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Abstract

Instance segmentation can detect where the objects are
in an image, but hard to understand the relationship be-
tween them. We pay attention to a typical relationship,
relative saliency. A closely related task, salient object
detection, predicts a binary map highlighting a visually
salient region while hard to distinguish multiple objects. Di-
rectly combining two tasks by post-processing also leads to
poor performance. There is a lack of research on relative
saliency at present, limiting the practical applications such
as content-aware image cropping, video summary, and im-
age labeling.

In this paper, we study the Salient Object Ranking (SOR)
task, which manages to assign a ranking order of each de-
tected object according to its visual saliency. We propose
the first end-to-end framework of the SOR task and solve
it in a multi-task learning fashion. The framework han-
dles instance segmentation and salient object ranking si-
multaneously. In this framework, the SOR branch is inde-
pendent and flexible to cooperate with different detection
methods, so that easy to use as a plugin. We also intro-
duce a Position-Preserved Attention (PPA) module tailored
for the SOR branch. It consists of the position embedding
stage and feature interaction stage. Considering the im-
portance of position in saliency comparison, we preserve
absolute coordinates of objects in ROI pooling operation
and then fuse positional information with semantic features
in the first stage. In the feature interaction stage, we ap-
ply the attention mechanism to obtain proposals’ contextu-
alized representations to predict their relative ranking or-
ders. Extensive experiments have been conducted on the
ASR dataset. Without bells and whistles, our proposed
method outperforms the former state-of-the-art method sig-
nificantly. The code will be released publicly available on
https://github.com/EricFH/SOR.

1. Introduction
Instance segmentation has made tremendous progress

in recent years [14, 28]. To get a deeper understanding
of images, exploring the relationship between objects af-

*Corresponding author.

Figure 1. The salient object ranking (SOR) task assigns a ranking
order to each detected object according to their visual saliency.
Instance segmentation can detect objects but can not obtain the re-
lationship between them. In the meantime, salient object detection
can highlighting the most attractive regions but can not distinguish
them. (Best viewed in color.)

ter detecting their locations is meaningful for researchers.
A typical relationship is relative saliency that compares
which one is more attractive than another. Salient Ob-
ject Detection (SOD) is a closely related task aiming to
locate regions where attract human visual attention. Most
works formulate this task as a pixel-wise binary predic-
tion task [54, 55, 16, 19, 43, 45, 20, 29, 26, 32, 36, 53].
Since SOD predicts all salient areas at pixel-level rather
than instance-level, it has limitations distinguishing multi-
ple objects in real scenes. (shown in Fig. 1)

Salient Object Ranking (SOR) is a recently proposed
problem introduced by [22] handling scenes of multiple ob-
jects. It assigns a unique ranking order to every detected ob-
ject according to its visual saliency. The salient ranking or-
ders of objects in an image reflect human attention shifting
process [39], which helps researchers explore how humans
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Figure 2. The proposed end-to-end salient object ranking (SOR) architecture is based on a multi-task learning framework. Semantic features
from the shared feature extractor are concatenated with positional coordinate maps before ROI pooling. Then detection branch (shown in
the blue box) predicts instance segmentation results. The SOR branch (shown in the green box) combines semantic features with position
embedding and interacts features between proposals. It employs a novel Position-Preserved Attention (PPA) module to get contextualized
representations and makes the final ranking prediction via FC layers.

interpret an image. In the meantime, substantial down-
stream applications are in huge demand of SOR. Represen-
tative ones, such as content-aware image cropping [56, 7],
image parsing [25, 40], and image captioning [50, 51], can
not be well solved by employing current object detection
and SOD methods.

Works on the SOR task are limited. We can categorize
them into FCN-based [22, 47] and Detection-based [39].
FCN-based methods predict saliency ranking orders pixel
by pixel as SOD does. Pixels in the same instance could
be predicted to different ranking orders. It does not meet
the requirement of SOR, which aims at assigning the same
ranking order for the same object. Although complicated
post-processing cooperated with other detection models can
relieve this issue, the performance is unstable. Siris et
al. [39] proposes a Detection-based method. It first trains
a detector extracting features of each proposal. Then it
combines top-down and bottom-up information with pro-
posals’ features to predict their ranking orders. However,
this network can not be trained end-to-end. Detection loss
and SOR loss are hard to be optimized jointly. The methods
mentioned above do not fully utilize positional information,
which is a significant factor in ranking objects’ saliency.
That is to say, an object in the center tends to be more at-
tractive than one in the corner. Also, an object with a larger
scale is usually more eye-catching than a smaller one. An-
other essential factor is the correlation between objects. A
more attractive object will lower the visual saliency of oth-
ers. (shown in Fig. 3)

In this paper, we propose an end-to-end framework for
the first time of the SOR task and solve it in a multi-
task learning fashion. In this framework, the detection and

salient object ranking branches are parallel rather than se-
quential. We can optimize SOR loss and detection loss
jointly to achieve better performance. The SOR branch
completes an independent ranking prediction task. So it
could be considered as a flexible plugin with diverse de-
tection methods.

