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Abstract

Human pose estimation from videos has many real-
world applications. Existing methods focus on applying
models with a uniform computation profile on fully de-
coded frames, ignoring the freely-available motion signals
and motion-compensation residuals from the compressed
stream. A novel model, called Motion Adaptive Pose Net is
proposed to exploit the compressed streams to efficiently de-
code pose sequences from videos. The model incorporates a
Motion Compensated ConvLSTM to propagate the spatially
aligned features, along with an adaptive gate to dynami-
cally determine if the computationally expensive features
should be extracted from fully decoded frames to compen-
sate the motion-warped features, solely based on the resid-
ual errors. Leveraging the informative yet readily available
signals from compressed streams, we propagate the latent
features through our Motion Adaptive Pose Net efficiently
Our model outperforms the state-of-the-art models in pose-
estimation accuracy on two widely used datasets with only
around half of the computation complexity.

1. Introduction
Human pose estimation has drawn increasing amount of

attentions over the years [1, 27, 38, 22, 45, 34, 41, 25]. It
has a wild range of applications in action recognition, hu-
man computer interactions, AR/VR and robotics. Over the
years, there have been growing interests in the pose estima-
tion from videos, in which human dynamics has been faith-
fully captured compared to still images. In applications like
intelligent surveillance camera analysis or imitation learn-
ing for robots, thousands of hours videos need to be ana-
lyzed by the deep models, which draws attention to more
efficient approaches [23, 49, 7] to process the frames.

Directly adopting the state-of-the-art models to perform
pose estimation on each frame is sub-optimal as it not only
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Figure 1. We introduce the Motion Adaptive Pose Net, which ex-
ploit the usage of the free of charge yet valuable motion vectors
and motion-compensation residuals from compressed streams to
dramatically boost the efficiency of the video based pose estima-
tion models. Exploiting the readily available motion and residual
information stored in the compressed streams, we obtain state of
the art performance with about half of the computation.

ignores the valuable temporal dynamics embedded across
consecutive frames but also results in huge amount of re-
dundant computations. Recent approaches [19, 20, 41, 25]
adopt temporal modules to model the temporal dynamics
frame by frame, e.g. Recurrent Neural Net [19], LSTM
models [20, 41] and temporal convolution models [25], etc.
However, features from each frame are still extracted in-
dependently without considering the natural coherence be-
tween neighboring frames.

On the other hand, video compression techniques relies
heavily on the temporal coherence to drastically reduce the
size of the videos. The modern standard [30, 29] split the
entire videos into group of pictures (GOP) and only fraction
of frames are encoded in its complete form. For the remain-
ing frames, only sparse motion vectors (MV) and residual
errors (R) are stored. The SOTA pose machines operate
on fully decoded frames while constantly ignore the free of
charge yet valuable motion field encoded in the compressed
streams.

Motivated by the tremendous amount of space savings
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brought by the modern video codec, we explore the us-
age of the compressed streams for efficient pose estima-
tion from videos. The encoded motion field between frames
provide valuable insights for how the pose changes across
frames while the residual errors provides a direct measure-
ment for the quality of the motion vectors used for compres-
sion. Considering the unique properties of these two cost-
free representations, we propose an adaptive pose machine
that dynamically switch between the light MV-warped fea-
tures from a ConvLSTM and the accurate features extracted
from decoded frames, based on the residual errors. When-
ever the model determines motion warped features are reli-
able, the computationally heavy feature extraction stage is
skipped, which offers drastic computation savings.

We validate our models on two widely used datasets and
showcase that with the valuable intermediate representa-
tions during decoding, we could develop 1) efficient opera-
tions that provide relatively reliable features for pose infer-
ence as well as 2) fast verification mechanism on the reli-
ability of the morphed features. As the result, our Motion
Adaptive Pose Net outperform the previous SOTA models
in terms of both the efficiency and the accuracy. In sum-
mary, our contributions are as followed:

- We exploit the internal motion signals and residual er-
rors in compressed videos for pose estimation, which are
free of cost yet preserve valuable motion information.

