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Abstract

Despite exciting progress in pre-training for visual-
linguistic (VL) representations, very few aspire to a small
VL model. In this paper, we study knowledge distillation
(KD) to effectively compress a transformer based large VL
model into a small VL model. The major challenge arises
from the inconsistent regional visual tokens extracted from
different detectors of Teacher and Student, resulting in the
misalignment of hidden representations and attention dis-
tributions. To address the problem, we retrain and adapt
the Teacher by using the same region proposals from Stu-
dent’s detector while the features are from Teacher’s own
object detector. With aligned network inputs, the adapted
Teacher is capable of transferring the knowledge through
the intermediate representations. Specifically, we use the
mean square error loss to mimic the attention distribution
inside the transformer block, and present a token-wise noise
contrastive loss to align the hidden state by contrasting with
negative representations stored in a sample queue. To this
end, we show that our proposed distillation significantly im-
proves the performance of small VL models on image cap-
tioning and visual question answering tasks. It reaches
120.8 in CIDEr score on COCO captioning, an improve-
ment of 5.1 over its non-distilled counterpart; and an accu-
racy of 69.8 on VQA 2.0, a 0.8 gain from the baseline. Our
extensive experiments and ablations confirm the effective-
ness of VL distillation in both pre-training and fine-tuning
stages.

1. Introduction

There have been exciting progress in visual linguis-
tic (VL) pre-training to learn omni-representation mod-
els [44, 60, 9, 64, 83, 42] which could benefit a number
of downstream tasks (i.e. , image captioning, VQA, image
retrieval, etc.). The success can largely be attributed to
the self-attention-based [68] transformer architecture, e.g. ,
BERT [14], which is effective in learning from image-text
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Figure 1: Overview of our proposed VL distillation schema. The
VL model typically contains a region feature extraction module
and a multi-modal transformer module. To have an aligned input,
we adapt the Teacher VL model based on the region proposals
from Student’s region feature extractor. The VL distillation is then
performed in both the pre-training stage and the fine-tuning stage.

pairs at scale. So far, much of the work has focused on
large models that suffer from high latency and large mem-
ory footprints at the time of inference, which limits their
deployment to resource constrained edge devices for real-
world applications.

As one of the effective techniques to compress large
models, knowledge distillation (KD) [25, 6] was proposed
by injecting the knowledge from a strong Teacher model
into a smaller Student model without losing too much gen-
eralization power. Typically, the knowledge is transferred
though mimicking the output logit [25, 57, 17], reducing
the divergence of feature maps [80, 27, 78], or learning the
intermediate layer representations [36, 1], etc.

In recent years, KD has been proven effective in com-
pressing language models. For instance, Kim et al. [35]
adopt KD for sequential model compression. In the trans-
former based language model, DistillBERT [57] reduces
the size of the BERT-base model by 40% using a cosine
embedding loss on the basis of hidden embedding in the
transformer block, and a soft-target probability loss. Tiny-
BERT [34], MobileBERT [63] and MiniLM [72] further
highlight the importance of minimizing the self-attention
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distributions across Teacher and Student networks. In par-
ticular, [10] visually shows that attention maps in BERT
capture substantial linguistic knowledge and syntactic re-
lations that provide critical information during the distilla-
tion [34].

Heretofore, these advances have not been carried over to
VL model compression. We identify the major challenges
that prevent us from applying these techniques directly to
VL distillation: Most existing VLP works [83, 42] use pre-
trained object detector (e.g. , Faster-RCNN [54]) to extract
regional features as visual tokens then feed them into the
multi-modal transformer network for VL pre-training. A
smaller VL model usually uses a lightweight detector for
faster inference (e.g. , EfficientNet [65] based detector is
adopted in [71] as visual feature extractor) that may be dif-
ferent from Teacher’s detector. The object proposals from
the two different detectors are usually very different, and
there is no easy way to obtain the semantic correspondence
between the two sets of object proposals. It is therefore
unable to align the attention distributions or hidden embed-
dings between Student and Teacher.