We further introduce the Position-Preserved Attention
(PPA) module tailored for the SOR branch. PPA consists
of the position embedding stage and the feature interaction
stage. In the position embedding stage, besides semantic
features extracted from ROI pooling [38, 14], positional in-
formation of each object is considered. Both absolute po-
sitions in the image and the relative position between each
other help rank objects’ saliency. However, the common
ROI pooling operation will crop object-level features from
the whole feature map and lost objects’ positional informa-
tion. To address this issue, we concatenate positional coor-
dinate maps with the whole feature map before ROI pool-
ing. Then we pass them into ROI pooling together. This
position-preserved pooling process finally obtains the cor-
responding positional information of each object. After fus-
ing semantic features and position embedding, we get richer
features of each object.

Since SOR aims at obtaining relative saliency ranking
between each other rather than a specific salient label, the
feature interaction stage is of vital importance. In this stage,
the attention mechanism is utilized to make objects receive
other objects’ features and obtain contextualized represen-
tations to predict their relative ranking orders. We employ
the encoder of Transformer [41] to implement the attention
mechanism. Each object-level feature is considered as a vi-
sual token, which is the input of the encoder of Transformer.
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Extensive experiments have been conducted on the ASR
dataset [39], a recently proposed salient object ranking
dataset. Without bells and whistles, our method outper-
forms the former state-of-the-art method significantly.

In summary, the main contributions of this work include:

• We propose the first end-to-end framework of the SOR
task and solve it in a multi-task learning fashion. We
can optimize SOR loss and detection loss jointly to
achieve better performance. The SOR branch is flexi-
ble to cooperate with other detection methods.

• We introduce a Position-Preserved Attention (PPA)
module tailored for the SOR branch, which preserves
absolute coordinates of objects in ROI pooling opera-
tion and then fuses positional information with seman-
tic features. In the feature interaction stage, an atten-
tion mechanism is applied between each object to ob-
tain contextualized representations.

• Our method outperforms the former state-of-the-art
method significantly on the ASR dataset. It can serve
as a strong baseline to facilitate future research on
SOR.

2. Related Work
2.1. Salient Object Detection

As an essential problem in the computer vision commu-
nity, salient object detection (SOD) has attracted many re-
searchers’ attention in recent years. The majority of SOD
methods [3, 46] are designed to detect visually salient re-
gions and the task is formulated as a pixel-wise binary
prediction problem. Early works try to construct heuris-
tic features in pixel-level [23, 35], patch-level [33, 1], and
region-level [9]. With the advance of Convolutional Neu-
ral Networks (CNNs), features learned by CNN are lever-
aged to improve the performance of SOD. SOD methods
can be roughly categorized into three fashions, i.e., super-
pixel based [20, 26], coarse-to-fine [55, 32], and method
utilizing bottom-up and top-down pathways [34, 19, 54].

2.2. Salient Object Ranking

Salient Object Ranking is a new proposed problem in-
troduced by [22] in 2018. Islam et al. [22] first formulates
the SOR problem and proposes an FCN-based model ap-
plying hierarchical representation of relative saliency and
stage-wise refinement. Li et al. [30] finds that there is
a strong correlation between fixations prediction (FP) and
salient object detection (SOD). Wang et al. [47] also pro-
poses a SOR model on a video dataset leveraging FP and
SOD branches. These methods finally predict a saliency
ranking map, which could be seen as the post-process of
SOD. A detection-based method is proposed by [39], which
first pre-trains a detector to extract object-level features.

Then SAM and SMM modules are applied to fuse global
features and mask features with object features. Finally,
a simple classifier is followed to predict ranking orders.
This method is object-aware compared with former works,
however, it needs two-stage training and is not end-to-end,
which leads to a problem of optimizing detection loss and
SOR loss jointly. Meanwhile, positional information is not
considered and each ranking order is predicted indepen-
dently without interaction.