- A dynamic model is developed to efficiently utilize the
compressed signals, which drastically reduce the computa-
tion costs compared to SOTA models.

- We evaluate our proposed model on two widely used
datasets: Penn Action [48] and Sub-JHMDB [15]. We out-
performs existing methods in both accuracy and efficiency.

2. Related works

2.1. Pose estimation

Most of the existing works on human pose estimation
focus on pose estimation accuracy. Recently, a few works
study the efficiency of pose estimations in videos, either
in terms of the sampling efficiency [3] during training
or the inference efficiency [23, 49], which is consistent
with our work. However, none of them utilize the freely-
available and information-rich representations from com-
pressed videos.

2.1.1 Pose estimation from still images

Traditional methods employ pictorial structures to model
the human skeletons [1, 27, 28, 47, 37] like hierarchical tree
[35, 37]. More recently, the surge of deep learning took the
deep neural net to the center stage. DeepPose [38] intro-
duced a multi-stage network to directly regress the coor-
dinates of joints from the frame, while later works mainly

adopt probabilistic heatmap representations to encode the
joint positions [22, 43, 45, 5]. An encoder-decoder structure
is often employed for deriving joint heatmaps, e.g. hour-
glass model [22] with a balance encoder and decoder, Sim-
ple Baseline [45] with more computations on the encoder
side. The HRNet [34, 40] proposed to maintain high resolu-
tion feature maps in the model to benefit the pose estimation
with higher precision.

Our framework is orthogonal to any single frame pose
estimator. We adopted the Simple Baseline [45] as our basis
model as it allocate most of the computations to the encoder
side, which could be skipped in our framework for certain
frames to reduce the computation.

2.1.2 Pose estimation from videos

Optical flows are often employed as the motion clues to de-
rive pose sequences from the videos [33, 26, 4]. However,
estimating optical flows is computationally heavy, which in-
curs additional computations for video based pose estima-
tion. Recurrent Neural Nets (RNN) have also been inte-
grated into pose machines to learn the pose dynamics from
data. Those models share a general structure of using CNN
to encode every frames sequentially and followed by a tem-
poral model (e.g. RNN[19], LSTM[20], Seq2Seq[6]) to re-
fine the estimations. On the efficiency side, DKD [23] re-
place the heavy flow estimation module or RNN with a light
pose kernel, whereas [49] introduced a frame proposal mod-
ule to determine a set of keyframes for pose estimation and
then interpolate from the estimated key poses.

Our models also focus on the efficiency of pose estima-
tion from video. We introduce the cost-free motion vec-
tors to infuse motion signals. While being readily available,
the motion vectors are often noisy. Therefore, we dynam-
ically determine whether an accurate feature extraction is
required based on the information-rich residual errors. The
explicit and rich signal in residual errors allows us to use an
extremely light ConvNet, comparing to the ResNet series
used in [49], to determine keyframes. The introduced dy-
namic gate determines the computation profile adaptively,
comparing to the interpolation mechanism used in [49].

2.2. Deep learning models on compressed videos

Compressed video formats have only been studied re-
cently in the context of deep learning [44, 32, 2, 12, 11].
CoViAR [44] is one of the pioneers to exploit this modality
for action recognition. Three set of models were indepen-
dently developed on the complete frames, motion vectors
and the residuals respectively to derive the actions. Even
fewer works exploit the usage of compressed information
in the task of object detection [18, 42, 21] and segmentation
from videos [14, 36, 8]. To our best knowledge, we are the
first work to introduce the compressed streams for efficient
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Figure 2. Our pose estimation pipeline consists of two key components: the Motion Compensated ConvLSTM and the Residual Driven
Dynamic Gate. The Motion Compensated ConvLSTM warps the cell and hidden state of the ConvLSTM, facilitating better feature
alignments w.r.t. the dynamic inputs. The gate adaptively determines if feature extraction could be skipped (marked with O) based on the
residual information. The input from the residual maps to the gate are skipped for readability. Both the warping and the gate are much
more efficient than running the ResNet for feature extraction and key frame proposal as in [49], therefore, much computations are saved.

pose estimations from videos. Instead of directly contribut-
ing to the pose estimation accuracy, motion vectors and
residual errors are introduced to construct efficient Motion
Compensated features and dynamically determine the com-
putation profiles respectively, which allows us to achieve
SOTA accuracy while remain low computation complexity.

