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Abstract

We present QueryInst, a new perspective for instance
segmentation. QueryInst is a multi-stage end-to-end sys-
tem that treats instances of interest as learnable queries,
enabling query based object detectors, e.g., Sparse R-
CNN, to have strong instance segmentation performance.
The attributes of instances such as categories, bounding
boxes, instance masks, and instance association embed-
dings are represented by queries in a unified manner. In
QueryInst, a query is shared by both detection and segmen-
tation via dynamic convolutions and driven by parallelly-
supervised multi-stage learning. We conduct extensive ex-
periments on three challenging benchmarks, i.e., COCO,
CityScapes, and YouTube-VIS to evaluate the effectiveness
of QueryInst in object detection, instance segmentation, and
video instance segmentation tasks. For the first time, we
demonstrate that a simple end-to-end query based frame-
work can achieve the state-of-the-art performance in vari-
ous instance-level recognition tasks. Code is available at
https://github.com/hustvl/QueryInst.

1. Introduction
Instance segmentation is a fundamental yet challenging

computer vision task that requires an algorithm to assign
a pixel-level mask with a category label for each instance
of interest in image. Prevalent state-of-the-art instance seg-
mentation methods are based on high performing object de-
tectors and follow a multi-stage paradigm. Among which,
the Mask R-CNN family [22, 25, 32, 5, 10, 44] is the most
successful one, where the regions-of-interest (RoI) for in-
stance segmentation is extracted via a region-wise pooling
operation (e.g., RoIPool [23, 20] or RoIAlign [22]) based on
the box-level localization information from the region pro-
posal network (RPN) [41], or the previous stage bounding-
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Figure 1: AP vs. FPS on COCO test-dev. QueryInst out-
performs current state-of-the-art methods in terms of both
accuracy and speed. The speed is measured using a single
Titan Xp GPU.

box prediction [4, 5]. The final instance mask is obtained
via feeding the RoI feature into the mask head, which is a
small fully convolutional network (FCN) [35].

Recently, DETR [7] is proposed to reformulate object
detection as a query based direct set prediction problem,
whose input is mere 100 learned object queries. Follow-up
works [63, 44, 45, 19, 60, 16] in object detection improve
this query based approach and achieve comparable perfor-
mance with state-of-the-art detectors such as Cascade R-
CNN [4]. The results show that query based instance-level
perception is a very promising research direction. Thus,
enabling query based detection framework to perform in-
stance segmentation is highly desirable. However, we find
that it is inefficient to integrate the previous successful prac-
tices in Cascade Mask R-CNN [5] and HTC [10], which are
state-of-the-art mask generation solutions in the non-query
based paradigm, directly into query based detectors for in-
stance mask generation. Therefore, an instance segmenta-
tion method tailored for the query based end-to-end frame-
work is urgently needed.

To bridge this gap, we propose QueryInst (Instances as
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Queries), a query based end-to-end instance segmentation
method driven by parallel supervision on dynamic mask
heads [26, 46, 44]. The key insight of QueryInst is to
leverage the intrinsic one-to-one correspondence in object
queries across different stages, and one-to-one correspon-
dence between mask RoI features and object queries in the
same stage. Specifically, we set up dynamic mask heads in
parallel with each other, which transform each mask RoI
feature adaptively according to the corresponding query,
and are simultaneously trained in all stages. The mask gra-
dient not only flows back to the backbone feature extractor,
but also to the object query, which is intrinsically one-to-
one interlinked in different stages. The queries implicitly
carry the multi-stage mask information, which is read by
RoI features in dynamic mask heads for final mask genera-
tion. There is no explicit connection between different stage
mask heads or mask features. Moreover, the queries are
shared between object detection and instance segmentation
sub-networks in each stage, enabling cross-task communi-
cations that one task can take advantage of the information
from the other task. We demonstrate that this shared query
design can fully leverage the synergy between object detec-
tion and instance segmentation. When the training is com-
pleted, we throw away all the dynamic mask heads in the
intermediate stages and only use the final stage predictions
for inference. Under such a scheme, QueryInst surpasses
the state-of-the-art HTC in terms of AP while runs much
faster. Concretely, our main contributions are summarized
as follows:

• We attempt to solve instance segmentation from a
new perspective that uses parallel dynamic mask heads
in the query based end-to-end detection framework.
This novel solution enables such a new framework
to outperform well-established and highly-optimized
non-query based multi-stage schemes such as Cascade
Mask R-CNN and HTC in terms of both accuracy and
speed (see Fig. 1). Our best model achieves 56.1 APbox

and 49.1 APmask on COCO test-dev.