2.3. Visual Transformer

Transformer is a neural network mainly based on the
self-attention mechanism, which is first applied to natural
language processing (NLP) tasks and has achieved signif-
icant improvements [41, 10, 5]. There is an increasing
number of works applying Transformer to computer vision
tasks. Chen et al. [8] trains a generative model to auto-
regressively predict pixels. ViT [11] applies a pure trans-
former directly to sequences of image patches on classifica-
tion. Transformer has also been utilized to address various
computer vision problems, such as object detection [6], se-
mantic segmentation [42], video processing [52], and pose
estimation [21]. These works employ the Transformer on
image-level or patch-level, while our method employs it on
ROI-level (Region of Interest).

3. Method
This section presents the details of our proposed model,

including the design motivation (Section 3.1), the overall
network architecture (Section 3.2), the Position-Preserved
Attention module (Section 3.3), and discussion on different
position embedding schemes (Section 3.4). We propose the
first end-to-end framework of the SOR task and solve it in a
multi-task learning fashion. In this framework, a CNN first
extracts a shared feature map from an input image. Then
coordinate maps of the X-axis and Y-axis are concatenated
with feature maps before ROI pooling. After obtaining pro-
posals with object-level features and positional information,
we pass these proposals into the SOR branch and detection
branch simultaneously to get final results.

3.1. Motivation

Compared with common object detection and segmenta-
tion tasks, one of the distinctive characteristics of the SOR
task is its sensitivity to position and scale. In other words,
the position and scale of an object in the image do not af-
fect the character’s nature (category) and appearance char-
acteristics (detection and segmentation). This information
is usually regarded as the prior knowledge of the task, which
is absolute information. Nevertheless, the SOR task is dif-
ferent. As shown in Fig. 3 (a), the same object in the center
or corner of the image may directly change from the fore-
ground subject to the background. Similarly, the scale also
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Figure 3. Illustration of crucial factors that influence object salient
ranking other than semantic information, where the histograms
represent the SOR within corresponding images. In the figure,
(a) and (b) show the position and scale influence saliency ranking
respectively. (c) and (d) show the existence of object A will affect
the ranking order of object B.

has an important influence on this saliency ranking task,
which is demonstrated in Fig. 3 (b).

The other difference is that the ranking order of one ob-
ject is affected by other objects’ existence. The existence of
one more attractive object will lower the saliency of other
objects. For instance, when comparing Fig. 3 (c) with Fig.
3 (d), we find that the removal of object A influences the
salient ranking of object B. Therefore, feature interaction
between objects is also an important step of this task, that
is, features of objects are relative in the SOR task. How
to effectively utilize positional information and mutual in-
formation is the key to solve this task, which is difficult to
tackle by applying the detection framework directly.

3.2. Multi-Task Learning Architecture

The overall network architecture is shown in Fig. 2. The
framework is composed of three components:

1. Backbone: A commonly used CNN network is applied
as a feature extractor. The input is a raw image, while
the output is a feature map. ROI pooling operation will
be applied to crop object-level features of each pro-
posal. To add positional information to our Position-
Preserved Attention Module, we concatenate coordi-
nates of the X-axis and Y-axis with feature map before
ROI pooling: [FeaMap;PosMap]1. We will discuss
more details in Section 3.3.

2. Detection branch: Off-the-shelf detection methods can
be used in this branch, such as [14, 28]. The target of

1where [·; ·] denotes concatenating along the channel dimension

this branch is to detect objects and predict their loca-
tions, classes, and masks. The positional information
of each proposal is not used in this branch.

3. SOR branch: SOR branch is designed to assign each
proposal a ranking order according to their visual
saliency. The goal of the SOR branch is ranking pro-
posals rather than detecting their existence. PPA mod-
ule plays a major role in this branch, which is com-
prised of position embedding stage and feature inter-
action stage. In the first stage, semantic information
and positional information are fused to obtain visual
tokens. Then they are passed into the feature interac-
tion stage and get contextualized representations for
each proposal. Finally, a fully connected layer is fol-
lowed to predict each proposal a ranking order.