3. Methods
3.1. Overview

Our Motion Adaptive Pose Net consists of two key com-
ponents: the Motion Compensated ConvLSTM and the
Residual Driven Dynamic Gate. We will briefly cover the
background of video compression in section 3.2 and fol-
lowed by the Motion Compensated ConvLSTM in section
3.3. We will then introduce the Residual Driven Dynamic
Gate in more details in section 3.4. Finally, we explain the
loss function and the training strategy in section 3.5.

3.2. Video compression standards

Video compression aims at reducing the bits storing
the redundant information that exists across the consecu-
tive frames. The efficient storage and distribution of the
videos relies on powerful video codec: H.264/MPEG-4 Part
10/AVC for Advanced Video Coding [30, 29] is one of
the commonly used formats for video compression. The
key components in H.264 standard are residual coding and
block based motion compensation. Motion compensation
refers to the technique to warp the previous frames based
on the motion information, while residual coding refers to
the step of only coding the difference between the warped

frame and the actual frame. With a relatively accurate esti-
mation of the motion field, the difference map is sparse and
efficient for storage. For the efficiency of encoding, block
based motion estimation is used, which assumes all pixels in
a block follow the same motion vector with variable block
sizes ranging from 4× 4 to 16× 16. Combining these two
techniques, massive bits could be saved from the raw se-
quences. However, the block simplification results in nois-
ier motion field compared to traditional flows fields, which
inspires us to further introduce the dynamic gate mechanism
to compensate the errors.

More specifically, the H.264 standard splits the videos
into Group of Pictures (GOP), which are further split into
intra frame (I-frame) and the predictive inter frame (P-
frame). The I-frames is self-contained and requires more
bits to encode. The P-frames, on the other hand, only stores
the motion vectors and the residual errors with respect to a
previous frame. To decode the P-frames, the codec warps
the previous reference I-frame/P-frames Ft−1 with the mo-
tion vector MVt and then adds the residual errors Rt.

Ft = Warp(Ft−1,MVt) + Rt (1)

3.3. Motion Compensated ConvLSTM

Inspired by ConvLSTM [31, 42], we design our Motion
Compensated ConvLSTM with adaptive inputs. To assist
the learning of temporal dynamics, the free of charge mo-
tion vectors are used explicitly to warp the cell and the hid-
den state of the ConvLSTM to: 1) align the feature maps; 2)
decode pose heatmaps. As shown in Fig. 3, we replace the
linear layers in the LSTM with convolution layers to accom-
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Figure 3. Our Motion Compensated ConvLSTM warps the hidden
state and the cell state based on the cost-free Motion Vectors MVt

at each time step. It further takes dynamic inputs (2D features from
decoded frames or empty map) to update the cell state following
the general LSTM design.

modate the 2D feature maps for decoding the probabilistic
pose heatmaps.

Theoretically, the initial state and the input of the
Motion Compensated ConvLSTM could come from any
single-frame pose estimator. Here we employ the Sim-
ple Baseline [45] as our base feature extractor since it
retains the heavy computations to the encoder side us-
ing pre-trained ResNet models, which could be skipped
based on decisions made by our Residual Driven Dy-
namic Gate. Assuming given a GOP of N frames:
{F0,F1,MV1,R1, ...,FN−1,MVN−1,RN−1}, after esti-
mating poses for the I-frame using the Simple Baseline, the
ResNet features serve as the initialization for the cell state c
and the hidden state h of the ConvLSTM:

x0 = ResNet(F0) (2)
h0 = x0; c0 = x0 (3)