To address the aforementioned challenges, we propose a
set of strategies to enable distillation of VL models. First,
instead of using object proposals from two different de-
tectors, we use the same set of object proposals, obtained
from Student’s lightweight detector for the visual token
extraction of both Teacher and Student (as shown in Fig-
ure 2). This ensures the semantic correspondence between
the Teacher and Student’s visual tokens. Second, we use a
loss term to have the Student to mimic the Teacher’s self-
attention distribution at the last transformer layer. Third,
We further distill the knowledge from the outputs of the
transformer layers (i.e. , the hidden embeddings). We find
that simply learning from the layer-wise Teacher embed-
ding does not provide adequate supervision for the distil-
lation. Hence, we use a noise contrastive loss to align the
token embeddings by contrasting them with randomly sam-
pled negative embeddings that are held in a sample queue.
Figure 1 gives an overview of our proposed VL distillation
schema, where VL distillation is applied for both the pre-
training and fine-tuning stages. In order to examine the
effectiveness of our VL distillation, we choose the same
compact transformer architecture used in [72, 71], and the
lightweight object detector as in [71], but leverages knowl-
edge distillation techniques to facilitate the training of the
small VL model (dubbed as DistillVLM ). We show that our
DistillVLM achieves a comparable performance to a large
VL model, and clearly outperforms its non-distilled coun-
terpart [71].

To summarize our contributions:
• For the first time, we propose VL distillation, a

technique that leverages knowledge distillation to
facilitate training of smaller VL models.

• Compared to non-distilled VL model pre-training, VL
distillation offers a significant boosting in performance
for VL tasks such as image captioning and visual
question answering: DistillVLM achieves 120.8 in
CIDEr score on COCO captioning [43] and 69.8 in
accuracy on VQA [20] tasks, which are 5.1 more or
0.8 higher than the VL pre-training baselines.

• We provide extensive ablations of DistillVLM , and
systematically analyze the effect of various KD strate-
gies. This provides insights for future research on VL
model distillation.

2. Related Work

Visual-linguistic Pre-training. Following the promi-
nent progress in the transformer-based [68] pre-
training in natural language [14, 51, 38, 5, 11, 52],
visual-linguistic pre-training models, either for im-
age+text [44, 64, 9, 42, 26, 81, 41, 18, 40, 45] or for
video+text [61, 40, 46, 84, 39]. These representations
have achieved great success when transferred to a number
of downstream V+L tasks, e.g. , image/video caption-
ing [3, 79, 70, 76, 26, 15], VQA [21, 4, 19], textual
grounding [56, 16, 24, 82], etc. Most existing VL models
are designed in a two-step fashion: a pre-trained object
detector is used to encode the image as set of regional
features (as offline visual tokens) followed by pre-training
on a large scale visual-linguistic corpus using tasks like
masked language modeling, image-text matching or
masked region modeling losses. In particular, Zhang et
al. [81] demonstrate the significant role of visual features
in VL pre-training and looks for more effective visual
representations from a larger object detector. Li et al. [42]
shows that a larger transformer VL model can learn better
from larger VL corpus. However, the marginal costs are
greater than the marginal benefits. Recently, Wang et
al. [71] propose a small VL model called MiniVLM that
uses a lightweight visual feature extractor and smaller
transformer to reduce the model size by 73% and maintain
good accuracy on VL tasks. Nevertheless, the cost of
pre-training on MiniVLM is associated with sub-optimal
efficiency: it requires a large amount of training data
(14M) to learn a good representation. Thus, it is worth
exploring a more efficient way to train small VL models.
There are other lines of VL pre-training works in which
grid features [29, 32] are extracted from the convolutional
layers without the proposal computation. [53, 50, 13] learn
visual representation from scratch using Convolutional
Neural Network as image encoder with a transformer for
VL pre-training on a large amount of image-text pairs.
The notion of VL distillation is not limited to just the
two-stage VL models, it can potentially benefit other types
of transformer based VL models as well.
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Figure 2: Illustration of our proposed DistillVLM architecture. The lightweight detector extracts the region features, and the region
proposals are injected into the strong detector so that the region features are aligned between Teacher and Student. The Teacher transformer
network is adapted with the new input before distillation. The Student VLM is distilled based on the hidden embedding matching and
attention distribution alignment.