Loss Function We define our training loss function as fol-
lows:

L = Ldet + λLsor, (1)

where Ldet is the detection loss, for instance, Ldet =
Lbox + Lcls + Lmask. The bounding box loss Lbox, clas-
sification loss Lcls, and mask loss Lmask are identical as
those defined in MaskRCNN [14]. There could be some dif-
ferences in the details of Ldet when the framework applies
diverse detection methods [14, 28]. Lsor is the SOR loss,
which is the cross-entropy loss between the distribution of
predicted ranking order and ground-truth ranking order. In
all experiments, we set λ to 1.0.

3.3. Position-Preserved Attention Module

To solve the aforementioned issues in Section 3.1, we
propose the Position-Preserved Attention (PPA) module. It
is the major part of the SOR branch, which consists of the
position embedding stage and feature interaction stage. The
position embedding stage enriches the semantic features
with positional information, while the feature interaction
stage utilizes mutual information between proposals.

The input of the PPA module is the proposals’ features
with position (e.g. N × 14 × 14 × (256 + 2), N denotes
the number of proposals, 14 is the ROI pooling size, the
number of channels of feature map and position indexes
are 256 and 2, respectively). For the i-th proposal with
BBox coordinates bboxi, its feature after RoI pooling is
[feai; posi] = RoIPooling([FeaMap;PosMap], bboxi).
The outputs of the PPA module are contextualized repre-
sentations of each proposal (e.g. N × 1024). The detailed
structure is shown in Fig. 4 (a).
Position embedding stage This stage is shown in Fig. 4
(b), which aims at fusing semantic features and positional
information for each proposal. Firstly, the feature map is di-
vided into the semantic part and positional part. Then a con-
volution layer with ReLU activation function is applied on
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Figure 4. PPA module is the center of the SOR branch. It consists
of position embedding stage (red block) and features interaction
stage (blue block) specifically. The position embedding stage en-
riches the semantic features with positional information and out-
puts vectorized visual tokens. The feature interaction stage utilizes
mutual information between proposals by means of a Transformer
encoder [41]. The PPA module finally outputs contextualized rep-
resentations of each proposal for ranking prediction.

the position part to extract low-level features: pos feai =
Conv(posi). Original position and low-level feature are
concatenated together, and position embedding of the pro-
posal is obtained: pos embedingi = [posi; pos feai].
Then both semantic feature and position embedding are
concatenated and passed following four convolution lay-
ers together: feai = Convs([feai; pos embedingi]). The
fused feature map is flattened and finally transformed into a
vector with 1024 channels after two fully connected layers.
Each proposal is transformed as a 1-D vector respectively,
which is considered as a visual token. The concept of the
visual token is borrowed from NLP, as we use the encoder
of Transformer in the following stage.
Feature interaction stage To utilize mutual informa-
tion between proposals, we apply the encoder of Trans-
former [41], which is benefited from the self-attention
mechanism. We follow the standard Transformer encoder
structure, which is demonstrated on the right side of Fig.
4 (a). It consists of alternating layers of multi-head self-
attention and feed-forward neural network (FFNN) blocks.
Layer normalization (LN) [2] is applied after each block
and residual connections [44]. GELU [18] is used as an
activation function in FFNN.

3.4. Position Embedding Discussion

We have explored different position embedding schemes
since sensitivity to position and scale is a key factor for the
SOR task. We start from the simple concatenation method
shown in Fig. 5 (a). Proposals’ features are cropped from
the feature map after the ROI pooling operation. Then we
apply four convolution layers and then flattened them to 1-D
vectors. After two fully connected layers, finally, object fea-

tures are obtained. In this scheme, we simply concatenate
object features, center coordinates (cx, cy) and scales(w, h)
(normalized by the image width and image height) of re-
sponding bounding boxes to get visual tokens.

Following position embedding methods used in vision
transformers [11, 17], we try the 1-D learnable position em-
bedding vector shown in Fig. 5 (b). This scheme will pre-
define fixed-number cells, each of which is corresponding
a learnable embedding vector. However, the positions and
scales of proposals, which are calculated rather than pre-
defined, are real numbers and not enumerable. To address
this issue, we use a quantitative method and grid the value
space. Given a image with W width and H height, we first
grid the space into q × q cells whose shape is W

q × H
q . For

a proposal’s bounding box bbox with (Cx, Cy) center po-
sition, we calculate the index (Idx, Idy) of the proposal:
Idx = ⌊Cx·q

W ⌋, Idy = ⌊Cy·q
H ⌋, which cell it belongs to. We

use Idx and Idy to obtain index of predefined Embeddings
in Id = Idx · q + Idy . Object features are got in the same
way of the first scheme. Both object features and position
embeddings are added together to obtain the final visual to-
kens. Scale information can also be embedded in this way.