Denoting the input to the ConvLSTM as xt, t ∈
1, 2, .., N − 1 the Motion Compensated ConvLSTM exe-
cutes the following dynamics:

h′t−1 = Warp(ht−1,MVt) (4)
c′t−1 = Warp(ct−1,MVt) (5)
it = Sigmoid(Conv(xt + h′t−1;wi) + bi)) (6)
ft = Sigmoid(Conv(xt + h′t−1;wf ) + bf )) (7)
ot = Sigmoid(Conv(xt + h′t−1;wo) + bo)) (8)
gt = Tanh(Conv(xt + h′t−1;wg) + bg)) (9)
ct = ft � c′t−1 + it � gt (10)
ht = ot �Tanh(ct) (11)

We use it,ft,ot,gt to denote the input gate, forget gate,
output gate and the candidate state following the terminol-
ogy of LSTM. The output of the ConvLSTM ht are fed into

3 deconvolutional layers to decode the heatmapsHj
t of joint

j at time t following Hj
t = Mdeconv(ht).

Notice that the input xt to the ConvLSTM is dynam-
ically determined based on the decision of the Residual
Driven Dynamic Gate. We only employ the ResNet to ex-
tract features from the current frame Ft following xt =
ResNet(Ft) when accurate feature map is deemed nec-
essary, otherwise we set xt = O.

3.4. Residual Driven Dynamic Gate

Figure 4. Our dynamic gate makes discrete decisions ({0,1})
based on all the residual frames within a GOP. The residual
frame explicitly measures the difference between the current frame
and the motion-compensated previous frame, allowing us to use
lightweight gate model here to determine the skipping policy.

Inspired by the fact that the residual errors stores the dif-
ference between the warped frame Warp(Ft−1,MVt) and
the actual frame Ft, to minimize the computation complex-
ity, we introduce the light gate model based solely on the
residual frames to determine the input of the ConvLSTM.

As shown in Fig.4, we first downsample the residual
frames to 1/8 of the original size to reduce the computa-
tion complexity since we care less about the detail of the
difference map. Two consecutive layers of 2D convolutions
are applied to the downsampled residual frames for feature
extraction. The resulting feature maps are globally pooled
to 1D vectors, which are then concatenated with globally
pooled raw residual errors. We introduce the Sinusoidal Po-
sition Encoding (PE) following [39] to inject position infor-
mation. The position injected 1D features are then fed into
temporal convolution layers to enable the GOP level rea-
soning. Finally, we generate decisions from the final logits.

Improved Semantic Hashing: We expect ”hard” de-
cisions instead of the ”soft” attention scores to be able to
completely skip the computation on the selected P-frames.
However, this kind of binary decisions naturally introduce
discontinuity into the models, and therefore prohibit the
gradients to be back-propagated to the earlier layers. To ad-
dress this issue, we adopted the Improved Semantic Hash-
ing techniques, which was first introduced in [16, 17].

During training, we add additional Gaussian noises ε
with zero mean and standard deviation of 1 to the predicted
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logits g from the gate output, which encourages the gate to
explore more space randomly. Then two vectors are com-
puted from the noise contaminated logits gε = g + ε:

gc = σ′(gε) and gd = 1(gε > 0) (12)

σ′ corresponds to the saturating sigmoid function:

σ′(x) = max(0,min(1, 1.2σ(x)− 0.1)) (13)

where σ is the original sigmoid function. Here, the gc
remains continuous differentiable almost everywhere while
gd is the binarized discrete decision with value {0, 1},
which is non-differentiable.

Following [16, 17], we considers the gradient of gc with
respect to gε an approximation of the gradients for updat-
ing the parameters from the discrete gate gd. This gra-
dient replacement operation could be realized by gd =
gd + gc − gc.detach() in PyTorch notations. During train-
ing, we randomly blend the continuous gate output gc and
the discrete gate output gd with equal probabilities. Denote
the final output of the gate as gmix, the input to the ConvL-
STM becomes:

xt = ResNet(Ft) · gmix (14)

During inference, we skipped the Gaussian Noise sam-
pling step and directly use the the discrete output, i.e.
gmix = 1(g > 0).

