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Abstract

Many super-resolution (SR) models are optimized for
high performance only and therefore lack efficiency due to
large model complexity. As large models are often not prac-
tical in real-world applications, we investigate and pro-
pose novel loss functions, to enable SR with high percep-
tual quality from much more efficient models. The represen-
tative power for a given low-complexity generator network
can only be fully leveraged by strong guidance towards the
optimal set of parameters. We show that it is possible to
improve the performance of a recently introduced efficient
generator architecture solely with the application of our
proposed loss functions. In particular, we use a Fourier
space supervision loss for improved restoration of missing
high-frequency (HF) content from the ground truth image
and design a discriminator architecture working directly in
the Fourier domain to better match the target HF distribu-
tion. We show that our losses’ direct emphasis on the fre-
quencies in Fourier-space significantly boosts the percep-
tual image quality, while at the same time retaining high
restoration quality in comparison to previously proposed
loss functions for this task. The performance is further im-
proved by utilizing a combination of spatial and frequency
domain losses, as both representations provide complemen-
tary information during training. On top of that, the trained
generator achieves comparable results with and is 2.4x
and 48 x faster than state-of-the-art perceptual SR methods
RankSRGAN and SRFlow respectively.

1. Introduction

Super-resolution (SR) deals with the problem of recon-
structing the high-frequency (HF) information from a low-
resolution (LR) image 2 € RH>*WX*C which are inher-
ently lost after downsampling the high-resolution (HR) im-
age y € RTX"WXC que to the lower Nyquist frequency
in the LR space (r denotes the scaling factor). Recent sin-
gle image SR (SISR) methods [4, 17, 22, 19, 10, 14] have
shown remarkable success at reconstructing the missing HF
details, with emphasis on accurate restoration of the fre-
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Figure 1. Runtime [ms] vs. perceptual quality (LPIPS) [36] com-
parison with state-of-the-art methods on DIV2K validation set.
The disk area is proportional to the number of parameters. We
achieve the fastest runtimes with comparable perceptual quality to
much larger networks.

quency content in the ground truth frames. This is typically
performed with supervised training, where the ground truth
images y are downsampled with a known kernel, e.g. bicu-
bic, to obtain the LR input images x.

While it may be desirable in some applications to re-
store the frequencies as close to the target as possible with
minimal assumptions, the ill-posed problem limits the SR
networks to generate higher frequency components, as the
training promotes conservative estimates imposed by the
pixel-wise supervision losses. This usually results in blurry
images, which appear to be of lower quality than their re-
spective HR counterparts.

This issue has been addressed in the literature [20, 32]
by employing different losses, that are designed to promote
the higher frequencies for perceptually more pleasing im-
ages. These supervised objectives are often used in com-
bination with generative adversarial networks [8] (GAN)
for additional distribution learning of the HF space. Condi-
tional GAN-based learning enables the generation of plau-
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sible high frequencies without the need for strict ground
truth accuracy. A lot of research has been devoted to design
such perceptual losses and to find suitable combinations for
pleasing results.

Recently, more and more deep learning based algo-
rithms are implemented on smartphones, which requires
low-complexity networks for fast inference and inexpen-
sive deployment. Therefore, the design focus is slowly
shifting from high-quality, high-performance methods with
high-complexity networks to more efficient enhancers,
which upscale faster and require less resources. In con-
trast to empowering a deep neural network’s performance
by simply increasing its complexity, which is generally
straight-forward, finding an efficient network with high-
performance is a much harder challenge. Searching for
effective low-complexity networks with high performance,
that are on par with state-of-the-art methods, is the ultimate
challenge in network design.

Three main ingredients are necessary in order to maxi-
mize performance and efficiency of deep neural networks.
First, the best architecture design for the task has to be de-
termined. Usually, this task is performed manually by ex-
perts. In addition to handcrafted designs, neural architec-
ture search algorithms [7, 6, 21] have recently been pro-
posed to automate this task. Second, the design of the opti-
mal loss function is imperative to fully leverage a network’s
performance. Third, the amount and quality of data plays a
key role to maximize performance. A large portion of ex-
isting literature in SR deals with the first point. We regard
the solution to the third point as straight-forward, as data
can be collected efficiently for most applications. In this
paper we propose a solution to the second point and try to
maximize the performance of a recently proposed efficient
low-complexity network [14, 35] for perceptual SR, solely
by the application of our proposed loss functions.