However, in this method, two proposals in close position
will be grouped into the same cell. Quantitative error will
be introduced and positional information will be inevitably
lost. Using larger quantitative number q can ease this error
but causes more learnable parameters. Larger q will also
bring risk to the model. If the dataset is not large enough
and some indexes of Embeddings are not well trained,
the corresponding position bbox will have a bad represen-
tation in inference stage. The quantitative number q will
be a hyper-parameter difficult to tune. In experiments, the
performance of q = 4 and q = 8 are comparable.

Compared with the above two schemes, our method,
shown in Fig. 5 (c), attaches absolute positional informa-
tion to the feature map before ROI pooling. This position-
preserved process utilizes absolute positional information
directly. Corresponding coordinate map of each proposal
is preserved after ROI pooling. Then the proposal’s feature
and positional information are fused together in the follow-
ing layers, rather than learned independently compared with
the scheme (b). Our experiments show that the model gains
more benefit in PPA’s position embedding fashion.

4. Experiments
4.1. Dataset

We conduct experiments on the ASR dataset [39], which
is the only public released SOR dataset as far as we know.
ASR dataset is a large-scale salient object ranking dataset
by combining the MS-COCO dataset [31] with the SALI-
CON dataset [24]. It consists of 78 object categories, and
the average number of objects per image in the dataset is
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Figure 5. Three position embedding schemes. (a) directly concate-
nate normalized [Cx,Cy ,w,h] to ROIs’ features. (b) add learnable
look-up position embedding to features. (c) PPA position embed-
ding stage.

around 11. The annotation of instances is the same of MS-
COCO dataset and the extra information is ranking order. In
each image, the top-5 most visually salient instances own
a unique ranking order ranging from 1 to 5, and other in-
stances are considered as background. The dataset is ran-
domly split into 7646 training, 1436 validation, and 2418
test images, respectively.

4.2. Evaluation Metrics

We adopt evaluation methods as [39, 22] does to make
a fair comparison, i.e., Salient Object Ranking (SOR) and
Mean Absolute Error (MAE). SOR metric calculates Spear-
man’s Rank-Order correlation between predicted ranking
orders and the ground-truth ranking orders of salient ob-
jects. SOR indicates the correlation between two ranking
order lists, and higher SOR means a higher positive cor-
relation. To make it more interpretable, the SOR score is
usually normalized to [0, 1]. However, if there are no com-
mon salient objects between ground-truth and prediction,
SOR is not suitable to measure performance in this case.
To solve this problem, we do not take images into account
where ground-truth objects have no overlap with predicted
instances. The number of images we use to calculate is
called Images used. The more Images used, the more re-
liable the SOR is. At the same time, more Images used
indicates better detection performance.

MAE metric compares the average absolute per-pixel
difference between the prediction saliency map and ground-
truth map. Compared with the SOR metric, which focuses
on ranking order, MAE takes both detection results and
ranking results into consideration.

4.3. Implementation Details

We take an end-to-end training strategy. The shape of
input images is 640 × 480, which is the same as the orig-
inal images. To explore the model’s capability itself, we

do not introduce any data augmentation tricks. We apply
SGD [4] as an optimizer with momentum 0.9 and gamma
0.1, and the base learning rate is set to 1e-4. We utilize the
warm-up [13] strategy in the first 1000 iterations and apply
a multi-step policy whose weight decay factor is 0.1. We
mainly use VoV-39 [27] as backbone and CenterMask [28]
as detector in experiments unless otherwise specified. We
set the mini-batch size to 16 and train the network for 54000
iterations. All models are implemented with PyTorch on 2
TITAN RTX GPUs.

The inference stage is a sequential process. We first take
the object with the highest score in rank 1 class as the top 1
salient object. Then we remove this object from candidate
objects and choose the object with the highest score in the
rank 2 class, and so on. In this way, we can obtain the top-5
salient objects, avoiding the case that multiple objects are
assigned to the same ranking order.