3.5. Training Strategy and loss

Benefiting from the simpleness of the improved semantic
hashing, the loss function takes the following form:

L =
1

Nj

N∑
t=1

J∑
j=1

(H̃j
t −H

j
t )

2 + λ
||gmix||1

c
(15)

where λ controls the relative weights between the mean
squared error on the heatmaps and the second l1 error on the
activation of the gates. We use the l1 term to encourage the
sparsity of the activation, leading to fewer frames needed
for feature extraction. When different λ is used, the loss
balance the trade off between the accuracy and efficiency
during training, resulting in models with diverse computa-
tion complexities and overall accuracy.

For model training, we first train the pose encoder, Mo-
tion Compensated ConvLSTM and the Residual Driven
Gate separately and then jointly finetune them. When train-
ing the gate independently, we freeze the rest of the models.

4. Experiments
4.1. Dataset and evaluation metrics

Penn Action [48] is a large scale unconstrained video
based dataset covering the 15 daily activities of human be-
ings. It contains 2326 video sequences in total, out of which
1258 videos are separated for training and the rest are re-
served for testing. The resolutions of the videos are within
640×480 with an average duration of 70 frames. Rich anno-
tations are provided in addition to the action labels, includ-
ing the 2D poses, human keypoints visibility and bounding
boxes.

Sub-JHMDB [15] contains 316 videos of 11, 200
frames in total and 12 different action categories. It pro-
vides annotations for 15 body joints along with the puppet
flow and mask for each frame. 3 splits are provided for per-
formance estimation. Following the protocol developed by
[33, 20, 23, 49], we independently train our models on each
split and reports the average performance over the 3 splits.

Following the previous work [33, 20, 23, 49], we adopted
the Percentage of the Correct Keypoints (PCK) to evaluate
our models. A body joint is considered to be correct if it
falls into a range of βL pixels to the ground truth positions.
L is defined as the maximum between the height and the
width of the subject’s bounding box while β controls the
thresholds for different precision requirements. We set it to
0.2 following the previous works [33, 20, 23, 49].

4.2. Implementation details

We first encode the dataset to videos with FFmpeg [9]
and then employ the FFmpeg again to retrieve the encoded
motion vectors and residual errors associated with each
P-frame. Following [44], we use the MPEG-4 encoded
videos, in which each GOP starts with an I-frame and then
followed by 11 P-frames in general. For the last GOP within
each video, we pad it to 12 frames with dummy frames.

Following [20, 49, 23], We crop the I-frame, P-frame,
motion vectors and the residual frame using the provided
bounding box for Penn Action. For Sub-JHMDB, we gen-
erate the bounding boxes from the puppet mask following
[20]. Each GOP shares the unique bounding box, which is
the mean bounding box between the I-frame of the current
GOP and the next GOP. The cropped frames are resized to
256 by 256. Please refer to the supp. for more details.

4.3. Ablation Studies

4.3.1 Usage of compression representation

We first conduct ablation studies on the Penn Action dataset
to analyze the efficacy of few important design choices, in-
cluding the Motion Compensated ConvLSTM as well as the
Residual Driven Gate. To verify the intuition that motion
vector and motion compensated residuals provide free of
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Table 1. Ablation study on the usage of the compressed information. Introducing the motion compensation mechanism into the ConvLSTM
provides us with 2% PCK improvements using almost no extra computations compared to the baseline a. The Residual Driven Dynamic
Gate based on residuals (baseline e) raises 14% fewer frames for the computationally heavy feature extractions, compared to baselines d
using P-frames for the input, which greatly reduces the computation. Please refer to the section 4.3.1 for the detailed experiments setup.

ID FP Warp Gate Head Sho. Elb. Wri. Hip Knee Ank. Mean Keyframe GFLOPs
a × × × 95.8 95.6 91.1 87.5 96.8 96.0 94.8 93.8 8.3% 1.52
b × X × 98.3 98.0 93.8 90.3 97.8 97.2 95.8 95.8 8.3% 1.54
c X X × 99.2 98.8 97.5 97.0 98.6 98.1 97.7 98.1 100% 10.32
d X X FP 98.8 98.6 96.7 95.9 98.2 97.8 97.3 97.5 43.2% 5.36
e X X Res. 98.6 98.4 96.9 95.7 98.5 98.1 97.7 97.7 29.0% 4.10

Table 2. Ablation study on design of the gate on Sub-JHMDB. At the similar accuracy, with temporal models and Positional Encoding
design, our models could outperform the baseline with 10% less frames for feature extraction.