The design of perceptual losses predominantly focuses
on the spatial domain [32, 20]. However, SR is tightly
coupled to the frequency domain, as only high frequencies
are removed during the downsampling process. We lever-
age this fact and propose novel loss functions in Fourier
space by calculating the frequency components with the
fast Fourier transform (FFT) for direct emphasis on the fre-
quency content. We propose a supervision loss in direct
reference to the ground truth directly in Fourier domain for
reconstruction. Additionally, we propose a discriminator
architecture to learn the HF distribution in an adversarial
training setup, working directly in Fourier space. To the
best of our knowledge we are the first to apply a GAN loss
directly on Fourier coefficients in SR. Our ablation study
shows clear benefits over spatial losses for the task of per-
ceptual SR. Also, employing a loss in Fourier space intro-
duces global guidance as opposed to pixel-wise evaluation
due to the nature of the Fourier transform. In order to lever-

age both global and local guidance, we also add the cor-
responding spatial supervision and GAN losses. Together
with an additional perceptual loss (VGG [30]), this outper-
forms all other configurations in our ablation study. In ad-
dition to the advantage of our proposed losses over existing
ones, we compare our trained efficient generator with high-
performance state-of-the-art methods. It shows, that our
losses can substantially increase the performance of a low-
complexity generator to even compete with much larger net-
works.

2. Related Work

SR is a popular topic and a series of competitions are
conducted by [31, 1, 2, 35, 33, 34, 23] which provide a
broad overview of research and development over recent
years in this area.

Restoration Learning based approaches have shown to
be highly effective so solve the problem of SR and are
therefore predominantly used in research. SRCNN [4]
is one of the first convolutional neural network (CNN)
based methods to surpass non-learning based SR algo-
rithms, VDSR [17] is an improved version which adopts
a deeper network for improved performance. Further con-
cepts and improvements are explored [20, 22, 19, 10, 14]
with the aim of reconstructing the missing details in a LR
image as close to the ground truth as possible.

Perceptual SR Since even the best of the aforementioned
methods tend to produce blurry images, another family of
methods [20, 32, 37] tries to further improve the percep-
tual image quality by sacrificing restoration quality for in-
creased generation of HF content [2]. For that matter, SR-
GAN [20] proposes the application of a generative adversar-
ial network (GAN) [8] to better model the HF distribution
in an image. The authors also propose a perceptual loss,
based on features of VGG [30], which significantly boosts
the perceptual quality. ESRGAN [32] extends this concept
by adopting an improved GAN-loss formulation [16] and
a stronger generator architecture. RankSRGAN [37] is an-
other approach to achieve improved perceptual image qual-
ity. It uses a ranker to enable gradient based training with
non-differentiable handcrafted no-reference image quality
metrics. First, a dataset with pairs of images and their cal-
culated quality score is prepared, then a ranker is trained
to relatively rank two images in a differentiable manner.
The learned differentiable ranker is then used in a gradi-
ent based adversarial training setup. More recently, SR-
Flow [24] uses normalizing flows [28] for perceptual im-
age SR. The method explicitly models the ambiguity in HR
space and is trained by maximimum likelihood with the use
of a network that is invertible by design.

Frequency-based SR Since SR is the problem of restor-
ing frequency components, several works [12, 5, 9, 15, 3]
propose to model the problem closer to frequency space in
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various configurations. WaveletSRNet [12] uses wavelets
to decompose the LR image by the Haar transform and gen-
erates the missing HF wavelet coefficients instead of HR
images directly. Additionally, the losses are optimized for
perceptual image quality by weighing the wavelet coeffi-
cients by some heuristic, in order to balance the importance
of different sub-bands. DWSR [9] uses a similar approach
without a weighting scheme and uses only four sub-bands,
without explicit perceptual components. The loss in [12] is
composed of more sub-bands, but it does not fully decom-
pose the image as we do by applying the Fourier transform.
A more recent work [15] proposes a supervision loss in
Fourier space as additional loss for generative tasks. How-
ever, this work uses a different loss formulation, i.e. it com-
putes the differences directly between the complex compo-
nents without transformation into amplitude and phase. On
top of that, to the best of our knowledge, we are the first to
also employ a GAN loss directly in Fourier space.

