
Globally Optimal and Efficient Manhattan Frame Estimation
by Delimiting Rotation Search Space

Wuwei Ge2, Yu Song ∗,1,2, Baichao Zhang2, and Zehua Dong2

1Beijing Jiaotong University 2Zongmu Tech, Beijing, China

Abstract

A typical man-made structure can be abstracted as the
Manhattan world assumption, in which notion is further
represented as a Manhattan Frame (MF) defined by three
orthogonal axes. The problem of MF estimation can be for-
mulated as the solution of the rotation between the MF and
the camera frame (called the ”MF rotation”). However, the
whole rotation space is quite redundant for solving the MF
rotation, which is one of the main factors that disturb the
computational efficiency of those methods associated with
a rotation space search. This paper proves that the vol-
ume of the space that just contains all MF rotations (called
the ”MFR space”) is only 1 / 24 of that of the whole ro-
tation space, and then an exact MFR space is delimited
from the rotation space. Searching in the delimited MFR
space, the MF estimation solved by a branch-and-bound
(BnB) framework guarantees stability and efficiency simul-
taneously. Furthermore, the general rotation problems as-
sociated with a rotation space search are solved more ef-
ficiently. Experiments on synthetic and real datasets have
successfully confirmed the validity of our approach.

1. Introduction

Most man-made environments generally exhibit particu-
lar regularity like parallelism and orthogonality, which can
be represented by a set of parallel and orthogonal struc-
tural lines. These structural forms are commonly abstracted
as Manhattan world (MW) [1] assumption that consists of
three mutually orthogonal directions corresponding to three
orthogonal vanishing points (VP) in image plane of cam-
era. By virtue of its simplicity, MW assumption has been
successfully applied to many higher-level computer vision
tasks, such as calibration of camera parameters [2, 3], scene
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understanding [7, 8, 9] and SLAM [10, 11, 12].
Since the introduction of the notion of Manhattan Frame

(MF) [20], which is defined by three orthogonal axes cor-
responding to the three directions of MW, a considerable
amount of work has been devoted to the stability and effi-
ciency of MF estimation. However it is still challenging to
satisfy both of the two properties. By formulating the prob-
lem of MF estimation as the solution of the rotation between
the MF and the camera frame (called the ”MF rotation”),
state-of-the-art methods [15, 16] exhaustively search in the
whole rotation space to meet a globally optimal solution in
terms of maximizing the number of inliers. These methods
are robust and accurate enough to guarantee the stability,
but the computational efficiency is intractable for the time
critical applications, e.g., SLAM and navigation.

A remarkable fact is that the whole rotation space is quite
redundant for all MF rotations, which is one of the main fac-
tors that disturbs the computational efficiency of the param-
eter search-based methods (typically using a branch-and-
bound (BnB) framework [14]). The goal of this paper is
to delimit a special sub-space that just contains all MF ro-
tations (hereinafter called the ”MFR space”). To achieve
this, we prove that the whole rotation space can be evenly
divided into 24 congruent MFR spaces, any of which just
contains all MF rotations. Within a delimited MFR space,
the MF estimation approach, e.g., BnB-based algorithm,
guarantees globally optimal solution satisfying both stabil-
ity and efficiency. Moreover, based on the theory of rotation
space delimitation, the general rotation estimation problems
solved by the BnB-based algorithm associated with a rota-
tion space search, e.g., the panorama stitching [15, 17, 35],
the estimation of camera pose [13, 26], the 3D registration
[15, 33, 34] and the tilt-pan camera calibration [4, 5, 6], can
be improved greatly. Overall, the main contributions of this
paper are summarized as follows:

• We prove the redundancy of search in whole rotation
space for the MF estimation. The volume of the MFR
space is only 1 / 24 of that of the whole rotation space
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theoretically.

• We prove that a cube with the half side length π/4
in the rotation space parametrized by angle-axis rep-
resentation is just enough to tightly enclose a MFR
space, and then an exact MFR space is delimited.

• Searching in the delimited MFR space, the efficiency
of MF estimation based on BnB is improved by
about 25 times, which satisfies both stability and ef-
ficiency of this problem. Furthermore, the general ro-
tation problems associated with a whole rotation space
search are solved more efficiently.

2. Related Work and Prerequisite Knowledge
Since many existing MF estimation methods search in

parameter space to meet stability, we first review the related
works, and then, the parameterization of rotation space.

