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Abstract

Spiking Neural Networks (SNNs) offer a promising
alternative to traditional deep learning, since they
provide higher computational efficiency due to event-
driven information processing. SNNs distribute the analog
values of pixel intensities into binary spikes over time.
However, the most widely used input coding schemes,
such as Poisson based rate-coding, do not leverage the
additional temporal learning capability of SNNs effectively.
Moreover, these SNNs suffer from high inference latency
which is a major bottleneck to their deployment. To
overcome this, we propose a time-based encoding scheme
that utilizes Discrete Cosine Transform (DCT) to reduce
the number of timesteps required for inference (DCT-
SNN). DCT decomposes an image into a weighted sum
of sinusoidal basis images. At each time step, a single
frequency base, taken in order and modulated by its
corresponding DCT coefficient, is input to an accumulator
that generates spikes upon crossing a threshold. We use
the proposed scheme to train DCT-SNN, a low-latency deep
SNN with leaky-integrate-and-fire neurons using surrogate
gradient descent based backpropagation. We achieve top-
1 accuracy of 89.94%, 68.30% and 52.43% on CIFAR-
10, CIFAR-100 and TinyImageNet, respectively using VGG
architectures. Notably, DCT-SNN performs inference with
2-14X reduced latency compared to other state-of-the-
art SNNs, while achieving comparable accuracy to their
standard deep learning counterparts. The dimension of
the transform allows us to control the number of timesteps
required for inference. Additionally, we can trade-off
accuracy with latency in a principled manner by dropping
the highest frequency components during inference. The
code is publicly available.1

1. Introduction
Deep Learning networks have tremendously improved

state-of-the-art performance for many tasks such as object

*equal contribution
1https://github.com/SayeedChowdhury/dct-snn

detection, classification and natural language processing
[7, 12, 19]. However, such architectures are extremely
energy-intensive [22] and require custom architectures
and training methodologies for edge deployment [14].
To address this, Spiking Neural Networks (SNNs) have
emerged as a promising alternative to traditional deep
learning architectures [25, 31]. SNNs are bio-plausible
networks inspired from the learning mechanisms observed
in mammalian brains. They are analogous in structure to
standard networks, but perform computation in the form of
spikes instead of fully analog values, as done in standard
networks. In this paper, we refer to standard networks
as Analog Neural Networks (ANNs) to distinguish them
from their spiking counterparts with digital (spiking) inputs.
The input and the correspondingly generated activations in
SNNs are all binary spikes and inference is performed by
accumulating the spikes over time. This can be visualized
as distributing the one step inference of ANNs into a multi-
step, very sparse inference scheme in the SNN.

The primary source of energy efficiency of SNNs
comes from the fact that very few neurons spike at
any given timestep. This event driven computation and
the replacement of every multiply–accumulate (MAC)
operation in the ANN by an addition in SNN allows
SNNs to infer with lesser energy. This energy benefit can
be further enhanced using custom SNN implementations
with architectural modifications [17]. Li et al. [23] have
released a spiking version of the CIFAR-10 dataset based
on inputs from neuromorphic sensors. IBM has designed
a non-commercial processor ‘TrueNorth’ [2], and Intel has
designed its equivalent ‘Loihi’ [6], that can train and infer
on SNNs. Blouw et al. [3] have shown SNNs implemented
on Loihi to be two orders of magnitude more efficient than
an equivalent ANN running on GPU for keyword spotting.
However, the higher inference latency in SNNs due to
accumulation of spikes over timesteps remains a challenge.
Energy efficiency at the cost of too high a latency would still
hamper real-time deployment. Consequently, reduction of
timesteps required for inference in SNNs is an active field
of research. One of the major factors that affect the number
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of timesteps needed is the encoding scheme that converts
pixels into spikes over the timesteps. Currently, the most
common encoding scheme is Poisson spike generation [32],
where the spikes at the input are generated as a Poisson
spike train, with the mean spiking rate proportional to the
pixel intensity. This scheme does not encode anything
meaningful in the temporal axis, with each timestep being
the same as any other. Moreover, networks trained
using this scheme suffer from high inference latency [32].
Temporal coding schemes such as phase [18] or burst [27]
coding have been introduced to better encode temporal
information into the spike trains, but still incur high latency
and require a large number of spikes for inference. Another
related temporal method, time-to-first-spike (TTFS) coding
[28, 44], limits the number of spikes per neuron but the high
latency problem still persists. Relative timing of spikes to
encode information has been used in [5], but the results
are only reported for simple tasks like MNIST and its
scalability to deeper architectures such as VGG and more
complex datasets like CIFAR remains unclear.