Knowledge Distillation has been applied to model com-
pression task across different domains with its main goal
being to transfer the “knowledge” f(xi) of sample (xi, yi)
from a strong Teacher network (T ) to the Student network
(S) by minimizing the divergence between them:

L =
1

N

N∑
i=1

(
LS(xi, yi) + LKD

(
fS(xi), f

T (xi)
))

, (1)

where LS(·) refers to the original supervision signal(s) on
the Student. In practice, this term can possibly be re-
placed by the exclusive use of LKD. Depending on the
type of knowledge transferred, LKD can derive from soft
cross-entropy, mean squared error (MSE) function or KL-
divergence. For example, [25, 6] transfer the learned knowl-
edge by mimicking the mass function of the output prob-
ability across classes, or by minimizing the divergence of
intermediate features [78, 36, 28, 77, 73]. [67, 67, 17]
propose contrastive distillation for visual representation
learning. In addition, remarkable advances have been
made in knowledge distillation for language model com-
pression (i.e. , BERT [14]), and these works show that
mimicking the distribution of self-attention and intermedi-
ate representations of transformer blocks increases perfor-
mances [57, 33, 63, 75] for downstream tasks. In particular,
in the transformer-based language model distillation, Dis-
tillBERT [57] proposes to train the small BERT by mim-
icking the Teacher’s output probability of masked language
prediction and the embedding features. TinyBERT [33] and
MobileBERT [63] leverage the layer-wise attention distri-
butions for distillation with MSE function. [72] suggests

distilling on the last transformer layer and bringing ex-
tra flexibility for training. [62, 8] also use the contrastive
distillation in transformer based language model compres-
sion. [17, 62] propose using a sample queue to store history
embeddings and show that contrasting with more negative
samples is beneficial for knowledge distillation.

3. Visual-linguistic Knowledge Distillation

Compared to knowledge distillation in language models,
VL knowledge distillation requires knowledge transferring
from Teacher to Student in both modalities. We present
DistillVLM for the task of visual-linguistic distillation (the
overall architecture is illustrated in Figure 2), together with
the detailed strategies for our model training.

3.1. Visual Token Alignment

VL pre-training methods such as OSCAR [42] take as
input an image-text pair in the format of Word-Tag-Image
triple (w, q, v), where w and q denote the sequence of cap-
tion embedding and the word embedding of detected object
tags (in texts). To obtain the visual tokens v and object
tags, a set of image regional vectors are extracted from an
object detector. A Faster R-CNN [55] detector pre-trained
on Visual Genome [37] is used to extract the visual fea-
ture vector of each region, which is concatenated with its
regional position coordinates to form a positional-sensitive
region feature vector. This vector is then fed into a linear
projection to ensure that the final vector v has the same di-
mension as the caption/tag embedding. The VL pre-training
can be seen as a semantic alignment process between the
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image regions and the textual units. It is worth mention-
ing that, the top regions to be extracted from the image is
dependent on their associated confidence score output by
the detector [71], which leads to some over-sampled and
noisy visual tokens. Typically, the order of visual tokens
is specified in descending order using the confidence score.
As an alternative to Faster-RCNN, MiniVLM [71] uses a
lightweight detector (i.e. , TEE) in which the backbone is
replaced with EfficientNet [65] and a BiFPN [66] module
is added to generate multi-scale features. These strategies
obviously accelerate inference process, but inevitably also
lead to different visual tokens between the Teacher and Stu-
dent networks during distillation. For this reason, the direct
application of the distillation loss to attention matrices or
hidden representations leads to an invalid transfer of knowl-
edge. Hence, we extract and align the Teacher/Student’s
visual tokens by using the same set of detected bounding
boxes recognized by the lightweight detector, and keep the
same token orders based on their confidence scores (as in
Figure 2). Both the Teacher and Student VLM use the same
object tags from the lightweight detector during the distilla-
tion. Having the Teacher use the visual tokens extracted by
proposals from the lightweight detector may result in small
performance drop. In practice, we address this issue by fine-
tuning/re-training the Teacher VLM using the new visual
tokens (Teacher adaptation).

3.2. Attention Distribution Distillation

One critical component of the transformer block is the
multi-head self-attention module [68]. which enables con-
textualized information to be captured from an input se-
quence. A multi-head attention module outputs a set of at-
tended values:

Attention(Q,K,V) = softmax(
Q ·K√

dk
) ·V, (2)

where Q, K, and V denote query, key and value that are re-
trieved after three independent linear transformations on the
hidden embedding Hi from i-th transformer block, and dk
is the dimension of key as a scaling factor. The dot-product
between key and query after the softmax normalization is
the attention matrix:

A = softmax(Q ·K/
√

dk). (3)

Each transformer block consists of a set of consecutive lin-
ear transformations, which include one multi-head attention
module, a two-layer feed forward network, followed by a
normalization layer, and finally a residual connection.