• We set up a task-joint paradigm for query based ob-
ject detection and instance segmentation by leverag-
ing the shared query and multi-head self-attention de-
sign. This paradigm establishes a kind of communi-
cation and synergy between detection and segmenta-
tion tasks, which encourages these two tasks to ben-
efits from each other. We demonstrate that our archi-
tecture design can also significantly improve the object
detection performance.

• We extend the QueryInst to video instance seg-
mentation task (VIS) [59] task by simply adding a
vanilla track head. Experiments on YouTube-VIS
dataset [59] indicate that with same tracking approach,
our methods outperforms MaskTrack R-CNN [59] and

SipMask-VIS [6] by a large margin. QueryInst-VIS
can even outperform well-designed VIS approaches
such as STEm-Seg [1] and VisTR [55].

2. Related Work

Query Based Methods. Recently, query based methods
emerged to tackle the set-prediction problems. Concretely,
DETR [7] first introduces the query based methods with
transformer architecture to object detection. Deformable
DETR [63], UP-DETR [16], ACT [60] and TSP [45] im-
prove the performance on the top of DETR. The recently
proposed Sparse R-CNN [44] builds a query based set-
prediction framework upon R-CNN [21, 20, 41] based
detector. For segmentation, VisTR [55] introduces a
query based sequence matching and segmentation method
to video instance segmentation, building a fully end-to-
end framework for instance segmentation in video. Max-
DeepLab[51] presents the first box-free end-to-end panop-
tic segmentation model with a global memory as external
query. Trackformer [37] and Transtrack [43] build a query
based multiple object tracktor upon DETR and Deformable
DETR, respectively, and attain comparable results to the
non-query based methods. AS-Net [12] introduces a query
based set-prediction pipeline to human object interaction
and obtains promising results. Despite query based set-
prediction method is being widely used to many computer
vision tasks, few efforts are conducted to build a successful
query based instance segmentation framework. We aim to
achieve this goal in this paper.

Object Detection. Object detection is a fundamental
computer vision task which aims to detect visual objects
with bounding boxes. With the propose of R-CNN [21],
Fast R-CNN [20] and Faster R-CNN [41], anchor based
methods [4, 40, 36, 30, 33] dominate object detection for
a long period. CenterNet [61] and FCOS [47] establish
anchor-free detectors with competitive detection perfor-
mance. Recently, with the proposed DETR [7], query based
set-prediction methods catch lots of attentions. Deformable
DETR [63] introduces deformable convolution [62] to the
DETR framework, achieving better performance with faster
training convergence. UP-DETR [16] extends DETR to un-
supervised scenarios. ACT [60] and TSP [45] introduce the
adaptive clustering module and a new bipartite matching
method to DETR. Sparse R-CNN [44] build a query based
detector on top of R-CNN architecture, while OneNet [42]
and DeFCN [52] are end-to-end detector built upon the one-
stage FCOS [47]. In this work, we present a query based
instance segmentation method on the top of the query based
Sparse R-CNN detector.
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Instance Segmentation. Instance segmentation is a fun-
damental yet challenging computer vision task that requires
an algorithm to assign a pixel-level mask with a category
label for each instance of interest in image. Mask R-
CNN [22] introduces a fully convolutional mask head to
Faster R-CNN [20] detector. Casacde Mask R-CNN [5]
simply combine the Casacde R-CNN [4] with Mask R-
CNN. HTC [10] presents interleaved execution and mask
information flow and achieves state-of-the-art performance.
Follow-up works [25, 13, 50, 27] also contribute to the
Mask R-CNN family. In addition to R-CNN based meth-
ods, YOLACT [3, 2], SipMask [6], CondInst [48], Blend-
Mask [9] and SOLO [53, 54] build one-stage instance
segmentation framework on the top of one-stage frame-
work, achieving comparable results with favorable infer-
ence speed. Following the R-CNN based methods, we
present a query based instance segmentation framework.