In this paper, we propose a novel encoding scheme to
convert pixels into spikes over time. The proposed scheme
utilizes a block-wise matrix multiplication to decompose
spatial information into a weighted sum of bases, and
then reverses the transform to allow reconstruction of the
input over multiple timesteps. These bases, taken one
per timestep, modulated by the weights from the forward
transform are then presented to the spike generating layer.
The spike generator sums the contribution of all bases seen
until the current timestep, as shown in Figure 1. Though
any invertible matrix can be utilized as the transform, the
ideal transform follows the properties of energy compaction
and orthonormality of bases as outlined in Section 3.1. We
motivate Discrete Cosine Transform (DCT) as the ideal
choice, since it is data independent, with orthogonal bases
ordered by their contribution to spectral energy. Each
timestep gets the information corresponding to a single
base, starting from the zero frequency component at the
first timestep. Each subsequent step refines the input
representation progressively. At the end of the cycle, the
entire pixel value has passed through the spike generating
neuron. Thus, this methodology successfully distributes
the pixel value over all the timesteps in a meaningful
manner. Choosing the appropriate dimensions of the
transform provides a fine grained control on the number of
timesteps used for inference. We use the proposed scheme
to train DCT-SNN, and observe that it reduces the timesteps
needed to infer an image taken from CIFAR-10, CIFAR-
100 and TinyImageNet datasets from 100 to 48, 125 to 48
and 250 to 48, respectively, while achieving comparable
accuracy to the state-of-the-art Poisson encoded SNNs
[30]. Additionally, ordering the frequency bases being
input at each timestep provides a principled way of trading

off accuracy for a reduced number of timesteps during
inference, if desired, by dropping the least important
(highest frequency) components.

To summarize, the main contributions of this work are-

• A novel input encoding scheme for SNNs is introduced
wherein each timestep of computation encodes distinct
information, unlike other rate-encoding methods.

• The proposed encoding scheme is used to train DCT-
SNN, which is able to infer with 2-14X lower timesteps
compared to other state-of-the-art SNNs, while achieving
comparable accuracy.

• The proposed technique is, to the best of our knowledge,
the first work that leverages frequency domain learning
for SNNs on vision applications.

• To the best of our knowledge, this is the first work
that orders timesteps by significance to reconstruction.
This provides an option to trade-off accuracy for faster
inference by trimming some later frequency components,
which is non-trivial to perform in other SNNs.

2. Related Works
Learning ANNs in the frequency domain. Successful

learning for vision tasks in the frequency domain has been
demonstrated in ANNs in several works. These utilize the
DCT coefficients directly available from JPEG compression
method [36] without performing the decompression steps.
Conventional CNNs were used with DCT coefficients as
input for image classification in [35] and [29]. Ehrlich
and Davis [11] proposed a model conversion algorithm
to apply pretrained spatial domain networks to JPEG
images. Wavelet features are utilized in [37] to train
CNN-based classifiers. However, these methods suffer
a small accuracy degradation compared to learning in
spatial domain. DCT features were used effectively for
large scale classification and instance segmentation tasks
in [41]. Although such frequency domain approaches have
proved fruitful in ANNs, it is unexplored in SNNs despite
the conversion of spatial bases of the image to temporal
bases in the frequency domain being intuitively related to
distributing the analog pixel values in ANNs to spikes over
time in SNNs. There exist three prominent line of works
for training SNNs, namely using spike-timing-dependent
plasticity rules (STDP) [8], ANN-SNN conversion [9, 33]
and training an SNN from scratch [34, 39]. While STDP-
based local learning [8, 42] is more bio-plausible, scaling
such algorithms beyond MNIST type of tasks has been
challenging. Hence, the following discussion focuses
mainly on conversion and backpropagation based works.

