
on average, while plot summaries are 659 tokens long.

We fine-tune the BERTBASE [6] uncased model with
N = 12 transformer blocks, h = 12 self-attention heads
and embedding dimension d = 768 for single-stream mod-
els. The maximum token length k is 512 for scene, 200
for plot and 300 for episode dialog summary inputs. The
stride s is 100 for plot and 200 for episode dialog sum-
mary. The maximum number of parts np is 10 for both. The
batch size is 8 for all single-stream models and 32 for multi-
stream. We use SGD with momentum 0.9 scheduled with
initial learning rate 10−4 for multi-stream fusions. We use
h = 1 attention head, and N = 2 stacks for self-attention
and multi-stream self-attention methods. The number of
streams ns varies per experiment.

8.2. Quantitative results

Table 1 compares of our method with the state of the art.
Rookies and Masters are human evaluators: Masters have
watched most of the show, whereas Rookies have never
watched an episode before [11]. TVQA [20] encodes visual
features and subtitles without considering knowledge infor-
mation; its results are as reported in [11]. ROCK [11] uses

four visual representations (image, concepts, facial, cap-
tion); ROCKfacial is one of its best results. ROCKGT [11]
and ROLLhuman [10] use the human knowledge annotation
provided by the dataset [11], while ROLL [10] uses human-
written plot summaries instead. Our method uses scene
video and scene dialog summary as well as the episode di-
alog summary that it automatically generates, without any
human annotation. Oursplot additionally uses the same plot
as [10]. TVQA uses LSTM; all other methods are based on
BERT.

Our method outperforms the best state of the art method
(ROLL [10]) by 6.6%, without any human annotation. By
using additional human-generated plots, the gain decreases
to 5.8%. This indicates that our episode dialog summary
captures the required knowledge and removes the require-
ment of human-generated input; in fact, human-generated
input is harmful. On temporal and knowledge questions
in particular, we gain 13.9% and 7.6%, respectively, with-
out any human annotation. This implies that our automat-
ically generated episode dialog summary increases the un-
derstanding of the episode and helps answering all types of
questions. Despite ROLLhuman [10] and ROCKGT [11] using
ground-truth knowledge, we outperform them by 16.1% and
5.0%, respectively, without any human annotation. We also
outperform Rookies, presumably by having access to the di-
alog of the entire episode. Comparing to Masters, there is
still room for improvement.

8.3. Qualitative analysis

Figure 3 visualizes the correct predictions of our method
with stream attention scores for different question types. In
all examples, the model receives three input sources, ques-
tion/answers and attention scores over inputs. Figure 3(a)
shows a knowledge question, answered based on episode
dialog summary, which has the highest attention score. As
shown in Figure 3(b), a textual question can be answered
by using scene dialog summary, but also by episode dia-
log summary, since the latter includes the former. Tempo-
ral questions can be answered from scene inputs such as
scene dialog summary or video description. According to
attention scores, the question in Figure 3(c) is answered by
episode dialog summary, which includes the correct answer.
Finally, Figure 3(d) shows a visual question answered by
video description.

8.4. Ablation studies

Single-stream results Table 2 shows our single-stream
QA results. We reproduce [10] for dialog, video, and plot
inputs. We replace the plot stream by one using our new
temporal attention (Subsection 6.2) and other improvements
(Table 4) and we add two new sources automatically gener-
ated from dialog: scene dialog summary and episode dialog
summary. Due to the dataset having a majority of knowl-
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METHOD KNOWLEDGE VIS. TEXT. TEMP. KNOW. ALL

Rookies [11] – 0.936 0.932 0.624 0.655 0.748
Masters [11] ✓ 0.961 0.936 0.857 0.867 0.896

ROCKGT [11] question GT 0.747 0.819 0.756 0.708 0.731
ROLLhuman [10] question GT 0.708 0.754 0.570 0.567 0.620

TVQA [20] – 0.612 0.645 0.547 0.466 0.522
ROCKfacial [11] dataset GT 0.654 0.688 0.628 0.646 0.652
ROLL [10] plot 0.718 0.739 0.640 0.713 0.715

Ours – 0.755 0.783 0.779 0.789 0.781
Oursplot plot 0.749 0.783 0.721 0.783 0.773

Table 1: State-of-the-art accuracy on KnowIT VQA. Ours uses the video and scene dialog summary as well as the episode
dialog summary that we generate from the dialog of the entire episode. Oursplot also uses human-generated plot summaries,
like [10]. TVQA uses an LSTM based encoder; all other methods use BERT. Rookies and Masters are humans.