3. Instances as Queries
We propose QueryInst (Instances as Queries), a query

based end-to-end instance segmentation method. QueryInst
consists of a query based object detector and six dynamic
mask heads driven by parallel supervision. Our key insight
is to leverage the intrinsic one-to-one correspondence in
queries across different stages. This correspondence exists
in all query based framework [49, 17, 39, 8, 7] regardless
of the specific instantiations and applications. The overall
architecture of QueryInst is illustrated in Fig. 2 (c).

3.1. Query based Object Detector

QueryInst can be built on any multi-stage query based
object detector [7, 63, 44]. We choose Sparse R-CNN [44]
as our default instantiation, which has six query stages. The
object detection pipeline is depicted in Fig. 2 (a) and can be
formulated as follows:

xbox
t ←Pbox

(
xFPN, bt−1

)
,

q∗
t−1 ←MSAt

(
qt−1

)
,

xbox∗
t , qt ← DynConvboxt

(
xbox
t , q∗

t−1

)
,

bt ← Bt
(
xbox∗
t

)
,

(1)

where q ∈ RN×d denotes the object query. N and d de-
note the length (number) and dimension of query q. At
stage t, a pooling operator Pbox extracts the current stage
bounding box features xbox

t from FPN [29] features xFPN

under the guidance of previous stage bounding box predic-
tions bt−1. Meanwhile, a multi-head self-attention mod-
ule MSAt is applied to the input query qt−1 to get the
transformed query q∗

t−1. Then, a box dynamic convolution
module DynConvboxt takes xbox

t and q∗
t−1 as inputs and en-

hances the xbox
t by reading q∗

t−1 while generating qt for
the next stage. Finally, the enhanced bounding box features

(c) QueryInst with dynamic mask head

(b) Sparse R-CNN with vanilla mask head

(a) Sparse R-CNN

Figure 2: Overview of QueryInst. The red arrows indicate
mask branches. Please note that QueryInst consists of 6
stage in parallel, i.e., t = {1, 2, 3, 4, 5, 6}. The figure only
shows 2 stages.

xbox∗
t are fed into the box prediction branch Bt for current

bounding box prediction bt.

3.2. Mask Head Architecture

3.2.1 Vanilla Mask Head

For instance mask prediction, we first adopt the widely used
vanilla mask head architecture design in Mask R-CNN [22]
as our instance segmentation baseline. The model architec-
ture is depicted in Fig. 2 (b). Based on the object detection
pipeline described in Sec. 3.1, the mask generation process
can be expressed as follows:

xmask
t ←Pmask

(
xFPN, bt

)
,

mt ←Mt

(
xmask
t

)
,

(2)

where bt is the bounding box predictions from the object
detector. Pmask denotes a region-wise pooling operator for
mask RoI features extraction. Mt indicates the mask FCN
head consisting of a stack of four consecutive conv-layers,
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Figure 3: Illustrations of DynConvmaskt at stage t. xmask∗
t

is enhanced by two consecutive conv-layers, whose kernel
parameters are produced by q∗

t−1.

one dconv-layer and one 1× 1 conv-layer for mask genera-
tion [22]. mt is the current stage mask predictions.

Overall, this vanilla design is an analogy of Cascade
Mask R-CNN[5] in a query based framework. However, we
find that this design is not as effective as the original Cas-
cade Mask R-CNN. Moreover, establishing explicit mask
flow following HTC [10] on top of this design (Fig. 2 (b))
can only bring moderate improvements at a cost of large
drops in both training and inference speed. Part of the
reasons may be the number of queries in our framework
is much smaller than the number of proposals in Cascade
Mask R-CNN and HTC, resulting in limited availability of
training samples.

3.2.2 Dynamic Mask Head

Our goal is to design a mask prediction head tailor-made
for query based instance segmentation frameworks. To this
end, we propose to leverage dynamic mask heads driven
by parallel supervision to replace the vanilla design in
Sec. 3.2.1. The dynamic mask head at stage t consists
of a dynamic mask convolution module DynConvmaskt (see
Fig. 3) [44] following by a vanilla mask headMt [22]. The
mask generation pipeline is reformulated as follows:

xmask
t ←Pmask

(
xFPN, bt

)
,

xmask∗
t ← DynConvmaskt

(
xmask
t , q∗

t−1

)
,

mt ←Mt

(
xmask∗
t

)
.