Previous attempts in language model distillation [33, 63]
have demonstrated the importance of transferring self-
attention matrices, that are believed to contain latent lin-
guistic information, e.g. , syntactic and co-reference relation
of input tokens [10, 31]. [72] shows that using just the last

transformer block’s attention map yields equivalent results,
allowing the Teacher and Student to have a different num-
ber of layers. In the case of the VL pre-training task, Cao et
al. [7] show that certain attention matrices of the pre-trained
VL models contain extensive intra-modal and cross-modal
co-reference relations. These visual-linguistic knowledge is
implicitly encoded, but shows a very promising potential for
VL distillation. We formulate the distillation loss of the at-
tention distribution by minimizing the divergence between
the self-attention matrices of the last layer of the Teacher
and the Student:

LATT =
1

T ·H

T∑
i=1

H∑
j=1

MSE(AS
i,j ,A

T
i,j), (4)

where T , H denote the number of tokens and attention
heads in a transformer. Ai,j is the normalized attention for
i-th token at j-th head. We further study the effects of the
distillation over the attention distribution in ablations.

3.3. Hidden Representation Distillation

Similar to previous works [33, 63], we also use the hid-
den representations for the Teacher and Student alignment
during distillation. In particular, previous efforts formulate
the task as minimizing the divergence of the hidden em-
bedding (H ∈ RT×d) of every Transformer block, whose
objective is as follows:

LHID-MSE =
1

T ·L

T∑
i=1

L∑
j=1

MSE(HS
i,jWh,H

T
i,j), (5)

and L stands for the number of transformer blocks. Wh

is a learnable linear transformation that maps the Student
hidden embedding into the identical dimension of Teacher
embedding. However, there are limitations for such layer-
to-layer alignment method. For example, TinyBERT must
employ a uniform-function mapping to selectively choose
a subset of the layers for learning, and MobileBERT re-
quires the Teacher and Student to have identical number of
layers. Since visual tokens are noisy during the VL dis-
tillation, this also leads to an increased difficulty in align-
ment. Sun et al. [62] propose CoDIR, which takes advan-
tage of the noise contrastive estimation (NCE) loss to align
the Teacher & Student’s hidden representations by contrast-
ing the target instance (hS) with more random instances as
negative samples and aligning with its positive sample (hT ),
h ∈ RdT . Following [22, 17, 62], we employ a pre-defined
instance queue [hT

0 ,h
T
1 · · ·hT

K ] to store K random sampled
embeddings and one positive embedding from the Teacher
network. And the objective of NCE is as:

LHID = −log
exp(hS

i · hT
i /τ)∑K

j=0 exp(hS
i · hj/τ)

, (6)

1431



where τ denotes the temperature hyper-parameter, ⟨·⟩ is
the cosine similarity function. There are different ways
to retrieve hidden representations h, e.g. , [62] uses mean-
pooled token representations as layer-wise summarized em-
bedding. We find that applying the NCE loss to token-wise
embedding leads to better distillation results, as discussed
in Section 4.3. A linear mapping is introduced for the iden-
tical dimension transformation: ϕ : RdS → RdT (dS ,
dT denote the hidden embedding dimension for Student
and Teacher networks). To update the instance queue, we
en-queue the Teacher-derived representation of the current
batch (hT ) and de-queue the earliest stored samples after
the iteration. The introduction of the queue design enables
batch-size independent distillation and allows the compar-
ison with more contrastive samples with limited computa-
tional resources. In ablations, we discuss the effect of en-
larging queue size and other distillation methods. In con-
trast to [22, 62], we store representations from the pre-
trained and frozen Teacher network in the sample queue,
which remain constant during training. This frees us from
the use of momentum encoder like in [17].

3.4. Classification Distillation

The losses mentioned above allow the task-agnostic dis-
tillation during the pre-training stage. In addition, in the
fine-tuning stage, we carry out knowledge distillation that
benefits certain VL downstream tasks. Specifically, most
VL downstream tasks are classification based tasks with
labels, e.g. , image captioning or VQA tasks. Continuing
the distillation at the downstream alleviates the domain gap
brought by different pre-training VL corpus. As in [25],
we minimize the softmax prediction of Student and Teacher
networks and the loss is measured by the cross-entropy:

LCLS = CE(zS/τd, z
T /τd), (7)

where τd refers to the temperature parameter, and we simply
maintain it as a constant 1. zS/zT are the soft label outputs
from Student/Teacher network.