ANN-SNN Conversion. The most common approach
of training rate-coded deep SNNs is to first train an ANN
and then convert it to an SNN for finetuning [4, 9, 33].
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Usually, the ANNs are trained with some limitations to
facilitate this, such as not using bias, batch-norm or average
pooling layers, though some works are able to bypass these
constraints [32]. To convert ANNs to SNNs successfully,
it is critical to adjust the threshold of Integrate-and-Fire
(IF) / Leaky IF (LIF) neurons properly. Sengupta et
al. [33] recommend computing the layerwise thresholds as
the maximum pre-activation of the neurons. This results
in high accuracy but incurs high inference latency (about
1000 timesteps). Alternatively, Rueckauer et al. [32] choose
a certain percentile of the pre-activation distribution as
the threshold, reducing inference latency and improving
robustness. The difference between these works and ours
lie in the significance we attach to the timesteps.

Backpropagation from Scratch and Hybrid Training.
Another approach to training SNNs is learning from scratch
using backpropagation, which is challenging due to the
non-differentiability of the spike function at the time of
spike. Additionally, this training takes a long time to
converge. Surrogate gradient based optimization [26]
has been utilized to circumvent this issue and implement
backpropagation in SNNs effectively [15, 21]. Surrogate
gradient based backpropagation on the membrane potential
at only a single timestep was proposed in [43]. Shrestha
and Orchard [34] compute the gradients using the difference
between the membrane potential and the threshold, but
only demonstrate on MNIST using shallow architectures.
Wu et al. [39] perform backpropagation through time
(BPTT) on SNNs with a surrogate gradient defined on the
membrane potential as it is continuous-valued. Overall,
SNNs trained with BPTT using such surrogate-gradients
have been shown to achieve high accuracy and low latency
(∼100-125 timesteps), but the training is very compute
intensive compared to conversion techniques. Rathi et
al. [30] propose a combination of both methods, where
a pre-trained ANN serves as initialization for subsequent
surrogate gradient learning in the SNN domain. The hybrid
approach improves upon conversion by reducing latency
and speeding up convergence. However, this is orthogonal
to the encoding scheme and can be used to improve the
performance of any rate-coded scheme. In this work, we
adopt the hybrid training method to train the SNNs. The
key distinction of our method lies in how the pixel values
are encoded over time, which is described next.

3. Encoding Scheme
An ideal encoding scheme to convert pixel values into

spikes over time should capture relevant information in
the temporal statistics of the data. Additionally, the total
spike activity over all the timesteps at the input neuron
should correspond to the pixel intensity. Our encoding
scheme deconstructs the image into a weighted sum of
basis functions. We invert this transform to reconstruct
the image over time steps. Each basis function, taken

one per timestep and modulated by the weights from the
deconstruction is input to an Integrate-and-Fire (IF) neuron,
which accumulates the input over timesteps and fires when
accumulation crosses its threshold.
3.1. A Generic 1-D Transform to Distribute Pixels

over Time

1-D transformation. For simplicity, we first consider
a one dimensional transform over the entire input pixel
space. Let us consider a single d-dimensional image,
X ∈ R1×d. We transform this image using a transform
matrix T into a new coordinate system, where T ∈ Rd×d.
The transformed vector, Y = XT, where Y ∈ R1×d,
contains the coefficients of the image in the new coordinate
system. This is shown pictorially for d = 5 in Figure 1.
Assume that T is a full rank matrix and let us consider
T−1 ∈ Rd×d, the inverse transformation matrix that takes
us back into the original coordinate system. For reasons
clarified shortly, assume that T is an orthonormal matrix
with its inverse equal to its transpose, T−1 = T ′. The
forward transform represents deconstruction of the input
X into a weighted sum of basis vectors, represented by
the rows of T−1, or columns of T as shown in Figure 1.
These bases are referenced by Tn, n = 1, 2....d. If we
input one basis function per timestep to the SNN, we get
intermediate representations of the input at timestep t, X(t)

by modulating the t-th basis by its corresponding weight
from the forward transform, summed over all previous
timesteps. Summing over all bases allows us to reconstruct
X. Mathematically,