3. Proposed Method

The task of image SR, is to increase the resolution of an
image x € R7*WXC from the LR domain X to the cor-
responding image y € R™#*"WxC jn HR domain ) with
factor . According to Nyquist—-Shannon’s sampling theo-
rem, the missing HF content above the Nyquist frequency
n. must be recovered in order to get an image y from the
target HR domain ). In contrast to the representation of
an image in spatial domain, these missing frequencies can
be clearly separated in Fourier domain. We therefore pro-
pose two losses in the frequency domain, to directly empha-
size the training on the relevant frequencies. Additionally,
the frequency components provide global guidance during
training due to the nature of the Fourier transform.

3.1. Generator

Our aim is to reduce the computational complexity of the
generator network for faster runtimes, while retaining the
representational power for SR as high as possible. There-
fore, the design of more effective losses is imperative. Im-
proving the loss design can yield stronger gradient signals
which better guide the generator during the training process.
In order to test the effectiveness of our proposed losses, we
use a lightweight model based on the IMDN network [14]
from the same authors. This is the winner of the “AIM 2019
Challenge on Constrained SR” [35]. The network is used as
an example of an efficient generator architecture to show-
case the power of our loss designs against typical existing
losses. The network consists of repeated information multi-
distillation blocks (IMDBs), that are designed to effectively
integrate information from the LR-space towards the HR-
space. The whole processing is conducted in LR-space
for efficiency reasons. Only in the last processing step,
the refined HR image is upsampled with a standard shuf-

fling block [29]. Generator G super-resolves a LR image
r € REXWXC into a HR image § = G(z) € RTXrWxC,

3.2. Fourier Transform and SR

The Fourier transform is widely used to analyze the
frequency content in signals. It can be applied to multi-
dimensional signals such as images, where the spatial varia-
tions of pixel-intensities have a unique representation in the
frequency domain. The discrete Fourier transform (DFT)
decomposes an image x € R7*WX*C from the spatial do-
main into the Fourier domain. The Fourier space is spanned
by complex orthonormal basis functions, where the com-
plex frequency components X € CU*V*® characterize the
image.
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Since images are composed of multiple color channels,
we calculate the Fourier transform for each channel sep-
arately. The explicit notation of channels is omitted in
our formulas. Each complex component X, ,, can be rep-
resented by amplitude |F{z}, | and phase ZF{z}y .
which provides a more intuitive analysis of the frequency
content.
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Due to symmetry in the Fourier space (Hermitian sym-
metry) for real valued signals x, we can omit redundant
spectral components and only treat half of X, and still retain
the full information in x.

Flthuw = F{2}_y_y (4)

Thus, processing can be significantly reduced by ne-
glecting redundant components when working in the
Fourier domain of real-valued signals like images. Note,
despite discarding the redundant values, the total number of
values in the spatial and Fourier domain remains the same
since the components in Fourier space are composed of real
and imaginary part (or amplitude and phase).

Since the Fourier transformation assumes an infinite sig-
nal in the transformation dimensions, finite signals like im-
ages should be preprocessed to avoid edge induced artifacts.
We avoid such artifacts by applying a Hann window, which
suppresses the signals’ amplitude towards the edges in or-
der to smooth out the transitions. Afterwards, the image is
transformed with a more accurate representation of the fre-
quency spectrum.
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Figure 2. Overview of the proposed method. We employ losses in both spatial and Fourier domain to strengthen the training signal.

As SR is the task of reconstructing the missing HF con-
tent from a downscaled image, a reduction in the sampling
rate leads to a lower Nyquist frequency n. in the LR-space,
which constitutes a hard limit in the representation capabil-
ity of high frequencies above said frequency. Therefore, SR
deals with the problem of generating these missing frequen-
cies, which can be seen as the extrapolation from low to
high frequencies. Contrary to the representation of an image
in the spatial domain, these frequencies can be clearly sep-
arated in frequency space in order to directly emphasize the
important image features for SR. Additionally, the Fourier
components provide global information about the image as
opposed to local information represented by pixel values in
the spatial domain. We leverage these properties to design
new losses for efficient perceptual SR training.