3.5. Training

For the training, we keep the original VL pre-training
objective losses (LVLP) [44] which consist of: masked lan-
guage modeling loss (LMLM), where 15% of the textual to-
kens are masked and replaced with a special token [MASK]
and the VL model is expected to classify these tokens;
Image-text (contrastive) matching (ITM) loss (LITM) where
the model is expected to predict whether the image-text
pair matches. Our final total loss on distillation at the pre-
training stage is the combination of the above:

L = LVLP + αLATT + βLHID, (8)

where α are β are the weights of the loss terms. We find that
LCLS does not obviously contribute to the pre-training stage

so we simply apply it at the fine-tuning distillation stage as:

L = LCE + LCLS + αLATT + βLHID, (9)

where LCE is the original classification task in the specfic
downstream-task. We study the effects of different learning
losses in our ablations.

4. Experiments
In this section, we conduct extensive experiments on

VL distillation both in pre-training and fine-tuning stages.
To evaluate the effectiveness of our proposed distillation
schema, we provide results and ablations for the image cap-
tioning and VQA tasks.

4.1. Datasets

Following [42], we construct our VL pre-training dataset
by combining multiple existing VL datasets. Specifically,
we use Conceptual Captions (CC) [59], SBU captions [47],
training splits of Flicker30k [49], GQA [30], COCO Cap-
tions [43], and VQA-2.0 [20], yielding 4 million unique
images, and 7 million image-text pairs (VL-7M). Both our
Teacher model and DistillVLM are pre-trained on VL-7M
and are then transferred to downstream VL tasks: im-
age captioning on COCO Captions and visual question an-
swering on VQA-2.0. We follow Karpathy’s split1 and
have ∼11k images for training, and 5k/5k images for val-
idation/testing. For the VQA task, we conduct down-
stream fine-tuning and testing on VQA-2.0 dataset, which
consists of 83k images/444k questions for training, 41k
images/214k questions for validation. For a fair compari-
son with previous works, we report results on test-std
and test-dev splits via the online evaluation server2, and
compare ablation results using test-dev split.

4.2. Implementation Details

Visual Representation. Earlier VL pre-training (VLP)
works mostly use Faster R-CNN [3, 54] or even advanced
architecture [74, 83] for visual region representation
extraction. To obtain visual tokens with more semantics,
the object detector for VLP is usually pre-trained on
Visual Genome Dataset [37], which contains 1, 600 object
and 500 attribute categories. Following MiniVLM [71],
we also adopt the EfficientNet [66] based lightweight
object detector (TEE) for visual feature extraction. TEE
reduces 90% of total inference time and has 91% fewer
parameters (86.9M for R101-F vs. 7.5M for TEE). Same
as MiniVLM, we also pre-train the TEE detector on
Object365 [58] and Visual Genome [37] datasets before
the visual representation extraction. We use R101 [23]
based Faster-RCNN and TEE detected proposals for

1https://github.com/karpathy/neuraltalk2
2https://visualqa.org/challenge.html
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Method # Param # I-T Pairs Visual Feat. P. D. F. D. COCO Captioning VQA
B@4 M C S test-std test-dev

UVLP [83] 111.7M 3M ResNeXt101 ✗ ✗ 36.5 28.4 116.9 21.2 70.7 −
OSCARB [42] 111.7M 7M R101-F ✗ ✗ 36.5 30.3 123.7 23.1 73.4 73.2

MiniVLM [71] 34.5M 7M TEE ✗ ✗ 34.3 28.1 116.7 21.3 - -
MiniVLM [71] 34.5M 14M TEE ✗ ✗ 35.6 28.6 119.8 21.6 69.4 69.1

DistillVLM 34.5M 7M TEE

✗ ✗ 34.0 28.0 115.7 21.1 69.0 68.8
✗ ✓ 34.5 28.2 117.1 21.5 69.2 69.0

✓ ✗ 35.2 28.6 120.1 21.9 69.7 69.6

✓ ✓ 35.6 28.7 120.8 22.1 69.8 69.6

Table 1: DistillVLM distills from stronger VL model (as Teacher), and retains high accuracy on COCO captioning task under different
evaluating metrics, regardless of the effect brought by the lightweight visual feature extractor (TEE v.s. R101-F). Our model shows
competitive results comparing to MiniVLM [71], even only half of the image-text pairs (# I-T Pairs) are available for pre-training. The
VL distillation strategy brings consistent improvement in both the pre-training stage (P.D.) and fine-tuning stage (F.D.). All captioning
methods are shown with cross-entropy optimization.