X(t) =

t∑
n=1

ynTn and X(d) = X, (1)

The analog value of X(t) is the input to the spike
generator at each timestep and is converted to spikes
using IF neurons as shown in Figure 2. Hence, we have
successfully distributed the input X over d timesteps, with
each timestep carrying information over our chosen bases.
In the next section, we discuss the desirable properties of
the bases for deconstructing X.

Desirable Properties of the Basis Vectors. The
columns of the transform matrix T contain the bases to
deconstruct X. Since we use one basis per timestep, we
want each base to offer non-interfering information about
X. This is captured by the orthonormality constraint on
T. Orthonormal columns avoid cancellation of information
between timesteps, and relate the forward and reverse
transforms by a transpose operation. The second constraint
on T is that the bases be ranked by a measure of the
information they carry. This allows each basis function
to successively refine the representation per timestep. It
is desirable to have the bulk of the information focused in
the earlier timesteps, with fine-grained information added
by the later steps. This ordering of bases allows us to
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Figure 1: 1-D Encoding Scheme: On the left we show the Forward Transform. T represents the transform matrix that
takes the input X into an intermediate coordinate system, resulting in representation Y. On the right, we show the Inverse
Transform that uses Y to reconstruct X over time. Here T−1 = T ′. The input image X is reconstructed progressively at
each timestep by summing the basis vectors Tn modulated by the corresponding coefficient yn over all previous timesteps.
Since there are 5 bases shown here, X requires 5 timesteps for reconstruction.

drop bases in a principled manner to trade-off accuracy for
latency during inference.

Transforms that Satisfy Constraints. There are two
widely used transforms that satisfy these properties: the
DCT transform [1] and the Karhunen–Loève transform
[10], also known as Principal Component Analysis
(PCA). DCT decomposes an image into a linear
combination of sinusoidal frequencies, ranked by spectral
energy. PCA uses the eigenvectors of the covariance
matrix of the inputs as the bases, ranked by the amount
of variance they explain. DCT is commonly used in
JPEG Compression and PCA in dimensionality reduction,
by approximating the later components. However, PCA
results in dataset dependent bases, whereas the DCT bases
are pre-determined, avoiding extra computation. The 1-D
DCT transform uses the following equation to take the pixel
values xn into DCT coefficients Xk using sinusoidal bases.

Xk =

N−1∑
n=0

xn cos

[
π

N

(
n+

1

2

)
k

]
k = 0, . . . , N−1.

(2)

The sinusoidal bases can be entered as the columns
of a transformation matrix T . The forward transform is
then computed as Y = TXT ′ and the reverse transform
is computed as X = T ′Y T . A comparison of the
results for DCT, PCA, a random orthonormal transform
without ranked bases, and a random non-orthonormal non-
ranked transform is shown in Table 1. For the rest of
the paper, we use the dataset agnostic DCT. Additionally,

the conversion of spatial to temporal frequency in DCT
lends itself intuitively to the concept of distributing spatial
information in ANNs into spikes over time.

3.2. 2-D Discrete Cosine Transform
We now extend the scheme to 2-D. The 2-D DCT is