(...)
Sheldon forgot his flash drive,
so he has to go back and get it.

(...)

Episode Dialog Summary

 What has Sheldon forgotten here?
 
   A) His flash drive
   B) His thesis
   C) His suitcase
   D) His laptop

(...)
Sheldon at table.

Sheldon sitting on chair.
Curtain and building behind

Sheldon. Sheldon wearing jacket
and shoe. Sheldon holding paper.

(...)

Video Description

Sheldon will send him an email 
when they get back. He needs to 

read it. 
(...)

Scene Dialog Summary

QA Attention Score

Scene Dialog Summary

Video Description

Episode Dialog Summary

(...)
Penny wants Sheldon to go to
a coffee shop, but he doesn't 
drink coffee. She wants him 

to try some cookies, 
pastries and bear claws.

(...)

Episode Dialog Summary

     What does Sheldon not drink?
 
   A) milke
   B) tea
   C) alcohol
   D) coffee

Dr. Beverly Hofstadter, Sheldon
and Penny are holding a laptop at

The main building.
(...)

Video Description

Penny wants Sheldon to go to 
a coffee shop, but he doesn't 

drink  coffee. 
(...)

Scene Dialog Summary

QA Attention Score

Scene Dialog Summary

Video Description

Episode Dialog Summary

(a) Knowledge QA (b) Textual QA

(...)
Amy loves Neil Diamond's 

music. Amy loves Neil 
Diamond's song 

"SWEET CAROLINE". 
(...)

Episode Dialog Summary

     What singer do Amy and 
  Howard discover they both like?

   A) Luke Bryan
   B) Willie Nelson
   C) Neil Diamond
   D) Busta Rhythms

(...)
Window and car behind Amy.

Howard and Amy.
Amy wearing glass.

Amy has hand, arm, nose and hair.

Video Description

Amy doesn't like listening to music 
in the car. Sheldon doesn't want her 
to be mistaken for a gang member. 
Amy loves Neil Diamond's music.

Scene Dialog Summary

QA Attention Score

Scene Dialog Summary

Video Description

Episode Dialog Summary

(...)
 Penny and Leonard will be the 
last ones there, so they need to 
hurry up. Sheldon thinks it's a 

marathon not a sprint.
(...)

Episode Dialog Summary

    Penny and Sheldon are the last
  ones to arrive where?

   A) To Sheldon's apartment
   B) The to mall
   C) To the comic book store
   D) To the Cheescake Factory

Leonard, Sheldon and Penny are
smiling at The comic book store.
Face of Leonard. Shirt and jacket

on Leonard.
(...)

Video Description

Stuart invited Penny to Raj's murder
mystery party. Penny and Leonard 
will be the last ones there, so they 

need to hurry up. 
(...)

Scene Dialog Summary

QA Attention Score

Scene Dialog Summary

Video Description

Episode Dialog Summary

(c) Temporal QA (d) Visual QA

Figure 3: Multi-stream attention visualization. We highlight in blue the part of the source text that is relevant to answering
the question. The most attended stream is episode dialog summary for (a), (b), (c) and video description for (d).

edge questions, episode dialog summary and plot inputs
have higher accuracy than other input sources since they
span an entire episode. Our episode dialog summary helps
in answering questions better than the plot [10], bringing an
accuracy improvement of 5.4%.

Multi-stream results We evaluate our two multi-stream
QA methods introduced in Section 7, namely multi-stream
attention and self-attention, comparing them with the
following combinations/baselines/competitors:

1. Multi-stream self-attention: combination of multi-
stream attention and self-attention: the output of the
latter is weighted by the former. The remaining
pipeline is the same as in multi-stream attention.

2. Product: Hadamard product on embeddings of all
streams per answer, followed by a linear classifier per
answer. The remaining pipeline is the same.