Teacher’s regional visual representation extraction. This
guarantees the semantic correspondence of the input tokens
between Teacher and Student. Prevailing VL pre-training
method like [42] shows that applying object tags in VL
pre-training contributes to the performances. During
distillation, we use consistent object tags detected by TEE
for both the Teacher and Student networks. The lengths
for object tags and visual tokens are 15 and 50, respectively.

VL Pre-training&Distillation. We use a compact trans-
former architecture for the VLP and VL distillation. In
particularly, we follow [72, 71] and adopt a 12-layer
transformer with 12 attention heads and 384 hidden
dimension. For the Teacher model, we use Oscarb [42],
a 12-layer transformer with 12 attention heads and 768
hidden size, pre-trained on the VL-7M corpus for 1M
steps (100 epochs), with learning rate 5e−5 and batch
size 768, using AdamW optimizer.3 Overall, our compact
transformer uses the same architecture as MiniVLM [71],
and it has 34.5M learnable parameters and is 70% less
than Oscarb. For VL distillation, we first adapt the Teacher
VLM by re-training it using the new visual tokens. Then,
we keep the Teacher model frozen without further updating
throughout the VL distillation. In contrast to [83, 42],
weights in DistillVLM are randomly initialized without
inheriting weights from BERT [14]. We adopt a learning
rate at 2e−4 with batch size 768 for pre-training/distillation.
We report and compare the effect of VL distillation with
previous VLP baselines in Table 1. We set τ = τd = 1 and
α = 10, β = 10. Similar results are observed when using
different values. We set the queue size to 4, 096 and further
study the effect of different hyper-parameters in ablations.

Transferring to Downstream Tasks. In order to validate
the efficacy of our proposed VL distillation schema, we
transfer the pre-trained model to VL downstream tasks.
Image captioning and VQA task can be formulated as a typ-

3https://github.com/microsoft/Oscar

ical classification task, which enables direct task-specific
distillation and comparisons in the downstream. We mainly
examine them in this work, while the VL distillation is not
task-specific and can be extended to other VL tasks as well.
We conduct downstream distillation by using the output
logit from downstream fine-tuned Teacher as soft-labels
(LTASK). More details on distillations and ablations for the
downstream tasks can be found at Appendix.

Image Captioning. We evaluate our model by transferring
it to the image captioning task. We fine-tune our model
by randomly masking out 15% of the caption tokens and
impose a classification task to predict the masked token
id using cross-entropy loss. Similar to [14], we trim and
pad textual sentences to the length of 20. At inference,
we recursively feed in [MASK] tokens and predict out
captions one after the other with the beam search size at
1. The performance of captioning models is evaluated via
BLEU@4 [48], METEOR [12], CIDEr [69] and SPICE [2]
metrics. We perform the parameter search in a limited
range: learning rate {2e−5, 5e−6} and epochs {20, 30, 40}.

VQA. For the VQA task, the model must select the cor-
rect answer from the multi-options list given an image and
textual question. We conduct fine-tuning on the VQA-2.0
dataset [20] and report the accuracy on test-std and
test-dev splits. Following [3], we train the VQA model
as a 3, 129-way classification task. We perform a light com-
binatorial parameter search on VQA task within a limited
range: learning rate {1e−5, 5e−5} and epochs {20, 40}.

4.3. Results and Analysis

Table 1 summarizes the results of DistillVLM using
Oscarb as the Teacher model. We list VLP baselines
with larger transformer architectures and stronger visual
representations in the top lines. In particularly, Dis-
tillVLM without VL distillation achieves 34.0 BLEU@4
and 115.7 CIDEr scores with TEE visual representa-
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LVLP LATT LHID
COCO Captioning VQA

B@4 M C S test-dev

✓ ✗ ✗ 33.0 27.3 110.6 20.4 68.5

✓ ✓ ✗ 32.9 27.5 111.8 20.6 68.9

✓ ✗ ✓ 34.0 27.8 114.4 21.1 69.2

✗ ✓ ✓ 33.9 27.8 114.7 21.1 69.2

✓ ✓ ✓ 34.6 27.9 115.6 21.3 69.4

Table 2: Detailed distillation effects based on attention matri-
ces (LATT), hidden hidden embedding (LHID), compared with VL
pre-training losses (LVLP) at pre-training stage. Results are re-
ported after 20 epochs of pre-training/distillation on 7M Image-
Text pairs, then fine-tuned at the downstream (with cross-entropy
optimization only).