In contrast to the Fourier transform, wavelet-transforms
balance spatial and frequency precision in an image by de-
composing it into different sub-bands. This property is use-
ful for many practical applications where this trade-off is
inevitable. However, we are not forced to find a balance.
For application in our losses, we can both leverage the fre-
quency content with maximum precision, represented by
one component for each frequency in the signal and get pre-
cise local guidance through the spatial representation of the
image.

3.3. Supervision Losses

For perceptual SR, predominantly spatial domain based
losses, spatial feature losses, or frequency-band separation
strategies in the spatial domain, e.g. separation by wavelet
decomposition or filtering, are proposed [32, 5]. Presum-
ably, because most existing architectures are based on con-
volutions that expect spatial invariance in the input and also
due to easy handling of variable image sizes with convo-
lutional networks. Popular choices for supervision losses,
i.e. with reference to a ground truth, are pixel-based losses
L1/L2 and feature based VGG-loss [30, 20]. As proposed
in [32] and for direct comparison, we investigate L1 (5) and
VGG-loss (6).
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Following the setting in [32] we calculate a VGG-loss
using the pre-trained 19-layer VGG network. In particular,
the L1-loss between features NJ (-) (54 indicates 4th con-
volution before the Sth pooling layer) from generator output
9 = G(x) and the target y constitutes the VGG-loss.

In addition to these spatial domain losses, we propose a
Fourier space loss £ for supervision from the ground truth
frequency spectrum during training. First, ground truth y
and generated image ¢ are pre-processed with a Hann win-
dow, as described in Section 3.2. Afterwards, both im-
ages are transformed into Fourier space by applying the fast
Fourier transform (FFT), where we calculate amplitude and
phase of all frequency components. The L1-loss of ampli-
tude difference L .| and phase difference Lz , (we take
into account the periodicity) between output image and tar-
get are averaged to produce the total frequency loss L.
Note, since half of all frequency components are redundant,
the summation for v is performed up to U/2 — 1 only, with-
out affecting the loss due to Eq. (4).
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Theoretical benefits of applying a supervision loss in
Fourier domain are two-fold. (1) The direct emphasis, es-
pecially on the missing HF components, promotes gener-
ation in these important areas as opposed to spatial losses
(L1/L2), which are known to produce blurry images. (2)
Due to the nature of the Fourier transform, which computes
the frequency content with highest precision in trade-off for
spatial precision, the loss provides global guidance during
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Figure 3. Proposed Fourier GAN architecture. We process the
Fourier components of y and ¢ with a fully connected network
to predict real s, and fake s scores.

training in contrast to local pixel-based losses in spatial do-
main.

In contrast to other frequency-based losses, proposed in
the literature, we directly apply the losses in Fourier space,
and do not tune our losses according to some heuristic, as

in [12].

3.3.1 GAN Losses

In order to further boost the perceptual quality we employ a
GAN training scheme with two types of GAN-architectures,
applied in spatial and Fourier domain. Learning the map-
ping from LR to HR directly from the ground truth severely
limits the generation of images with high perceptual quality.
Minimizing the risk towards a single realisation represented
by the ground truth is too strict because the problem is ill-
posed. A GAN training strategy relaxes the loss formula-
tion by allowing plausible HR reconstructions resembling
images from the target distribution.

We use the discriminator from [32] for our spatial GAN
loss L2, , . Additionally, we design a discriminator work-
ing directly in Fourier domain for our proposed frequency
domain GAN-loss £ 4. After the transformation of an
image into Fourier space, the spatial invariance assumption
is no longer valid. Therefore, the application of a convolu-
tional architecture will not be optimal for this task. Thus,
we apply a fully connected discriminator network for ad-
versarial guidance in Fourier space, see Fig. 3. Again, gen-
erated image ¢ and ground truth y are transformed into fre-
quency components represented by amplitude and phase in
Fourier space after the application of a Hann window.

Both adversarial losses are evaluated by a relativistic
GAN formulation [16], which showed improved perfor-
mance in SR over the standard GAN formulation in [32].
The discriminator’s real and fake logits s, = D(y),ss =
D(§) = D(G(z)) are processed with the relativistic trans-
formation by averaging the logits over the batch dimension
b, Eq. (10), and subtracting them from the original logits,
Eq. (11). The transformed real and fake scores p, ¢ are then
evaluated with the sigmoid cross-entropy GAN-objective in
(12).