just the 1-D DCT applied first along the width channel
and then along the length channel. Images are high
dimensional, resulting in large transformation matrices T .
This is undesirable since the number of DCT bases (or the
dimension of T ) dictates the number of timesteps required
to reconstruct the image. To tackle this, similar to JPEG
compression [36], we first convert the image from RGB
to YCbCr domain, and then perform 2-D DCT on blocks
of size n × n , getting n2 ordered frequency components.
We replace the n × n pixel block with the equivalently
reshaped frequency coefficients. An n × n block requires
n2 timesteps for perfect reconstruction of the pixel block.
Small values of n allow us to reconstruct the images by
summing over only a few basis images. In standard JPEG
compression, 8 × 8 blocks are used, resulting in the 64
basis images shown in Figure 3. The bases obtained from
PCA on the training dataset of CIFAR-10 are also shown.
Empirically, we find that block sizes of 4 × 4 converge to
the best accuracy with the lowest number of timesteps. We
usually need to run 3 cycles to achieve convergence to best
accuracy, amounting to 4×4×3 = 48 timesteps. In each of
the 3 cycles, we repeat the 16 DCT coefficients and bases, to
allow time for spike propagation to the deeper layers. This
is discussed in further detail in Section 4. Unlike the JPEG
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Figure 2: Spike generation with 1-D DCT basis functions
input per timestep (shown vertically). The neuron spikes
when the accumulated value crosses a threshold.

compression scheme, we utilize an overlapped scheme to
improve accuracy, where the blocks of pixels overlap. This
is equivalent to performing convolution with a kernel size
of 4 and a stride of 2, and increases the input dimensions by
4×. To counter this, we add an extra 2× 2 average pooling
layer before the linear layers.

3.3. Conversion from ANN and Threshold Selection
In our scheme, the SNN trains on intermediate pixel

representations. Hence, we utilize an ANN trained with
pixels (rather than DCT coefficients) for initialization.
The threshold of the IF neuron at the spike generator
significantly affects the timesteps required for spike
propagation to deeper layers. This IF neuron, as shown in
Fig. 2, receives the bases modulated by the DCT coefficients
and accumulates them over timesteps, firing when the
accumulation crosses the threshold. We allow both positive
and negative spikes to account for the positive and negative
cycles of the sinusoidal bases. Similar to the hidden layer
neurons, the threshold is chosen as a percentile of the
accumulation at the spike generator neurons. We obtain best
results by using 6.5 and 93.5 percentile of the accumulation
as thresholds for negative and positive spikes, respectively.

4. Experiments and Results
We implement DCT-SNN by incorporating the proposed

encoding scheme with surrogate-gradient based learning
using LIF neurons. Starting with a pretrained ANN,
we copy the weights to the SNN and select the 99.9
percentile of the pre-activation distribution at each layer as
its threshold. The details of the learning methodology and
hyperparameters of training are given in the supplementary
in sections 1 and 2, respectively. The implementation is
provided as part of the supplementary material.

Choice of Transformation. We first analyze the

Figure 3: 8 × 8 2-D DCT bases (left) and PCA bases for
CIFAR-10 (right). The DCT bases are ranked in a zig-zag
fashion starting from top left to the bottom right and the
PCA bases are ranked from left to right and top to bottom.

performance of DCT-SNN trained on different choices of
transformation matrices (denoted as T in section 3.1). Table
1 shows the results for a VGG5 network trained on CIFAR-
10. With a random T , the network does converge but
with much lower accuracy than the ANN. Next, to avoid
interference between different bases, we use a random
orthonormal T . Table 1 shows that the accuracy improves
by ∼ 20% compared to non-orthonormal case. However,
this choice of T does not perform energy compaction.
Ranking bases by their contribution to reconstruction allows
us to trade-off accuracy for latency during inference. To
incorporate this, we experiment with the transformation
matrix generated by performing PCA on 4 × 4 blocks of
the inputs from the training dataset. While this satisfies
both the desired properties and gives the best performance,
it is a data-dependent transform. Therefore, we utilize the
fixed DCT matrix, and find that it performs at par with PCA,
while additionally being data-agnostic. For all subsequent
analysis, we use DCT as the choice of transformation.

Effect of Block Size and Overlap. Having chosen
DCT to determine the bases of our encoding scheme, we
tune the block size and stride. The results are shown
in Fig. 4. ‘DCT-x’ denotes a network trained on inputs
transformed with DCT of blocksize x, and ‘ov’ refers to
overlap among the DCT blocks. Reducing the blocksize
from 16 to 4 improves accuracy consistently. Moreover,
since a blocksize of x requires x2 timesteps to pass one
information of cycle, smaller blocksizes benefit from a
lesser requirement of timesteps per cycle. The results on
different block sizes with timesteps required in parenthesis
are shown in Fig. 4. We empirically find that DCT-2 is
unable to converge, and that overlapped version of DCT-
4 with a stride of 2 outperforms all other cases. Hence, we
utilize this scheme for all further experiments.