(3)

It is noteworthy that the only difference between the pro-
posed dynamic mask head and vanilla mask head is the exis-
tence of DynConvmaskt . We demonstrate that DynConvmaskt

enables (1) per-mask information flow in queries driven by
parallel mask branch supervision, and (2) communication
and synergy for joint detection and instance segmentation in
the following two sub-sections, respectively. The effective-
ness of these two properties is verified in our experiments.

3.3. Per-mask Information Flow with Parallel Su-
pervision

In query based models such as [7, 63, 44], the model
learns different specialization for each query slot [7], i.e.,
qt[s] is the transformed and refined version of previous

stage qt−1[s] in the same s-th slot. Moreover, xmask
t [s] cor-

responds to and is refined by qt[s] [44]. Therefore there is
an one-to-one correspondence across different stage queries
inherent in these frameworks, as well as one-to-one corre-
spondence between mask RoI features and object queries in
the same stage.

QueryInst is driven by parallel supervision on dynamic
mask heads, which fully leverages the intrinsic one-to-one
correspondence in object queries across different stages.
Specifically, we set up dynamic mask heads in parallel with
each other, which transform each mask RoI feature xmask

t

adaptively in DynConvmaskt according to the corresponding
query q∗

t−1, and are simultaneously trained in all stages. In-
side DynConvmaskt , the query acts as memory and is read
by mask RoI features xmask

t in the forward pass and written
by xmask

t in the backward pass.
During training, the per-mask information (i.e., the mask

gradient) not only flows back to mask RoI features xmask
t ,

but also to the object query q∗
t−1, which is intrinsically

one-to-one interlinked in different stages. Therefore the
per-mask information flow is naturally established by lever-
aging the inherent properties of query based frameworks,
with no additional connection needed. After the training is
completed, the information for mask prediction is stored in
queries.

During inference, we throw away all dynamic mask
heads in 5 intermediate stages and only use the final stage
predictions for inference. The queries implicitly carry the
multi-stage information for mask prediction, which is read
by mask RoI features xmask

t in dynamic mask convolution
DynConvmaskt at the last stage for final mask generation.

Without DynConvmaskt , the link between mask RoI fea-
tures and the query is lost, and mask heads in different
stages are isolated. Even though parallel supervision is ap-
plied to all mask heads, the information related to mask
generation cannot flow into queries. In this condition,
QueryInst degenerates to Cascade Mask R-CNN with a
fixed number (i.e., N ) of proposals across all stages.

3.4. Shared Query and MSA for Joint Detection and
Segmentation

At stage t, a multi-head self-attention MSAt is applied
to the query qt−1. MSAt projects the query qt−1 to a high
dimensional embedding space and its output q∗

t−1 is read
by the dynamic box convolution DynConvboxt and dynamic
mask convolution DynConvmaskt respectively, to enhance
the task-specific features xbox

t and xmask
t .

Throughout this process, the query and MSA are shared
between detection and instance segmentation tasks. Both
detection and segmentation information flow back into the
query through MSA. This task-joint paradigm establishes a
kind of communication and synergy between detection and
segmentation tasks, which encourages these two tasks to
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benefits from each other. The query learns a better instance-
level representation with the guidance of two highly corre-
lated tasks. We observe a performance decrease using sep-
arate queries or MSA in our experiments.

3.5. QueryInst-VIS for Video Instance Segmenta-
tion

Video instance segmentation (VIS) [59] is a highly rel-
evant task to still-image instance segmentation that aims at
detecting, classifying, segmenting and tracking visual in-
stances over video frames. We demonstrate that QueryInst
can be easily extended to VIS with minimal modifica-
tions by simply adding the vanilla track head in Mask-
Track R-CNN baseline [59]. The proposed model coined
as QueryInst-VIS can perform video instance segmentation
in an online manner while operating at real-time. The to-
tal training and inference pipeline keep the same as Mask-
Track R-CNN. We evaluate QueryInst-VIS on the challeng-
ing YouTube-VIS [59] benchmark to demonstrate its effec-
tiveness.