B
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p=D(y) —35s, ¢=D(j) -3, (11)
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2
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3.4. Training Setup

The complete training setup (13) consists of two supervi-
sion losses and two GAN-losses in both spatial and Fourier
domain and an additional VGG-loss. These loss compo-
nents are weighted with factors «, 3,y and minimized with
Adam [ 18] optimizer in alternating steps.

G.S a.F
min <£GAN +£GAN> ny (ﬁm +£f> v Lyoe

2 2
DS D,F
min o ( can T Lean
D 2

13)

4. Experiments and Results

All settings ! are trained on the DF2K dataset with a scal-
ing factor of » = 4. DF2K is a combination of DIV2K [1]
and Flickr2K [31]. Training pairs consist of paired crops of
size 64 x 64 and 256 x 256 from LR and HR respectively.
We evaluate all experiments on the DIV2K validation set,
the standard benchmark for HR image SR. Additionally, we
provide results on Urban100 [13]. For more evaluations,
please refer to the supplementary material.

We calculate restoration metrics PSNR and SSIM (both
on Y in YCbCr color space), perceptual metric LPIPS [36]
and distributional similarity by FID [1 1, 27]. We deliber-
ately refrain from using no-reference metrics, since we want
to learn the image quality from the target domain, which
is different to learning for a no-reference metric, as these
handcrafted metrics do not necessarily correlate with the
properties of the target image distribution.

4.1. Ablation

We conduct an ablation study with different loss config-
urations to show the effectiveness of our proposed Fourier
domain losses, see Tab. 1. The generator is initialized with
pretrained weights (L2) in all configurations and trained

'We provide codes at https://github.com/dariofuoli/
FourierSpacelLosses.
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Configuration ~ Generator L1 Lrp LZ,v LEiny Lvee TPSNR 1SSIM |LPIPS [FID
1 IMDN [14] v 30.56  0.837 0270 2291
2 IMDN [14] v 29.53  0.811 0.189  16.98
3 IMDN [14] v v 3032 0.834 0266 21.96
4 IMDN [14] v v v 2794  0.751 0.131  17.07
5 IMDN [14] v v v 29.06  0.796  0.129 17.17
6 IMDN [14] v v v v 2796 0762  0.127 16.94
7 IMDN [14] v v v v 29.13 0794  0.127  17.90
8 IMDN [14] v v v v v 2842 0776  0.124  15.88
9 ESRGAN [32] Vv v v v v 28.63  0.780  0.113  14.80
10 ESRGAN [32] Vv v v 28.19  0.769  0.115  15.37

Table 1. Ablation study results. We compare different configurations of loss functions. We calculate restoration metrics PSNR and SSIM,

perceptual metric LPIPS [

on DF2K for 500k iterations with a constant learning rate
| = 107° and a batch size of B = 16. We do not use a
learning rate scheduler for stability reasons and fairness due
to the heterogeneous combinations of different loss types.
The training parameters are set to @ = 0.005, § = 0.01
and v = 1 as proposed in state-of-the-art method ESR-
GAN [32]. The averaging by factor 2 in (13) is removed
whenever a single loss is employed per parameters « or 3,
to keep the balance between supervision and GAN-losses
in all configurations. Additionally, we refine the pretrained
generator from ESRGAN with our additional losses in the
same setting with B = 8.

A comparison between configuration 1 and 2 clearly
shows the effectiveness of our proposed Fourier domain su-
pervision loss L for perceptual quality enhancement. Cal-
culating the losses with our proposed formulation signifi-
cantly improves the perceptual image quality in trade-off
with restoration quality [2], which is reflected by the large
improvement of LPIPS (-0.081) and FID (-5.93).

Configuration 4 represents the loss formulation from ES-
RGAN [32], these spatial losses are exchanged by our pro-
posed Fourier domain losses £ and L,y in configura-
tion 5. The perceptual quality remains comparable between
the two configurations. However, the restoration quality is
significantly higher compared to the ESRGAN losses by
a large margin, reflected by a gain in PSNR and SSIM of
+1.12dB and +0.045 respectively, which shows the superi-
ority of our proposed Fourier domain losses over the corre-
sponding spatial losses employed in ESRGAN.