Number of Cycles for Information Propagation. The
next design parameter is the number of timesteps per
forward pass. The performance of DCT-SNN trained with
different timesteps is shown in Fig. 5. In the scheme DCT-
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Table 1: Accuracy of VGG5
on CIFAR-10, with DCT block
size = 4×4

Transform
Matrix

Accuracy
(%)

Random 64.7

Unranked
Orthonormal

83.3

PCA 83.8

DCT 83.5

Table 2: Accuracy(%), with timesteps indicated in parenthesis. -p and -d
represent training with pixels and DCT coefficients, respectively

Configuration VGG9
CIFAR-10

VGG11
CIFAR-100

VGG13
TinyImageNet

ANN-p 91.3 69.7 56.9

ANN-d 90.4 66.4
45.5a

53.1b

SNN-p 90.1 (175)
88.9 (100) 67.8 (125) 53 (250)

SNN-d 88.2 (100) 65.1 (125) 44.6 (250)

DCT-SNN 89.94
(48)

68.3
(48)

52.43 (125)
51.45 (48)

aANN without batchnorm and maxpool to facilitate conversion
bANN with batchnorm and maxpool

Figure 4: Accuracy(%) for VGG9 on CIFAR10 with
varying DCT blocksize (timesteps)

Figure 5: Accuracy(%) for VGG9 on CIFAR10 with
varying timesteps

4, one full cycle amounts to 16 timesteps. The network
converges to 89.94% accuracy with 48 timesteps and
88.41% accuracy with just 32 timesteps. Since performance
saturates after 3 cycles (48 timesteps), we fixed 48 as the
number of timesteps to train DCT-SNN on CIFAR-10 and
CIFAR-100. However, for deeper networks and larger
datasets, larger timesteps might yield further improvements,
as shown in Table 2 for TinyImagenet with VGG13.
Notably, the accuracy of Poisson-encoded networks drops
severely below 45 timesteps (Fig. 5), whereas DCT-SNN
suffers a minimal drop even with 28 timesteps. In particular,
Poisson does not converge under 32 timesteps, whereas we
achieve less than 2% accuracy drop at 32 timesteps.

Results on CIFAR and TinyImageNet. The
experimental results using the proposed scheme for CIFAR
and TinyImageNet datasets are shown in Table 2. DCT-
SNN performs comparably to SNNs trained with Poisson-
encoded pixels, but requires lesser than half the timesteps.
Additionally, DCT-SNN outperforms SNNs trained on
Poisson-encoded DCT coefficients, presumably due to the
reconstruction of pixels over time. To demonstrate the
scalability of DCT-SNN, we apply it to TinyImagenet.
While SNNs with Poisson-encoded pixels require ∼ 250

timesteps to converge, our method achieves comparable
accuracy in 125 timesteps. Allowing for a 1% drop in
accuracy, our method converges with even 48 timesteps.

Performance Comparison. We compare our
performance with reported results for different state-
of-the-art SNNs in Table 3. DCT-SNN performs better
than or comparably to the reported accuracy of the these
methods, while achieving lower inference latency. Wu
et al. [39] report CIFAR10 results with 30 timesteps
for a shallow network with 2 convolutional and 2 fully-
connected layers with 50.7% accuracy. We implement the
same net with DCT-SNN and achieve 68.1% accuracy with
28 timesteps. Next, we compare with methods that expose
analog pixel intensities directly to the first convolutional
layer, instead of spikes. In a subsequent work, Wu et
al. [40] achieve 90.53% accuracy on CIFAR-10 using
just 12 timesteps on a network with 5 convolutional and
2 fully connected layers. However, in [40], after each
conv layer, the binary activations go through a channel-
wise normalization which makes the binary activations
essentially analog. We believe that the analog computation
at each layer makes this network closer to ANNs than
SNNs, resulting in the significant reduction in timesteps,
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Figure 6: Accuracy-latency tradeoff during inference;
VGG9 trained on CIFAR-10 with all 16 frequencies for 48
timesteps. During inference, cycle1 uses all 16 frequencies,
cycle2 uses limited, ordered frequencies.

especially since their network is shown to converge to a
good accuracy in a single timestep.