4. Experiments
4.1. Dataset

COCO. Most of our experiments are conducted on the chal-
lenging COCO dataset [31]. Following the common prac-
tice, we use the COCO train2017 split (115k images) for
training and the val2017 split (5k images) as validation for
our ablation study. We report our main results on the test-
dev split (20k images).
Cityscapes. Cityscapes [14] is an ego-centric street-scene
dataset with 8 categories, 2975 train images, and 500 val-
idation images for instance segmentation. The images are
with higher resolution (1024× 2048 pixels) compared with
COCO, and have more pixel-accurate ground-truth.
YouTube-VIS. In addition to static-image instance segmen-
tation, we demonstrate the effectiveness of our QueryInst on
video instance segmentation. YouTube-VIS [59] is a chal-
lenging dataset for video instance segmentation task, which
has a 40-category label set, 4, 883 unique video instances
and 131k high-quality manual annotations. There are 2, 238
training videos, 302 validation videos, and 343 test videos.

4.2. Implementation Details

Training Setup. Our implementation is based on MMDe-
tection [11] and Detectron2 [56]. Following [44], the de-
fault training schedule is 36 epochs and the initial learning
rate is set to 2.5 × 10−5, divided by 10 at 27-th epoch and
33-th epoch, respectively. We adopt AdamW optimizer with
1 × 10−4 weight decay. Hyper-parameters, configurations
as well as the label assignment procedures follow the setting
in [7, 63, 44]. In total, the R-CNN head of QueryInst con-
tains 6 stages in parallel as [44]. The mask head is trained

by minimizing dice loss [38]. Without special mention-
ing, we adopt QueryInst model trained with 100 queries and
ResNet-50-FPN [24, 29] as backbone in our experiments in
the ablation studies.
Inference. Given an input image, QueryInst directly out-
puts top 100 bounding box predictions with their scores
and corresponding instance masks without further post-
processing. For inference, we use the final stage masks
as the predictions and ignore all the parallel DynConvmask

at the intermediate stages. The inference speed reported is
measured using a single Titan Xp GPU with inputs resized
to have their shorter side being 800 and their longer side
less or equal to 1333.

4.3. Main Results

Comparisons on COCO Instance Segmentation.
The comparison of QueryInst with the state-of-the-art in-
stance segmentation methods on COCO test-dev are listed
in Tab. 1. We have tested different backbones and data aug-
mentations. CondInst [48] (with auxiliary semantic branch)
and SOLOv2 [54] are the latest state-of-the-art instance seg-
mentation approach based on dynamic convolutions. A 5-
stage QueryInst trained with 100 queries outperforms them
with over 1.1 mask AP gain under similar inference speed.
QueryInst trained with 100 queries can also surpass Cas-
cade Mask R-CNN [22] by 1.5 mask AP while runs with
the same FPS. For fair comparisons with HTC [10], we
train HTC w/o semantic segmentation branch using the 36
epochs training schedule and multi-scale data augmenta-
tions following the standard setting in [22, 56], yielding∼ 1
higher mask AP than original results reported in [10]. Un-
der same experimental conditions, QueryInst outperforms
the state-of-the-art HTC in terms of both accuracy and
speed. Moreover, QueryInst outperforms HTC in terms of
AP at different IoU thresholds (AP50 and AP75) as well
as AP at different scales (APS , APM and APL), regard-
less of the experimental configuration. We also find that
compared with Cascade Mask R-CNN and HTC, the query
based QueryInst can benefit more from stronger data argu-
mentation used in [7, 63, 44]. Specifically, using ResNet-
101-FPN [29] backbone and stronger multi-scale data argu-
mentation with random crop, QueryInst surpasses HTC by
2.0 mask AP and 1.8 box AP while runs 2.4× faster. Fur-
ther, QueryInst with deformable ResNeXt-101-FPN back-
bone [57, 15, 62] achieves 44.6 mask AP and 50.4 box AP
without bells and whistles.

We demonstrate that the instance segmentation perfor-
mance of QueryInst not simply come from the accurate
bounding box provided by Sparse R-CNN [44] object de-
tector. On the contrary, QueryInst can largely improve the
detection performance. The best result of Sparse R-CNN
(ResNet-101-FPN, 300 queries, 480 ∼ 800 w/ crop, 36
epochs) reported in [11] is 46.3 box AP. Under the same
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Method Backbone Aug. Epochs APbox AP AP50 AP75 APS APM APL FPS
Mask R-CNN [22]

ResNet-50-FPN 640 ∼ 800 36

41.3 37.5 59.3 40.2 21.1 39.6 48.3 14.0
CondInst w/ sem. [48] – 38.6 60.2 41.4 20.6 41.0 51.1 14.1
SOLOv2 [53] 40.4 38.8 59.9 41.7 16.5 41.7 56.2 13.8
QueryInst (5 Stage, 100 Queries) 44.5 39.9 62.2 43.0 22.9 41.7 51.9 13.5
Cascade Mask R-CNN [5]