4.4. Main Results

Method MAE↓ SOR↑ #Imgs used↑
RSDNet [22] 0.139 0.728 2418
S4Net [12] 0.150 0.891 1507
BASNet [37] 0.115 0.707 2402
CPD-R [48] 0.100 0.766 2417
SCRN [49] 0.116 0.756 2418
ASRNet [39] 0.101 0.792 2365
Ours 0.081 0.841 2371

Table 1. Comparison with state-of-the-art methods on the ASR
dataset. The first five methods only provide a single binary
saliency map without object segmentation. ASRNet and our meth-
ods predicts instance segmentation maps. ↑(↓) means the higher
(lower) the better. The bold number is the top score and the under-
lined number is the second.

Quantitative Evaluation We make a comparison be-
tween our method and six state-of-the-art methods, includ-
ing RSDNet [22], S4Net [12], BASNet [37], CPD-R [48],
SCRN [49] and ASRNet [39]. The RSDNet first introduces
the saliency object ranking problem. Note that the first five
methods only provide a single binary saliency map instead
of object segmentation. ASRNet predicts instance segmen-
tation maps, but it needs two-stage training. We propose an
end-to-end network for the first time.

Since the first five methods mentioned above have differ-
ent outputs with ASRNet and our method. To make a fair
comparison, we apply the same post-processing as ASRNet
does, to get distinct saliency ranking orders for these mod-
els. For the S4Net, the original output is modified in order
to predict up to 6 classes for each object instead of binary
prediction. For the rest compared models (RSDNet, BAS-
Net, CPD-R, SCRN), the predicted saliency ranking orders
of ground-truth objects are calculated by averaging the pixel

16336



Figure 6. Results on the ASR dataset with ground-truth, ASRNet and our model. Our proposed method improves both instance segmenta-
tion and ranking quality compared to state-of-the-art method ASRNet [39].

saliency values.
The experimental results are shown in Table 1, which de-

notes our method outperforms the other methods mentioned
before and achieves state-of-the-art results. Our model ob-
tains best overall performance with better scores among all
metrics (MAE, SOR, and Images used). Even though RSD-
Net and SCRN models own higher Images used, their single
binary saliency maps contain many false saliency instances,
which ensure these methods can cover the most salient ob-
jects. As a result, their SOR scores are comparatively lower
than our method. S4Net obtains the highest SOR score, yet
there are only two-thirds of test images used to calculate
the SOR score. The rest images are ignored because their
predicted saliency map can not match the ground-truth. It
causes S4Net to suffer from the highest MAE and lowest
Images used. Since there is only one previous work that
solves the SOR problem directly (i.e. ASRNet), we should
pay more attention to comparing ASRNet with our model.
Results in the last two rows of Table 1 show that our model
surpasses ASRNet significantly for all evaluation metrics,
which suggests our model owns a stronger capability to dis-
tinguish salient objects.

In conclusion, our proposed method outperforms others
on the whole. As the only two models which solve the SOR
problem directly, our network exceeds ASRNet among all
metrics and brings up significant improvements.

Qualitative Evaluation We show visualization results in
Fig. 6 to make the qualitative comparison. In the 1st col-
umn, due to end-to-end training and optimizing detection
branch and SOR branch jointly, our network achieves bet-
ter detection result in rank 1 class. Note columns from 2 to
4, objects in the center are more salient and deserve higher
ranking orders in these images. ASRNet does not take po-
sitional information into account and gets wrong ranking
orders, while our method gets correct ranking orders. In

the 5th column, we can see the bench is an attractive ob-
ject. However, affected by human existence, the saliency of
the bench should be lower than human. ASRNet does not
consider feature interaction and thus gets the wrong ranking
order. These visualization results show that our model owns
much more capability to capture relative saliency informa-
tion with position embedding and feature interaction.

4.5. Ablation Study

End-to-End Training Strategy ASRNet [39] adopts
two-stage training, while our method employs end-to-end
training. To make comprehensive comparisons, we also
take a two-stage training strategy on our network. In the
first stage, we only train the backbone and detection branch
and freeze weights of the SOR branch. The target in this
stage is to train a reliable detector. In the second stage, we
freeze all weights of the backbone and detection branch and
only train the SOR branch. In this stage, we only pay at-
tention to ranking order. The results are shown in Table 2.
Because of joint optimization, our end-to-end model is bet-
ter than our two-stage model. It is noteworthy that even us-
ing a two-stage training strategy, our network still achieves
better performance than ASRNet, which indicates position
embedding and feature interaction stage do work and con-
tribute to ranking salient objects.

Method MAE↓ SOR↑ #Imgs used↑
ASRNet 0.101 0.792 2365
Ours (two-stage) 0.082 0.835 2369
Ours (end-to-end) 0.081 0.841 2371

Table 2. The comparison between ASRNet and our model by using
two-stage training and end-to-end training.