Temporal P.E. Head Sho. Elb. Wri. Hip Knee Ank. Mean Keyframe GFLOPs
× × 98.2 97.3 91.7 85.7 99.2 96.6 92.1 94.8 45.3% 3.14
X × 98.2 97.3 91.6 84.9 99.2 96.6 92.2 94.6 38.7% 2.84
X X 98.2 97.4 91.7 85.2 99.2 96.7 92.2 94.7 35.2% 2.70

Figure 5. Relationships between PCK w.r.t. the percentage of frames
selected as Keyframes for feature extraction on Penn Action. The ra-
dius corresponds to the computation complexities. Around 35% of frames
could be dropped without affecting the PCK much. To maintain the SOTA
0.975 PCK, only 25% frames are necessary. This indicates the huge com-
putation redundancies to perform pose estimation on each frame.

cost yet valuable representations for efficiently decoding the
poses for each frame, we devise the following experiments
as shown in Table 1 using the ResNet34 as the encoders:

a: In this experiment, only I-frame is employed to extract
pose related features, which are then fed into the ConvL-
STM to learn the temporal dynamics and decode poses for
the following P-frames. Neither motion vectors nor features
from P-frame were provided to the LSTM.

b: Motion information is infused into the temporal mod-
els through internal state warping. Features from the P-
frames are not provided. Instead of extracting features from
motion vectors, we warp the internal state within the Con-

vLSTM using the motion vectors directly, which incurs
minimal amount of extra computation.

c: Motion vectors are explicitly used in the ConvLSTM
to warp the ConvLSTM state as in b. Furthermore, fea-
tures are extracted from each P-frame and always input to
the ConvLSTM. The warped hidden and cell state assist the
alignment between the hidden state and the input features.

d: Based on the models built in experiment c, we ad-
ditionally introduce a dynamic gate to adaptively control if
P-frame features are needed to fed into the LSTM. In this
experiment, the gate takes the actual decoded P-frame as the
input to derive skipping policies.

e: This is the proposed model, where we use the residual
driven dynamic gate to determine whether feature extraction
is necessary for each P-frame, based on the residual frames.
Motion compensation is applied to the ConvLSTM to better
align the features along the temporal dimension.

The efficacy of infusing motion to the ConvLSTM could
be shown by comparing between experiment a, b and c. By
simply warping the hidden state and cell state using the mo-
tion vectors, the mean PCK improved from 93.8 to 95.8.
This performance gain verifies Motion Vector provides use-
ful information when the features from P-frames are omit-
ted. While for experiment c, the accuracy of the models
could be further improved as accurate features from the cor-
responding P-frames are provided. The experiment c serves
as the upper bound of the Motion Adaptive Pose Net.

By comparing experiment d, e, we investigate the effect
of the Residual Driven Dynamic Gate. Compared to the
gate that making decisions based on the fully decoded P-
frames, our Residual Driven Dynamic Gate obtains 0.2%
higher PCK with 14% more frames skipped for feature ex-
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Figure 6. Visualization of the decisions made by the Dynamic Gate and the estimated poses for (a) Penn Action and (b) Sub-JHMDB.
Estimated poses are marked with green while red is for ground truth. Frames selected for feature extraction are marked with boxes in coral.
Each example is organized as decoded frames, motion fields and residual frames from top to bottom. We plot sequences with slow motions
and therefore less activations on top. While in bottom rows, our gate adapts to the more challenging motions and activates more often.

traction. The computation complexity difference will be
magnified when more complex models are used. This is
in line with our intuition that the motion compensation er-
ror (i.e. residual frame) provides a better measurement for
the quality of the motion vectors and has higher information
densities, allowing better decisions to be made by the gate.