Configuration 8 shows the effectiveness of our proposed
Fourier domain losses in combination with spatial losses. It
achieves the best LPIPS and FID scores of all configurations
and clearly outperforms the losses of ESRGAN in configu-
ration 4 in all metrics. Simultaneous application of losses
in both spatial and frequency domain leverages complemen-
tary information from each image representation to signif-
icantly improve overall guidance during training. Configu-

] and distributional similarity by FID [

]. The metrics are calculated on the DIV2K validation set.

ration 9 shows the combination of ESRGAN generator with
our proposed full combination of Fourier domain and spa-
tial losses. We note the improvement (PSNR +0.44dB, FID
-0.57) brought by our Fourier domain losses over the origi-
nal ESRGAN in configuration 10.

4.2. Comparison with State-of-the-art

In addition to the effectiveness of our losses for per-
ceptual performance in our ablation study, we show that
we can also compete with state-of-the-art methods with a
more efficient generator network, due to our better losses.
We tweak the loss weights towards higher perceptual qual-
ity in trade-off with restoration quality and set them to
a = 0.0025,5 = 0.005,7 = 1 for our model in Tab. 3
and Tab. 2. Note, the proposal of our losses is to showcase
the improved training performance which enables to train
high-performance low-complexity generators, not necessar-
ily to achieve state-of-the-art performance. Despite the low
complexity of G in our setting, we are able to compete with
image quality of state-of-the-art methods, with a substantial
reduction of runtime.

ESRGAN uses a combination of L1, VGG and GAN
loss and proposes an improved generator architecture de-
rived from SRGAN [20]. RankSRGAN [37] introduces a
method to use non-differentiable handcrafted image qual-
ity metrics (Ma [25], NIQE [26] and PI [2]) for training in
a GAN-based setup. The generator network in RankSR-
GAN is SRGAN [20]. SRFlow [24] is a recently proposed
method, which uses normalizing flows [28] for perceptual
image SR. The concept of normalizing flows provides an al-
ternative to GAN-based learning by modeling the ill-posed
problem explicitly as a stochastic process. We also com-
pare our loss formulation to recently proposed losses us-
ing the wavelet transformation, see Sec. 3.2. Division into
subbands with wavelet transform is used by WaveletSR-
Net [12] and DWSR [9], which both use the Haar trans-
form. We compare our method to the losses in Wavelet-
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SRNet which uses a finer division and a more sophisticated
loss formulation than DWSR. For this purpose, we train the
efficient generator backbone GG with the proposed losses in
WaveletSRNet for direct comparison.

For all other methods we use the pretrained models pro-
vided by the authors, as all of them are trained on DF2K.
Additionally, we provide the results for standard bicubic up-
sampling as a baseline. To quantify model complexity and
efficiency, we compute number of parameters and runtimes
at inference on a NVIDIA TITAN RTX and an Intel i7 CPU
(6 cores). We also provide visual examples in Fig. 4 which
support our quantitative evaluation.

4.2.1 Discussion

The superiority of our losses compared to ESRGAN’s
losses is already shown in the ablation study in Tab. 1. On
top of that, we can even compete with ESRGAN’s high-
complexity generator, which achieves slightly better LPIPS
and FID values, but lower PSNR and SSIM scores with a
substantially slower inference time by a factor of over 13 x
on GPU.

Our losses significantly surpass all three RankSRGAN
models in both restoration metrics PSNR/SSIM and even
achieve the highest FID score. Only the NIQE and PI op-
timized models have slightly higher LPIPS scores, which
however comes with a 2.4x higher runtime on GPU. Note,
this is a substantial difference in complexity, e.g. this
equates to reducing the number of layers in a network by
a factor of 2.4. In comparison to the ranker approach, our
loss formulation does not depend on the difficult design of a
meaningful handcrafted quality metric, which manifests an
upper bound on the achievable quality. We also do not re-
quire the expensive setup of the ranker, we achieve stronger
guidance by direct emphasis on the frequency content with-
out an additional explicit concept of perceptual quality.