We also compare with works that train ANNs on DCT
coefficients. Authors of [11] report ANNs with 72.5% and
38.5% accuracy on CIFAR-10 and CIFAR-100, respectively
and authors of [35] report 86.35% accuracy on CIFAR-10.
DCT-SNN reaches upto ∼ 90% accuracy on CIFAR-10, as
seen in Table 2, when DCT is performed on blocks of size
4×4 with an overlap of 2, unlike the standard JPEG scheme
of 8×8 with no overlap. However, DCT-SNN does not train
in the frequency domain unlike [11], since after passing the
modulated bases through the network, an equivalent of the
input image in the pixel domain is passed through the SNN.
To verify that our method is trainable via backpropagation
from scratch, we trained a VGG9 SNN from scratch for
CIFAR-10, which gives 84.9% accuracy with 48 timesteps.
A more detailed comparison with other encoding schemes
is shown in the supplementary section 5.

Accuracy-Latency Trade-off. The ranking of bases
in our scheme allows us to drop the least significant
components. In Fig. 6, we show the effect the ranking of
bases has on accuracy by performing inference on VGG9
DCT-SNN trained on CIFAR-10 for 48 timesteps using
all 16 frequencies. A minimum of 16 timesteps (1 cycle)
are required for spike propagation to the deeper layers,
and hence any configuration with timesteps lesser than 16
cannot infer correctly. We provide 2 cycles of inputs on
the test data. The first cycle uses all 16 components, and
the next adds successively higher frequencies. Due to the
fact that the bulk of the information is contained in the
earlier timesteps, we are able to get good accuracy (73.9%
out of 88.6% ) with just the first 4 bases. Successive
components add more refined information, and therefore
the accuracy saturates, as evident from Fig. 6. To the best
of our knowledge, this is the first work that demonstrates a

Figure 7: DCT-SNN layerwise spike rate. C and FC denote
Conv and Fully Connected layers, respectively.

principled trade-off between inference accuracy and latency
on a trained network. Results for networks trained with
limited frequencies are shown in the supplementary section
3. The effect of changing the order of inputting frequencies
is shown in the supplementary section 6.

Computational Efficiency. The floating-point (FP)
MAC operations in ANN are replaced by FP additions
in SNN. The cost of a MAC operation (4.6pJ) is
5.1× compared to an addition (0.9pJ) [13] in 45nm
CMOS technology. The expressions representing the
computational cost in the form of operations per layer in an
ANN, #ANNops, are given in the supplementary section 4.
The number of operations per layer in an equivalent DCT-
SNN are related to #ANNops by the layer’s spike-rate.

#DCT-SNNops, L = spike rateL ×#ANNops, L, (3)

where spike rateL is the average number of spikes per
neuron per image over all timesteps in layer L. The
layerwise spike rates for CIFAR-10 and CIFAR-100 using
DCT-SNN are shown in Fig. 7. The overall average spike
rate across all layers for both cases is well below 5.1
(relative cost of MAC to addition), indicating the energy
benefits of DCT-SNN over the corresponding ANN. For
DCT-SNN, the additional cost of 2 full precision matrix
multiplications in the forward and reverse preprocessing
transforms are denoted as Encoderops. This computation is
needed for only one cycle (16 timesteps), since the other
2 cycles just repeat the same bases and coefficients. The
overhead is negligible when compared to the number of
operations over all the layers across all timesteps.