ResNet-50-FPN 640 ∼ 800 36

44.5 38.6 60.0 41.7 21.7 40.8 49.6 10.4
HTC [10] 44.9 39.7 61.4 43.1 22.6 42.2 50.6 3.1
QueryInst (100 Queries) 44.8 40.1 62.3 43.4 23.3 42.1 52.0 10.5
QueryInst (300 Queries) 45.6 40.6 63.0 44.0 23.4 42.5 52.8 7.0
Cascade Mask R-CNN

ResNet-101-FPN 640 ∼ 800 36
45.7 39.8 61.6 43.0 22.4 42.2 50.8 8.7

HTC 46.2 40.7 62.7 44.2 23.1 43.4 52.7 2.5
QueryInst (300 Queries) 47.0 41.7 64.4 45.3 24.2 43.9 53.9 6.1
Cascade Mask R-CNN

ResNet-101-FPN 480 ∼ 800
w/ crop 36

46.2 40.0 61.7 43.5 22.5 42.5 51.2 8.7
HTC 46.3 40.8 62.6 44.3 23.0 43.5 52.6 2.5
Sparse R-CNN (300 Queries) 46.3 − − − − − − 6.9
QueryInst (300 Queries) 48.1 42.8 65.6 46.7 24.6 45.0 55.5 6.1

QueryInst (300 Queries) ResNeXt-101-FPN
w/ DCN

480 ∼ 800
w/ crop 36 50.4 44.6 68.1 48.7 26.6 46.9 57.7 3.1

QueryInst (300 Queries) @ val Swin-L 400 ∼ 1200
w/ crop 50 56.1 48.9 74.0 53.9 30.8 52.6 68.3 3.3⊤

QueryInst (300 Queries) Swin-L 400 ∼ 1200
w/ crop 50 56.1 49.1 74.2 53.8 31.5 51.8 63.2 3.3⊤

Table 1: Main results on COCO test-dev. The numbers under “Aug.” indicate the scale range of the shorter size of inputs
with a stride of 32. APbox denotes box AP. AP without superscript denotes mask AP. The best results are in bold for each
configuration. Superscript “⊤” indicates the FPS data are measured on a single RTX 2080Ti GPU with batch size 1.

experimental setting, QueryInst can achieve 48.1 box AP,
which outperform Sparse R-CNN by 1.8 box AP. We also
show in the ablation study that QueryInst can outperform
Cascade Mask R-CNN and HTC based on a weaker query
based detector.

We also apply QueryInst to the recent state-of-the-art
Swin Transformer [34] backbone without further modifi-
cations, and we find the proposed model is quite capa-
ble of adapting with Swin-L. Without bells and whistles,
QueryInst can achieve the state-of-the-art performance in
instance segmentation as well as object detection. For the
first time, we demonstrate that an end-to-end query based
framework driven by parallel supervision can achieve the
state-of-the-art performance in various instance-level recog-
nition tasks.
Comparisons on Cityscapes Instance Segmentation.
We also conduct experiments on Cityscapes dataset to
demonstrate the generalization of QueryInst. Following the
standard setting in [48, 22], all models are first pre-trained
on COCO train2017 split then finetuned on Cityscapes
using fine annotations for 24k iterations with batch size 8.
The initial learning rate is linearly scaled to 1.25 × 10−5

and is reduced by a factor of 10 at step 18k.
The results are shown in Tab. 2. QueryInst achieves

39.4 AP on val split and 34.4 AP on test split, sur-

passing several strong baselines. Notably, compared to
the dynamic convolution based method CondInst [48],
QueryInst with ResNet-50 backbone outperforms CondInst
with both ResNet-101-DCN-BiFPN backbone and seman-
tic branch. Overall, our QueryInst achieves leading results
on Cityscapes dataset without bells and whistles.

Video Instance Segmentation Results on YouTube-VIS.

Tab. 3 shows the video instance segmentation results on
YouTube-VIS val set. Following the standard setting
in [59], we first pre-train the instance segmentation model
on COCO train2017, then we finetune the corresponding
VIS model on YouTube-VIS train set for 12 epochs. The
maximum number of instances in one frame in YouTube-
VIS dataset is 10, so we set the number of queries to 10 in
QueryInst-VIS. The setting enables the model to operate at
real-time (> 30 FPS).