SRFlow [24] is the most expensive method with a large
number of parameters and slow inference speeds of 1.995s
and 55.33s on GPU and CPU respectively, yet does not out-
perform the performance of other methods, with the excep-
tion of PSNR and SSIM. Our highly efficient method is
on par with SRFlow with comparable perceptual metrics.
Our solution has better FID score (+0.41) but slightly lower
LPIPS score (-0.001). However, there is an enormous dif-
ference in inference speed, e.g. SRFlow is 48 times slower
on GPU than our method, which highlights the superiority
of our proposed losses.

We train G with WaveletSRNet’s losses from scratch
with a learning rate of | = 105 for 500k iterations with
a batch size of B = 16. Further, we finetune G with a lower
learning rate of | = 10~° for another 250k iterations. We
substantially outperform WaveletSRNet’s loss formulation
with our proposed losses in regard to PSNR and perceptual

Method 1PSNR 1SSIM |LPIPS |FID
ESRGAN (Our losses) [32] 25.05 0.738 0.120 24.07

ESRGAN [32] 2436 0.717 0.123 25.50
RankSRGAN (NIQE) [37] 24.52 0.715 0.143 27.47
Ours (Full) 24.69 0.723 0.132 26.70

Table 2. Evaluation on Urban100. Red indicates best, blue second
best.

metrics LPIPS and FID. Our proposed supervision loss in
Fourier space £ x, from our ablation study, already outper-
forms WaveletSRNet in three metrics with the exception of
LPIPS, see configuration 2 in Tab. 1.

We evaluate our losses on Urban100 [13] in Tab. 2 to
show the generalization capability of our approach. Our ef-
ficient setting achieves comparable performance also on this
dataset. The application of our losses to ESRGAN again re-
sults in clear improvements in all 4 metrics by a substantial
margin, especially in the restoration metrics.

5. Conclusion

We present two Fourier domain losses — a supervision
and a GAN loss — to strengthen the training signal for the
task of perceptual image SR. Our ablation study shows the
provision of complementary information during training in
addition to the losses in spatial-domain. Due to the im-
proved guidance, it is possible to train a significantly lower
complexity — and therefore faster — network to achieve com-
parable performance of much larger networks, which we
regard as an important property for many practical applica-
tions. The runtime of the generator backbone can be cut
down to only 41ms, which is over 13x faster than ESR-
GAN and 48x faster than SRFlow on GPU. The separa-
tion of images into LF and HF content and therefore the
direct emphasis on the missing high frequencies in Fourier
space, imposed by our losses, helps the SR network to gen-
erate plausible HF content. At the same time, we also ap-
ply the corresponding spatial losses to leverage the com-
plementary local information, which results in even better
perceptual quality. To the best of our knowledge, we are
the first to successfully apply a GAN-based loss directly on
Fourier components for SR. We are convinced that more re-
search into architectural improvements of our Fourier-space
GAN-network can further advance the effectiveness of our
approach.
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Method TPSNR  1SSIM |LPIPS |FID |Par[M] J|GPU][s] J|CPU [s]

Bicubic 28.11 0.782 0410 44.79 - - -
SRFlow [24] 28.68 0.773 0.120  16.13 39.542 1.995 55.33
ESRGAN [32] 28.19 0.769 0.115  15.37 16.698 0.553 29.28
RankSRGAN (Ma) [37] 27.30 0.742 0.141 18.40 1.554 0.099 3.97
RankSRGAN (NIQE) [37] 28.19 0.765 0.119  15.89 1.554 0.099 3.97
RankSRGAN (PI) [37] 28.11 0.765 0.121 16.28 1.554 0.099 3.97
Ours (WaveletSRNet loss [12])  27.97 0.786 0.171 19.80 0.894 0.041 1.72
Ours (L1 only) 30.56 0.837 0270 2291 0.894 0.041 1.72
Ours (Full) 28.28 0.770 0.121 15.72 0.894 0.041 1.72

Table 3. Comparison with state-of-the-art methods. We compare in terms of image quality scores (PSNR, SSIM, LPIPS and FID) and
efficiency measures (parameters and runtimes). Red indicates best, blue second best.

Target SRFlow RankSRGAN (NIQE) ESRGAN Ours (Full)

Figure 4. Visual examples from DIV2K validation images.
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