2.1. Existing methods

The expectation maximization (EM)-based methods [18,
19, 20], cluster image lines and estimate VPs alternately. It
alternates between an expectation (E) step, which estimates
the line clustering given the current hypothesized VPs, and
a maximization (M) step, which computes the VPs given
the line clustering estimated at the E step. These methods
are sensitive to the initial solution and prone to converging
to a local optimum. The sampling-based methods [3, 21,
22, 23] exploit RANSAC [24] or its variants [25]. Bazin
and Pollefeys [21] proposed a 3-line based algorithm for
calibrated cameras, and based on this strategy, Zhang et al.
[23] solved the 3-line hypothesis in a better approach that
achieves a better level of confidence with fewer samples.
Note that these methods are inherently unstable and cannot
guarantee the global optimality.

To guarantee stability, Bazin et al. [15, 16] proposed or-
thogonal VPs estimation methods based on a BnB frame-
work, which satisfies the globally optimality in terms of
maximizing the number of inliers. In [16], the rota-
tion space is parametrized by Euler angles representation,
but this method based on interval analysis provides loose
bounds. Concurrently, an improved strategy presented in
[15] by exhaustively searching in the whole rotation space
parametrized by angle-axis representation [26]. However,
these BnB frameworks are usually too slow for time critical
applications. Joo et al. [27, 28] recently proposed a novel
strategy to significantly improve the efficiency of BnB. It
transfers input data to an extended Gaussian image domain
and combines with efficient bound functions to satisfy both
stability and efficiency. However it is inherently suitable for
surface normals, but not well applicable to image lines.

To meet the two properties, Bazin et al. [29] proposed
to sample numerous MF rotations over the rotation space

An MW structure with  

3 orthogonal directions

The mapped axes from 

the 3 directions of MW Candidate MFs 

Figure 1. An MW structure maps to 24 candidate MFs with no
prior information regarding the axis direction of the MF and the
permutation of three axes.

around an initial rotation (i.e., the quasi-exhaustive search)
and select the one maximizing the number of inliers. While
this tracking based strategy is inherently suitable for video
sequences. More recently, Li et al. [30, 31] proposed a
quasi-globally optimal algorithm by sampling one or two
degrees of freedom (DOF) of MF rotation hypothesis and
then searching for the other DOF with the BnB-based strat-
egy. The method reaches a compromise between efficiency
and accuracy by hybridizing the sampling and search strate-
gies ingeniously, however, it can not completely satisfy the
optimality because of the sampling mechanism.

2.2. Parameterization of Rotation Space

The rotation space parametrized by unit quaternion rep-
resentation can be denoted as H, which is a hemisphere in
4-space. It is isometric between H and SO(3) [26]. Con-
sider unit quaternions q1 and q2, and their corresponding
rotations R1 and R2 respectively. The two metrics are re-
lated as follows:

dR(R1, R2) = 2d(q1, q2) = 2 arccos(q1 · q2) (1)

where dR(R1, R2) is the rotation angle ∠(R1, R2) between
the two matrices, and symbol ”·” represents the dot product.

The rotation space parametrized by angle-axis represen-
tation can be denoted as Bπ , which is a ball of radius π.
When mapping from H to Bπ , it causes tangential stretch-
ing at the periphery [26]. It is not isometric betweenBπ and
SO(3). To ensure isometry, we still measure the distance
between two the vectors r1 and r2 in Bπ by the distance
between the corresponding unit quaternions q1 and q2:

dr(r1, r2) = 2d(q1, q2) = 2 arccos(q1 · q2) (2)

Where dr(r1, r2) is distance between the vectors r1 and r2.
For the sake of unity of form, we denote d(·) as the distance
metric on rotations regardless of the parameterization.

3. Problem Statement
Let’s first state the redundancy of the whole rotation

space for solving MF rotation, and then, prove that the rota-
tion space can be divided into 24 congruent MFR spaces.
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3.1. Redundant Search Space

With no prior information regarding the axis direction
of the MF, a direction of an MW structure can be mapped
to one of two opposite axes arbitrarily and we finally ob-
tain 6 mapped candidate axes, as shown in Fig. 1. On the
constraints of the right-hand rule and without prior infor-
mation regarding the permutation of three axes of the MF,
any combination of three orthogonal candidate axes can be
regarded as a candidate MF. It is provable there are 24 such
candidate MFs at all, and any candidate MF can interpret
this MW structure. Therefore mapping from MW structure
to MF is a 1-to-24 mapping.

Suppose the camera doesn’t rotate with respect to the
MW structure, i.e., the camera is perspective and the pro-
jections of the parallel structural lines of the MW structure
remain parallel in the image plane. In this case, the three di-
rections of the MW structure are considered to align along
or against the three axes of camera frame and the 6 mapped
candidate axes corresponding to the three directions can be
expressed as:

E =

1 −1 0 0 0 0
0 0 1 −1 0 0
0 0 0 0 1 −1

 (3)

where each column represents an axis of the MF. Obviously,
on the constraints of the right-hand rule, different combina-
tions of any three orthogonal axes of E can form 24 candi-
date MFs. We define these MFs as reference frames (RFs).
By regarding these RFs as rotation matrices, we obtain a set
S = {Ti}23i=0, where Ti ∈ SO(3) is a RF and the RF T0,
which consists of a set {ei}3i=1

1 of three canonical vectors,
coincides with the camera frame.