As mentioned in Sec. 3.5, QueryInst-VIS adopts the
vanilla track method of MaskTrack R-CNN [59] and
SipMask-VIS [6], while it obtains 4.3 AP improvement
compared to MaskTrack R-CNN and 2.1 AP improvement
compared to SipMask-VIS. Moreover, QueryInst can out-
perform many well-established and highly-optimized VIS
approaches, such as STEm-Seg, CompFeat and VisTR in
terms of both accuracy and speed.
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Method Backbone APval AP AP50 person rider car trunk bus train mcycle bicycle
Mask R-CNN [22] ResNet-50 36.4 32.0 58.1 34.8 27.0 49.1 30.1 40.9 30.9 24.1 18.7
BShapeNet+ [28] ResNet-50 − 32.9 58.8 36.6 24.8 50.4 33.7 41.0 33.7 25.4 17.8
UPSNet [58] ResNet-50 37.8 33.0 59.7 35.9 27.4 51.9 31.8 43.1 31.4 23.8 19.1
CondInst [48] ResNet-50 37.5 33.2 57.2 35.1 27.7 54.5 29.5 42.3 33.8 23.9 18.9
CondInst [48] w/ sem. DCN-101-BiFPN 39.3 33.9 58.2 35.6 28.1 55.0 32.1 44.2 33.6 24.5 18.6
QueryInst ResNet-50 39.4 34.4 59.6 40.4 30.7 56.8 29.1 40.5 30.8 26.0 21.1

Table 2: Instance segmentation results on Cityscapes val (APval column) and test (remain columns) split. The best results
are in bold.

Method Backbone AP AP50 AP75 AR1 AR10 FPS
MaskTrack R-CNN [59] ResNet-50 30.3 51.1 32.6 31.0 35.5 22.1
SipMask-VIS [6] ResNet-50 32.5 53.0 33.3 33.5 38.9 30.9
SipMask-VIS∗ ResNet-50 33.7 54.1 35.8 35.4 40.1 30.9
STEm-Seg [1] ResNet-50 30.6 50.7 33.5 31.6 37.1 4.4
STEm-Seg ResNet-101 34.6 55.8 37.9 34.4 41.6 2.1
CompFeat [18] ResNet-50 35.3 56.0 38.6 33.1 40.3 –
VisTR [55] ResNet-50 34.4 55.7 36.5 33.5 38.9 30.0
VisTR ResNet-101 35.3 57.0 36.2 34.3 40.4 27.7
QueryInst-VIS ResNet-50 34.6 55.8 36.5 35.4 42.4 32.3
QueryInst-VIS∗ ResNet-50 36.2 56.7 39.7 36.1 42.9 32.3

Table 3: Comparisons with state-of-the-art video instance segmentation methods on YouTube-VIS val set. Methods with
superscript “∗” indicates using multi-scale data argumentation during training. The best results are in bold.

4.4. Ablation Study

Study of Parallel Supervision and DynConvmask.
We show that applying parallel mask head supervision
and DynConvmask are both indispensable for good perfor-
mance. As shown in Tab. 5, using parallel supervision
on vanilla mask head cannot bring large improvement, be-
cause mask heads in different stages are isolated and there
is no cross-stage per-mask information flow established
(Sec. 3.2.1). Using DynConvmask without parallel super-
vision on each stage can only bring moderate improvement,
for mask gradients injected from the final stage cannot fully
driven the per-mask information flow across queries in all
stages. When DynConvmask in all stages are driven by par-
allel supervision simultaneously, QueryInst achieves signif-
icant improvement in accuracy with only little drops in in-
ference speed. The reason is that during inference, we throw
away all the parallel DynConvmask in the intermediate stage
and only use the final stage mask predictions. The per-mask
information is written and preserved in queries during train-
ing, which only need to be read out at the final stage during
inference.
Study of Query and MSA.
Tab. 6 studies the impact of using shared query and MSA.
As expected in Sec. 3.4, using shared query and MSA si-
multaneously establishes a kind of communication and syn-

ergy between detection and segmentation tasks, which en-
courages this two tasks to benefits from each other and
achieves the highest box AP and mask AP. Moreover, this
configuration consumes minimal parameters and computa-
tion budgets. Therefore we choose using shared query and
MSA as the default instantiation of our QueryInst.
Study of Different Mask Heads.
Tab. 4 studies the impact of different mask head archi-
tectures on query and non-query based frameworks. All
stages are simultaneously trained. For non-query based
frameworks, the 1-st row is the results of Cascade Mask
R-CNN [5] and the 2-nd row is HTC [10]. We have the
following 3 major observations.