4.3.2 Gate design

Our Residual Driven Dynamic Gate also involves a few im-
portant design choices including the temporal convolutions
and positional encoding. We compare the performance of
the gate with or without such designs in Table 2 on Sub-
JHMDB. With about similar accuracy, introducing the tem-
poral convolutions to the gate skips 7% more frames. Fur-
ther adding the Positional Encoding could allow us to skip
around 4% more frames. Note that without temporal con-
volution and position encoding, the gate essentially makes
decision for each frame based on the residual error from this
frame only. Compared to using all P-frames in a GOP, this
option is appropriate for low-delay real-time applications
with only a small increase in computational cost.

Introducing the temporal convolutions allows the gate to
reason based on neighbouring motion compensated residu-
als. Intuitively, with limited chances to extract features from
the actual frames, checking those frames with local max-
imum errors will bring max returns. Furthermore, adding
the Positional Encoding allows the gate to have a sense
on the distance to its neighbouring features and its abso-
lute distance to the first I-frame. Higher probabilities there-
fore could be assigned to those frames that are relatively far
away from the first I-frame.

4.3.3 Gate weight λ

By varying the weight λ, we could control the relative
weight between the pose estimation accuracy and the num-

ber of activation in Eq. 15 during training. As a result, we
could obtain models with diverse complexity profiles and
performances. We plot the relationships between the com-
putation complexities and the pose estimation accuracy in
Fig. 5 for Penn Action dataset. As indicated in the plot, ap-
plying the uniform computation architectures on each indi-
vidual frame would result in huge amount of wastes. Keep-
ing only the selected 65% of frames leads to merely 0.001
drop for PCK. Around 77% of frames could be skipped if
we want to maintain a SOTA PCK of 0.975. Also, as indi-
cated in the plot, maintaining around 30% of frames serves
like the sweet spot for balancing computation reduction and
pose accuracy. The pose estimation accuracy drops more
significantly when less than 30% of frames are kept.

4.4. Comparisons with state-of-the-arts

Finally, we compare both the accuracy and the efficiency
of our models with the SOTA and report the results in Ta-
ble 3 and Table 4. Our Motion Adaptive Pose Net achieves
the highest PCK yet maintains the lowest computation pro-
files. Compared to the previous state-of-the-art, we obtain
around 0.2% to 0.3% improvements in PCK with only 1/2
of the computation on both datasets using the ResNet18 as
the backbones. We also include the result of our Motion
Adaptive Pose Net using the same ResNet34 backbone as
[49]. Compared to [49], we could further reduce the com-
plexity, while improving the PCK by 0.3%. The savings
in computation complexity is largely due to the explicit er-
ror map stored in the residuals, allowing us to use signifi-
cantly lighter modules for our frame selection gate. While
in KFP[49], ResNet based backbone has to be applied to
each frame for feature extraction and followed by key frame
proposal. Between our models using the ResNet34 vs.
ResNet18 as the backbone, although the ResNet34 based
model skipped more frames, the overall complexity is still
2x the Resnet18 model, while producing similar accuracy.
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Table 3. Results on Penn Action dataset. Our Motion Adaptive Pose Net outperforms the SOTA models in both the efficiency and accuracy.
Comparing to the KFP[49], we obtain 0.3% higher accuracy with 8% less keyframes. Exploiting the more efficient compressed signals, we
outperform the SOTA models with around a half of computation.