When the orientation of the camera is rotated δR (i.e.,
called ”MF rotation”), these six mapped axes of E will ap-
pear rotated by δR in the camera coordinate system:

M = δRE (4)

With the same combination rules as mentioned above, dif-
ferent combinations of any three orthogonal axes ofM form
a set of 24 unknown-but-sought candidate MFs {Ri}23i=0,
where Ri ∈ SO(3) is a candidate MF corresponding to the
RF Ti. As a result, the MF rotation δR can be regarded as
occurring between any unknown-but-sought candidate MF
Ri and its corresponding RF Ti simultaneously, i.e., the
mapping from the MF rotation δR to the candidate MFs
{Ri}23i=0 is a 1-to-24 mapping:

δR = RiT
−1
i , Ti ∈ S (5)

Then, we get the relationship between the candidate MF R0

and any other candidate MF Ri:

Ri = R0T
−1
0 Ti = R0Ti, i 6= 0 (6)

1i.e., e1 = [1 0 0]T , e2 = [0 1 0]T and e3 = [0 0 1]T

Obviously, when evaluate the MF Ri, typically in terms of
maximizing the number of inliers, we can obtain the same
value. In theory, the whole rotation space search strategy
based on the BnB framework [15] converges to 24 different
positions concurrently. Therefore, The whole rotation space
is quite redundant for solving the MF rotation.

3.2. Congruent MFR Spaces in Rotation Space

According to Sec. 2.2, the distance metric on rotations
is in the form of unit quaternion representation uniformly.
Given an MF R, we can always find a nearest RF such that:

dmin = min
Ti∈S

d(R, Ti) (7)

We call the MF R falls in the radiation range of the nearest
RF Tmin, and we denote the rotation between R and its
nearest RF Tmin as δRmin:

δRmin = RT−1min, Tmin ∈ S (8)

On the contrary, given a RF Ti, there is always a set of cor-
responding MFs, which fall in the radiation range of Ti.

Result 1. The whole rotation space D can be divided
into 24 sub-spaces {Di}23i=0 (i.e., called ”MFR spaces”),
i.e., D =

⋃23
i=0Di, where the MFR space Di is centered

at the RF Ti.
According to Eqs. (5) and (8), given an MF R in the

MFR space Dmin centered at the RF Tmin, we can always
find a candidate MFRi in any other MFR spaceDi centered
at the RF Ti such that the RF Ti is rotated toRi by the same
rotation δRmin:

δRmin = RT−1min = RiT
−1
i , i 6= min (9)

Result 2. The volume of these 24 MFR spaces is congru-
ent and each of these MFR spaces just contains all MF rota-
tions, i.e., V (Di) = V (Dj),∀i, j = 0...23 and i 6= j,
where V (·) is the volume of MFR space. Note that those ro-
tations, which fall in more than one MFR space, distribute
at the common boundaries of these sub-spaces. However
they can be imposed to attribute to one of the corresponding
MFR spaces uniquely and evenly so as to there is no overlap
between these MFR spaces, i.e., Di

⋂
Dj = ∅, i 6= j.

4. Delimitation of MFR Space
This section states how to delimit an MFR space. First,

we define a cube of just the right size to enclose one of the
MFR spaces. Secondly, we delimit an exact MFR space.

4.1. A Cube Enclosing an MFR Space

For the sake of visual expression, we employ the angle-
axis representation to parameterize the rotation space. We
denote the RFs in the set S as 24 anchors fixed in the ball
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Figure 2. Determination of the cube CO enclosing the MFR space DO . (a) Distribution of the anchors in the rotation space Bπ . (b) The
cube CO enclosing the MFR space DO centered at rO . (c) Comparison of the distances from points on and outside the plane x = π/4 to
the point rO and the point rA. (d) Comparison of equivalent function values of the corresponding distances.

Bπ , as shown in Fig. 2(a). Then the angle-axis parameter-
ized form of T0 can be denoted by the anchor rO, which
is at the coordinate origin O. In addition, 6 anchors (red
points), π/2 away from it, are distributed on three axes, 8
anchors (blue points), 2π/3 away from it, are distributed in
8 quadrants and 9 anchors (green points), π away from it,
are distributed on the surface of the ball Bπ .