tions using VLP [42] (masked language prediction and
image-text matching losses). This is slightly lower than the
performance reported by MiniVLM [71] pre-trained on VL-
7M: 116.7 CIDEr score vs. our reproduced 115.7, which
might be caused by the sub-optimal hyper-parameters. The
apparent performance gaps between larger and smaller
VLP models indicate the importance of visual represen-
tations so that the VL distillation is desired on small VL
architectures. Notably, when equipped with downstream
distillation, it performs better on COCO captioning dataset,
1.4 more on CIDEr, and 0.5 more on BLEU@4 scores.
Downstream distillation on VQA task show marginal
improvement: 69.2 vs. 69.0. We conjecture that this is
mainly because the classification distillation on YES/NO
or counting type of question does not provide better
guidance, that the answers in the VQA task are mostly
irrelevant/mutually exclusive. However, VL distillation
in the pre-training stage increases the performances of
DistillVLM on both captioning and VQA tasks consistently
across all metrics: ∆ = 1.2% at B@4, 4.4 at CIDEr and
0.7 higher on VQA test-std split. Compared to its non-
distilled counterpart MiniVLM [71], DistillVLM shows
better results with only half the size of VL-corpus. To
this end, the combination of the VL distillation in both
pre-training and fine-tuning stage achieves the best results
of DistillVLM , which shows comparable performances
with Oscarb: 120.8 vs. 123.7 with 70% fewer parameters.
To learn more about DistillVLM , we conduct ablations on
different designing options and examine the advantages of
distillation at different epochs and data usage at Section 4.3.

Distillation over Different Losses. Table 2 presents the
individual contribution of each distillation loss (attention
matrices, hidden embedding) on the basis of the VL pre-
training. The experiments for VL Pre-training/Distillation
are trained for 20 epochs using identical hyper-parameters
as before. From the table, we have the following observa-
tions: First, the non-distilled baseline alone reaches 110.6
CIDEr score for image captioning and 67.2 accuracy on

Methods
COCO Captioning VQA

B@4 M C S test-dev

VL Pre-training [42] 33.0 27.3 110.6 20.4 68.5

Textual Distill 34.1 27.7 114.3 20.9 69.0

MSE + Layerwise 34.2 27.8 114.8 21.1 69.2

MSE + Last-layer∗ 33.3 27.6 112.4 20.7 68.5

MSE + Last-layer 34.3 27.8 115.3 21.2 69.4

NCE + Last-layer∗ 34.3 27.9 115.4 21.2 69.3

NCE + Last-layer 34.6 27.9 115.6 21.3 69.4

Table 3: Ablation of DistillVLM using different distillation
strategies, i.e. , layer-to-layer distillation or last-layer distilla-
tion, using mean-square-error distance (MSE) or noise-contrastive
(NCE) loss. Textual Distill represents applying the distillation
only to the textual tokens without using visual tokens. Captioning
results are reported after 20 epochs of training/distillation on VL-
7M with cross-entropy optimization. ∗ is the result using mean-
pooled token embedding for distillation.

VQA benchmark (shown in the first line of Table 2). By
mimicking the distribution of attention, minor improve-
ments are made, that is 1.2 for CIDEr and 0.4 for VQA
scores respectively. Similarly, we observe the same trend
when combining VLP with hidden embedding distillation.
Compared with the VLP baseline, hidden embedding distil-
lation significantly improves the performance under all cri-
teria, demonstrating the efficacy of the alignment schema.
In the end, the combination of all the loss terms gives the
best performance, confirming that our proposed attention
and hidden embedding distillation losses are complemen-
tary to each other. We find that using distillation objective
alone also produces satisfactory performance, showing that
knowledge transfer from distillation is to some extent equiv-
alent to VL pre-training loss.
Different Distillation Strategies. Table 3 shows the re-
sults of distillation using different strategies, i.e. , layer-to-
layer distillation vs. last-layer distillation, and MSE loss vs.
NCE loss. We first study the effect of our proposed vi-
sual token alignment by applying attention distribution and
hidden embedding distillation loss only to the textual to-
ken part: e.g. , using the “textual-to-textual” attention sub-
matrices and their corresponded textual token embedding.
The second line in Table 3 is the result of textual distilla-
tion, which shows a slight improvement over the VLP base-
line. Following previous language distillation works [33],
we also conduct the layer-to-layer attention and hidden dis-
tillation between Teacher and Student, and observe infe-
rior performances than the last-layer strategy. Beyond that,
the layer-to-layer method can also be severely limited by
their architectural structures [72] (e.g. , different number
of layers and attention heads). “NCE + Last-layer” rep-
resents the results of DistillVLM using our proposed con-
trastive objective function that uses negative samples for
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# Neg.
COCO Captioning VQA