Method Head Sho. Elb. Wri. Hip Knee Ank. Mean Keyframe GFLOPs
Nie et al.[46] 64.2 55.4 33.8 22.4 56.4 54.1 48.0 48.0 N/A -
Iqbal et al.[13] 89.1 86.4 73.9 73.0 85.3 79.9 80.3 81.1 N/A -
Gkioxari et al. [10] 95.6 93.8 90.4 90.7 91.8 90.8 91.5 91.9 N/A -
Song et al. [33] 98.0 97.3 95.1 94.7 97.1 97.1 96.9 96.8 N/A -
Luo et al. [20] 98.9 98.6 96.6 96.6 98.2 98.2 97.5 97.7 N/A 70.98
DKD(smallCPM) [23] 98.4 97.3 96.1 95.5 97.0 97.3 96.6 96.8 N/A 9.96
baseline [45] 98.1 98.2 96.3 96.4 98.4 97.5 97.1 97.4 N/A 11.96
DKD(ResNet50) [23] 98.8 98.7 96.8 97.0 98.2 98.1 97.2 97.8 N/A 8.65
KFP(ResNet34) [49] 98.2 98.2 96.0 93.6 98.7 98.6 98.4 97.4 38.0% 4.68
Ours(ResNet34) 98.6 98.4 96.9 95.7 98.5 98.1 97.7 97.7 29.0% 4.10
Ours(ResNet18) 98.9 98.7 96.9 96.3 98.4 98.0 97.4 97.7 29.7% 2.46

Table 4. Results on Sub-JHMDB dataset. The results are average from the 3 splits. Exploiting the more efficient compressed signals, we
outperform the SOTA models with around half of computation. Furthermore, this experiment indicates that the Residual Driven Gate could
develop an effective skipping policy with relatively small amount of data.

Method Head Sho. Elb. Wri. Hip Knee Ank. Mean Keyframe GFLOPs
Park et al.[24] 79.0 60.3 28.7 16.0 74.8 59.2 49.3 52.5 N/A -
Nie et al. [46] 83.3 63.5 33.8 21.6 76.3 62.7 53.1 55.7 N/A -
Iqbal et al. [13] 90.3 76.9 59.3 55.0 85.9 76.4 73.0 73.8 N/A -
Song et al. [33] 97.1 95.7 87.5 81.6 98.0 92.7 89.8 92.1 N/A -
Luo et al. [20] 98.2 96.5 89.6 86.0 98.7 95.6 90.0 93.6 N/A 70.98
DKD(ResNet50) [23] 98.3 96.6 90.4 87.1 99.1 96.0 92.9 94.0 N/A 8.65
baseline [45] 97.5 97.8 91.1 86.0 99.6 96.8 92.6 94.4 N/A 11.96
KFP(ResNet18) [49] 94.7 96.3 95.2 90.2 96.4 95.5 93.2 94.5 40.8% 4.68
Ours(ResNet18) 98.2 97.4 91.7 85.2 99.2 96.7 92.2 94.7 35.2% 2.70

Therefore the ResNet18 backbone is a better choice overall.

4.5. Visualization

We further visualize the decision made by the gate along
with the predicted pose for selected GOPs in Fig. 6. Our
models derive accurate poses from the frame sequences
while the gate is only sparsely activated for frames with lo-
cally large residual errors, which coincides with our moti-
vations to design the dynamic gate based on residual errors.
As a result, only a fraction of frames are used to extract
accurate features, while the remaining simply use the effi-
cient motion compensated features, which leads to signifi-
cant savings in computation. More results are in the supp.

5. Conclusion and future works
We develop the novel Motion Adaptive Pose Net to ef-

ficiently exploit the cost-free motion vectors and motion-
compensation residuals from the compressed streams for
pose estimation. A Motion Compensated ConvLSTM is

proposed to spatially align the hidden and cell states over
time and take dynamic inputs. Furthermore, an adaptive
gate module is introduced to adaptively skip feature extrac-
tions for P-frames based on the residual information. Eval-
uating on the widely-used Penn Action and Sub-JHMDB
datasets, the proposed Motion Adaptive Pose Net outper-
forms the SOTA models in PCK with significantly less
computations. We hope this work could further inspire
more studies on the usage of compressed signals for human
pose estimation from videos.

In the future, we plan to explore more general frame-
works for multi-person pose estimation from compressed
videos. Theoretically, when treating each subject individ-
ually, our current framework could be applied to multi-
person setups. However, this will incur different compu-
tation profiles for different subjects within the same frame
instead of one global profile for the entire frame. We plan
to develop an unified bottom up pose estimation model for
multi-person scenarios as the future extension.
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