3. Modality weighting [10]: a linear classifier (4) and loss
function is used as in single-stream QA but with trans-
formers frozen for each stream separately. The ob-
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METHOD INPUT VIS. TEXT. TEMP. KNOW. ALL

ROLL [10]
D 0.656 0.772 0.570 0.525 0.584
V 0.629 0.424 0.558 0.514 0.530
P 0.624 0.620 0.570 0.725 0.685

ROLL [10]†
D 0.649 0.801 0.581 0.543 0.598
V 0.625 0.431 0.512 0.541 0.546
P 0.647 0.554 0.674 0.694 0.667

Ours
P 0.666 0.623 0.593 0.735 0.702
S 0.631 0.746 0.605 0.537 0.585
E 0.676 0.750 0.779 0.785 0.756

Table 2: Single-stream QA accuracy on KnowIT VQA.
ROLL [10]: as reported; [10]†: our reproduction. Our
model incorporates the scene dialog and video streams of
the latter as well as the plot, scene dialog summary and
episode dialog summary streams. Plot differs between [10]†
and our model by our temporal attention and other improve-
ments (Table 4). D: dialog; V: video; P: plot; S: scene dialog
summary; E: episode dialog summary.

METHOD VIS. TEXT. TEMP. KNOW. ALL

Product 0.743 0.659 0.756 0.751 0.739
Modality weighting [10] 0.708 0.786 0.767 0.787 0.769

Self-attention 0.759 0.764 0.767 0.777 0.771
Multi-stream attention 0.755 0.783 0.779 0.789 0.781
Multi-stream self-attn. 0.755 0.768 0.756 0.777 0.770

Table 3: Multi-stream QA accuracy on KnowIT VQA, fus-
ing video, scene dialog summary and episode dialog sum-
mary input sources. All fusion methods use soft tempo-
ral attention for localization of episode input sources. Top:
baseline/competitors. Bottom: ours.

tained scores by single-stream classifiers are combined
by a multi-stream classifier and another loss function
applies. The overall loss all is a linear combination
with weight βω on the multi-stream loss and 1 − βω

uniformly distributed over single-stream losses.

Table 3 shows results for fusion of video, scene dia-
log summary and episode dialog summary. For modality
weighting, we set βω = 0.7 according to the validation set.
Our multi-stream attention outperforms other fusion meth-
ods. Besides, it does not require tuning of modality weight
hyperparameter βω or selecting the number of heads and
blocks for self-attention. Unless specified, we use multi-
stream attention for fusion by default.

Improvements over [10] We reproduce ROLL [10] using
official code by the authors and default parameters. This
is our baseline, shown in the first row of Table 4. Then,
we evaluate our improvements, adding them one at a time.

METHOD VIS. TEXT. TEMP. KNOW. ALL

ROLL [10]† 0.722 0.703 0.709 0.697 0.704
+ Multi-stream attention 0.724 0.721 0.721 0.691 0.703
+ More parts for plot 0.722 0.703 0.651 0.717 0.714
+ New order of plot inputs 0.730 0.710 0.686 0.712 0.715
+ Temporal attention 0.734 0.725 0.663 0.724 0.724
± Replacing P → E 0.753 0.815 0.814 0.773 0.775
± Replacing D → S 0.755 0.783 0.779 0.789 0.781

Table 4: Accuracy improvements over ROLL [10]. †: our
reproduction. Each row adds a new improvement except
the last two, where we replace streams. P: plot; E: episode
dialog summary; D: dialog; S: scene dialog summary.

First, we replace modality weighting with multi-stream at-
tention. Despite its simplicity, its performance is on par, los-
ing only 0.1%, while requiring no hyperparameter tuning.
Then, we increase the number of parts of plot summaries
from 5 to 10, eliminating information loss by truncation and
bringing an accuracy improvement of 1.1%. We change the
order of arguments of BERT for episode input sources from
f(q, ac+pj) to f(pj+q, ac) (5), which is consistent with (3)
and improves only slightly by 0.1%. Our new temporal at-
tention mechanism improves accuracy by 0.9%. Replacing
plot with episode dialog summary, which is our main con-
tribution, brings an improvement of 5.1%. Finally, the ac-
curacy is improved by 0.6% by using scene dialog summary
instead of raw dialog. The overall gain over [10] is 7.7%.

Note that the relative improvement of each new idea de-
pends on the order chosen in Table 4. For instance, the order
of BERT arguments brings improvements of up to 2.3% in
experiments including the episode dialog summary.

9. Conclusion
KnowIT VQA is a challenging dataset where it was pre-

viously believed that some form of external knowledge was
needed to handle knowledge questions, as if knowledge was
yet another modality. Our results indicate that much of this
required knowledge was hiding in dialog, waiting to be har-
nessed. It is also interesting that our soft temporal attention
helps a lot more with our episode dialog summary than hu-
man plot summary, which may be due to the episode dialog
summary being longer. This may also explain the astound-
ing performance of episode dialog summary, despite its low
overall quality: plot summaries are of much higher quality
but may be missing a lot of information.
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