B@4 M C S test-dev

1 33.3 27.6 112.5 20.7 68.5

128 33.6 27.7 112.7 20.9 68.9

512 33.7 27.8 113.3 21.0 68.8

1, 024 34.1 27.9 114.7 21.2 69.1

4, 096 34.3 27.9 115.4 21.2 69.3

Table 4: Effect of the number of negative samples for noise con-
trastive estimation loss. A larger queue size incrementally con-
tributes to the distillation performance. When queue size ap-
proaches 1, the NCE loss is approximately the MSE loss with an
only positive anchor from the Teacher. All the experiments are
trained for 20 epochs using sample queues in different sizes on
VL-7M, and then transferred to downstream.

the alignment learning. We find that contrastive learning
leads to slightly better results than MSE loss. To this end,
we study the differences in using token-wise embedding
and the mean-pooled layer-wise embedding for contrastive
learning and observe that learning with token-wise embed-
ding gives much better results, which is a different obser-
vation from [62]. However, applying the mean-pooled em-
bedding with NCE loss mitigates this issue and gives on
par results with token-wise NCE method (see last two lines
in Table 3). We further provide the ablations of VL dis-
tillation for the downstream tasks in the appendix. In Ta-
ble 4, we study the effect of using more negative samples
in NCE loss. We observe that increasing the size of the
sample queue can steadily contribute to the performances
of VL models. Especially, when we only use one nega-
tive sample, the model reaches 112.5 CIDEr score, which
aligns with the MSE results (112.4 CIDEr score) at Ta-
ble 3. When increased to 4, 096, the model performs best
across all metrics. While continuing to use more negative
samples may produce better results, we just set the size of
the sample queue as 4, 096 in our experiments. Note that
our queue stores the random sample representations from
Teacher VLM, which remain consistent throughout the dis-
tillation process. This also implies the feasibility of lever-
aging in-batch samples for contrastive learning, while the
queue design relieves the model from batch-size require-
ments and allows the use of more negative samples.

Data-efficient VL Distillation. One critical aspect of VL
distillation for real-world application is its ability to effi-
ciently train smaller VL model with limited cost, i.e. , with
a smaller VL corpus (data scarcity) and less converging
epochs (training efficiency). To further assess whether VL
distillation can cope with these challenges, we perform VL
distillation at the pre-training stage when trained with 1, 5,
10, 20, 50, 100 epochs and compare their results with VLP.
In addition, as pointed by [45] that specific partial VL data
might contribute more to performances, we propose to con-
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Figure 3: Top: Captioning CIDEr score gain from VL dis-
tillation under different epochs (1, 10, 20, 50, 100) in pre-
training/distillation on VL-7M; Bottom: Using 1%, 10%, 20%,
50% and 100% of VL-7M image-text pairs with 20 epochs of pre-
training/distillation.

duct VL distillation/pre-training using evenly sampled par-
tial data (1%, 5%, 10%, 20%, 50% and 100% of VL-7M).
These also help to verify whether DistillVLM benefits from
more converging epochs and more VL data. Several conclu-
sions can be drawn from the above results. First, VL distil-
lation brings a consistent CIDEr gain across different train-
ing epochs. Non-distilled VL pre-training method achieves
only 99.8 CIDEr score with 1 epoch of training, while Dis-
tillVLM reaches 103.1 (see Figure 3). Notably, CIDEr score
of DistillVLM increases steadily with more training epochs.
When it comes to using different percentages of VL data,
we also see a similar trend. In the most extreme case, with
only 1% of VL-7M corpus available, VL pre-training pro-
duces 89.1 CIDEr score, 4.1 lower than the VL distillation.
With more image-text pairs, VL distillation obviously gives
even better results: 8.6 higher for 10% and 5.0% higher for
100%. This shows that regardless of the amount of data
available, VL distillation provides more effective and infor-
mative supervision than the normal pre-training strategy.

5. Conclusion

We have proposed the first VL distillation, which lever-
ages the knowledge distillation technique to compress large
visual-linguistic models. Our experiments confirmed the
validity of VL distillation from several aspects: Compared
to the non-distilled VL pre-training method, VL distillation
not only brings better performances, it is also more data ef-
ficient. Our extensive ablations also verified that our VL
distillation strategies are simple yet effective.
Acknowledgements: Z. Fang and Y. Yang are partially supported
by the US National Science Foundation project #1750082.
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