Cooperation with other detectors Our proposed Multi-
Task learning framework can cooperate with multiple detec-
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tion methods obtaining comparable performance. In other
words, the PPA module can be considered as a plug-in mod-
ule that compatible with region-based prediction tasks such
as instance segmentation. To illustrate the effectiveness, we
conduct experiments on another prevalent instance segmen-
tation method Mask-RCNN [14], and present the results
in Table 3. In MaskRCNN experiments, we use ResNet-
50/101 [15] as backbone separately, and they are denoted as
MaskRCNN-50/101. In CenterMask experiments, we use
VoV-39/57 [27] as the backbone, and they are denoted as
CenterMask-39/57. As we can see, even though we use dif-
ferent detection methods, all these models still achieve bet-
ter performance than previous work. It indicates our PPA
module can serve as a plug-in module and make a signifi-
cant improvement in the SOR task.

Backbone MAE↓ SOR↑ #Imgs used↑
MaskRCNN-50 [14] 0.097 0.817 2354
MaskRCNN-101 [14] 0.094 0.826 2366
CenterMask-39 [28] 0.081 0.841 2371
CenterMask-57 [28] 0.085 0.848 2376

Table 3. Experiments on different instance segmentation methods
with the proposed PPA module as plugin.

Analysis on each stage in PPA To illustrate both of posi-
tion embedding stage and feature interaction stage can help
to make improvements in the SOR task, we investigate the
effectiveness of them respectively. The results are shown in
Table 4. We design a simple SOR branch as the baseline.
Proposals’ features first pass four convolution layers. Then
these features are flattened to 1-D vectors to obtain visual
tokens (without position embedding). Finally these visual
tokens are sent to a fully connected layer to predict rank-
ing orders. To make a comparison, we utilize the position
embedding stage but without using the feature interaction
stage. The result of this setting is shown in the 2nd row
in Table 4. The experiment in the 3rd row takes the oppo-
site setting. The experiment in the 4th row uses both the
position embedding stage and the feature interaction stage.
From the results, we can see two stages in PPA can improve
the performance in three metrics. These results suggest that
both position embedding and feature interaction play essen-
tial roles in the SOR task.
Position Embedding As mentioned in Section 3.4, we try
different position embedding schemes to make comprehen-
sive comparisons. The results are shown in Table 5. The
first two methods only utilize bounding box information
which follows the scheme described in Fig. 5 (a). The
main difference between the two methods is the first only
uses center coordinates information while the second uses
both center coordinates and scales information. The third
and the fourth methods follow the scheme described in Fig.
5 (b). The main difference between the two methods is the

Method MAE↓ SOR↑ #Imgs used↑
Baseline 0.104 0.830 2176
Baseline+pos 0.095 0.836 2344
Baseline+attention 0.088 0.839 2365
Baseline+attention+pos 0.081 0.841 2371

Table 4. Experiments of the proposed components with the same
backbone and detection branch.

previous method only uses center positions as learnable em-
beddings, and the other method uses both center positions
and scales as learnable embeddings. The quantitative num-
ber q of position is set to 8, and the quantitative number q
of scale is set to 4. The last method follows the scheme de-
scribed in Fig. 5 (c) and achieves the best performance. It
denotes the importance of making full use of absolute po-
sitional information directly and fusing other objects’ fea-
tures. It is also noteworthy that according to the scheme (a)
and scheme (b) results, we can find that scale information
helps to achieve better performance, which also confirms
our previous points.

Method MAE↓ SOR↑ #Imgs used↑
Cx, Cy 0.092 0.835 2366
Cx, Cy, w, h 0.088 0.836 2370
Learnable pos 0.082 0.821 2368
Learnable pos and scale 0.083 0.834 2370
Ours (PPA) 0.081 0.841 2371

Table 5. The comparison between different position embedding
schemes by using the same backbone and detection branch.

5. Conclusion
In this paper, we propose the first end-to-end framework

of the Salient Object Ranking task and solve it in a multi-
task learning fashion. The framework performs instance
segmentation and salient object ranking simultaneously. We
also propose a Position-Preserved Attention (PPA) module
tailored for the SOR branch. This module utilizes positional
information and mutual information effectively, which are
essential factors of the SOR task. Our method outperforms
the state-of-the-art method significantly on the ASR dataset.
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