We compute the energy benefits of DCT-SNN over
ANN, α = EANN

EDCT-SNN
as,

α =

∑
L #ANNops,L ∗ 4.6

#Encoderops ∗ 4.6 +
∑

L #DCT-SNNops,L ∗ 0.9
(4)
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Table 3: Comparison of DCT-SNN to other reported results. SGB denotes Surrogate-Gradient Based backprop, Hybrid
denotes pretrained ANN followed by SNN fine-tuning, TTFS denotes Time-To-First-Spike scheme, TL denotes tandem
learning and (xC, yL) denotes an architecture with x Conv layers and y Linear layers.

Reference Dataset Training Architecture Accuracy(%) Timesteps
Hunsberger and Eliasmith [16] CIFAR10 Conversion 2C, 2L 82.95 6000

Cao et al. [4] CIFAR10 Conversion 3C, 2L 77.43 400
Sengupta et al. [33] CIFAR10 Conversion VGG16 91.55 2500

Lee et al. [21] CIFAR10 SGB VGG9 90.45 100
Rueckauer et al. [32] CIFAR10 Conversion 4C, 2L 90.85 400

Rathi et al. [30] CIFAR10 Hybrid VGG9 90.50 100
Park et al. [28] CIFAR10 TTFS VGG16 91.40 680
Park et al. [27] CIFAR10 Burst-coding VGG16 91.40 1125
Kim et al. [18] CIFAR10 Phase-coding VGG16 91.20 1500
Wu et al. [39] CIFAR10 SGB 2C, 2L 50.70 30
Wu et al. [40] CIFAR10 SGB 5C, 2L 90.53 12
Wu et al. [38] CIFAR10 TL(LIF) 5C, 2L 89.04 8

This work CIFAR10 DCT-SNN VGG9 89.94 48
Lu and Sengupta [24] CIFAR100 Conversion VGG15 63.20 62

Rathi et al. [30] CIFAR100 Hybrid VGG11 67.90 125
Park et al. [28] CIFAR100 TTFS VGG16 68.80 680
Park et al. [27] CIFAR100 Burst-coding VGG16 68.77 3100
Kim et al. [18] CIFAR100 Phase-coding VGG16 68.60 8950

This work CIFAR100 DCT-SNN VGG11 68.30 48
Sengupta et al. [33] TinyImagenet Conversion VGG16 48.60 2500

Kundu et al. [20] TinyImagenet Hybrid VGG16 51.92 150
This work TinyImagenet DCT-SNN VGG13 52.43 125

The obtained values of α are 1.52 and 1.74 for VGG9-
CIFAR10 and VGG11-CIFAR100, respectively, showing
that DCT-SNN improves energy efficiency over its ANN
counterpart. Similar to [28], the cost of memory access has
not been considered in this evaluation, since it depends on
the hardware architecture and system configurations.

5. Conclusion
Bio-plausible SNNs derive efficiency from the sparsity

of spikes per timestep and event-driven computation, but
suffer from high inference latency. The most widely
used Poisson based rate encoding scheme does not encode
meaningful information into the temporal axis of SNNs,
and requires a large number of timesteps for inference. To
address this, we propose a new encoding scheme that can be
used to distribute spatial pixel information over timesteps
in an ordered fashion. It utilizes a linear transform in the
form of an invertible matrix, with columns that serve as
basis of representation distribution. The input pixels are
reconstructed over time by summing these bases modulated
by the intermediate coefficients. At each step, we feed in
the modulated bases to an integrate-and-fire neuron at the
input layer. As we cycle through all bases over timesteps,
the neurons cumulatively receive the total pixel values.

The ideal properties of the bases are orthonormality to
avoid interference, and ordering by contribution to pixel
reconstruction. DCT meets these conditions, while also
being dataset-agnostic. We get best performance with 2-
D DCT on 4 × 4 blocks of the input, resulting in 16 basis
frequencies. We show that DCT-SNN trained by passing
these 16 bases through the SNN cyclically a few times
achieves comparable accuracy to their ANN counterparts,
with less than half the number of inference timesteps
compared to other state-of-the-art SNNs. Additionally,
ranking these bases allows us to drop the least important
bases (and therefore, timesteps). This principled trade-
off between inference accuracy and latency is a promising
direction for deploying SNNs on edge devices.
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