First, we find that directly integrating cascade mask
head [5] and HTC mask flow [10] into the query based
model is not as effective as in its original framework. When
cascade mask head is applied (3-th row), the query based
model is 0.5 APbox and 0.6 APmask lower than the original
Cascade Mask R-CNN (1-th row). When HTC mask flow is
applied (4-th row), the query based model is 0.6 APbox and
0.4 APmask lower than the original HTC (2-th row). These
results demonstrate that previous successful empirical prac-
tice from non-query based multi-stage models is possibly
inadequate for query based models (Sec. 3.2.1).

Second, when the proposed parallel DynConvmask is ap-
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Type Cascade
Mask Head [5]

HTC
Mask Flow [10] DynConvmask Fig. APbox ∆box APmask ∆mask FPS ∆FPS

Non-query Based ✓ 44.3 38.5 10.4
✓ 44.4 + 0.1 39.3 + 0.8 3.1 − 7.3

Query Based

✓ Fig. 2 (b) 43.8 37.9 11.1
✓ 43.8 + 0.0 38.9 + 1.0 6.0 − 5.1

✓ Fig. 2 (c) 44.5 + 0.7 39.8 + 1.9 10.5 − 0.6
✓ ✓ 44.4 + 0.6 40.0 + 2.1 5.4 − 5.7

Table 4: Impacts of different mask head architectures on different frameworks. The setting in blue is our default instantiation.

Parallel DynConvmask Fig. APbox APmask FPS
Fig. 2 (b) 43.5 37.4 11.1

✓ Fig. 2 (b) 43.8 37.9 11.1
✓ Fig. 2 (c) 43.8 38.8 10.5

✓ ✓ Fig. 2 (c) 44.5 39.8 10.5

Table 5: Impacts of parallel supervision and DynConvmask.

Shared MSA Shared Query APbox ∆box APmask ∆mask

43.4 38.1
✓ 43.9 + 0.5 38.3 + 0.2

✓ 44.1 + 0.7 39.5 + 1.4
✓ ✓ 44.5 + 1.1 39.8 + 1.7

Table 6: Impacts of using shared query and MSA.

plied to the query based model, QueryInst (5-th row) outper-
forms the baseline (3-th row) by 0.7 APbox and 1.9 APmask,
while maintaining a high FPS. Moreover, QueryInst also
beat original HTC (2-th row) in terms of both APbox and
APmask while runs about 3× faster. Fig. 4 demonstrates the
effects of DynConvmask qualitatively.

Last, we also find that for query based approaches, HTC
mask flow cannot bring further improvement on top of par-
allel DynConvmask architecture (6-th row). This indicates
that the proposed parallel DynConvmask enables adequate
mask information flow propagating across queries in differ-
ent stage for high quality mask generation. Therefore es-
tablishing explicit mask feature flow as HTC is redundant
and is harmful for model efficiency. In consideration of the
speed-accuracy trade-off, we choose Fig. 2 (c) as as the de-
fault instantiation of our QueryInst.

5. Conclusion
In this paper, we propose an efficient query based end-

to-end instance segmentation framework, QueryInst, driven
by parallel supervision on dynamic mask heads. To our
knowledge, QueryInst is the first query based instance seg-
mentation method that outperforms previous state-of-the-art

Figure 4: Effects of DynConvmask. The first row shows
mask features xmask directly extracted from FPN. The sec-
ond row shows mask features xmask∗ enhanced by queries
in DynConvmask. Last row is ground-truth instance masks.
The results show that mask features enhanced by queries
yield more genuine and accurate details and carry more in-
formation of instances.

non-query based instance segmentation approaches. Exten-
sive study proves that parallel mask supervision can bring
great performance improvement without any decrease for
inference speed, while dynamic mask head with both shared
query and MSA joints two sub-tasks of detection and seg-
mentation naturally. We hope this work can strength the un-
derstanding of query based frameworks and facilitate future
research.
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