Since the 6 anchors on axes are nearest to the anchor
rO, we select one of them to analyze, e.g., the anchor rA at
coordinate (π/2, 0, 0) is selected. Obviously, the point rM ,
which is at the midpoint of the line between rO and rA,
is equidistant to rO and rA (i.e., the distances d(rM , rO)
and d(rM , rA) are both π/4). According to Result 2, the
point rM is on the common boundary of the MFR space
DO centered at rO and the MFR space DA centered at rA.
It is provable that the points on the line between rO and rM
are nearest to the anchor rO. Therefore, when use a cube
CO to enclose the the MFR space DO, the half side length
of the cube CO cannot be less than π/4, see Fig. 2(b). But
is the cube CO big enough to enclose the MFR space DO?

According to the nearest distance criterion, if the dis-
tance from a point rP on a plane of the cube CO to the
anchor rO is greater than that from rP to some other an-
chors, we can conclude that the point rP is out of the MFR
space DO. Then, if all the points on and outside all the 6
planes of the cube CO are out of the MFR space DO, the
closed space enclosed by the cube CO is big enough to hold
the MFR space DO.

i) Points on the planes of the cube. For the sake of sim-
plicity, we focus on the plane x = π/4 passing through
the point rM , and a point rP on the plane can be ex-
pressed as rP = (π/4, y, z), where y ∈ [−π/4, π/4] and
z ∈ [−π/4, π/4]. The quaternion form of the point rP
is qP = (cos(β/2), π sin(β/2)

4β , y sin(β/2)β , z sin(β/2)β ), where

β =
√

(π/4)2 + y2 + z2, β ∈ [π/4,
√
3π/4]. The distance

from the point rP to anchor rO is:

d(rP , rO) = β (10)

and the distance from the point rP to the anchor rA is:

d(rP , rA) = 2 arccos(

√
2 cos(β/2)

2
+

√
2π sin(β/2)

8β
)

(11)
Our goal is to compare d(rP , rO) and d(rP , rA), see Fig.
2(c). After some equivalent transformations, comparing Eq.
(10) and Eq. (11) is equivalent to comparing the values of
the two functions tan(β/2) and 4(

√
2 − 1)β/π. Fig. 2(d)

shows that in the domain of parameter β, the value of func-
tion tan(β/2) is greater than that of function 4(

√
2−1)β/π,

except for the value of β = π/4, where d(rP , rO) is equal
to d(rP , rA), i.e., the point rP is at the point rM .
ii) Points outside the planes of the cube. The points

outside the planes of the cube can be considered to be
on the extension line from the anchor rO to the cor-
responding points on the plane, see Fig. 2(b). Con-
sider a point r

′

P on the extension line from rO to rP ,
which is expressed as r

′

P = (aπ/4, ay, az), where a >

1, and the quaternion form of the point r
′

P is qP =

(cos(aβ/2), π sin(aβ/2)
4β , y sin(aβ/2)β , z sin(aβ/2)β ). The dis-

tance from the point r
′

P to anchor rO is:

d(r
′

P , rO) = aβ (12)

and the distance from the point r
′

P to the anchor rA is:

d(r
′

P , rA) = 2 arccos(

√
2 cos(aβ/2)

2
+

√
2π sin(aβ/2)

8β
)

(13)
In the same way as above, comparing Eq. (12) and Eq. (13)
is equivalent to comparing the values of the two functions
tan(aβ/2) and 4(

√
2 − 1)β/π, and the value of function

tan(aβ/2) is greater than that of function 4(
√
2 − 1)β/π,

see Fig. 2(c,d). With these analyses, we conclude that the
plane x = π/4 is externally tangent to the MFR space DO.

Result 3. The cube CO with the half side length π/4 is
just enough to tightly enclose the MFR space DO.
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Figure 3. Definition procedure of the MFR space DO . (a) The
common boundaries of the MFR space DO and its adjacent MFR
spaces in the 1st quadrant. (b) The outer boundary of the MFR
space DO centered at the anchor rO in the rotation space Bπ .

4.2. An Exact MFR Space

Consider the 8 anchors in the quadrants, e.g., the anchor
rD in the 1st quadrant. The midpoint of the line between rO
and rD are equidistant to rO and rD. Since this midpoint
is in the cube CO, the MFR space DO intersects with the
MFR space DD centered at rD, see Fig. 3(a). While it does
not intersect with the MFR spaces centered at the anchors
distributed on the surface of the ballBπ . So we just consider
the MFR space DO and the MFR spaces centered at the
anchors distributed on the axes and in the quadrants.

We choose three anchors rA, rB and rC on positive of
axes and the anchor rD in the 1st quadrant to illustrate.
Let’s focus on the MFR space DO and one of its 4 neigh-
boring MFR spaces, e.g., the MFR spaceDA centered at the
anchor rA. The point ri on the common boundary between
the two MFR spaces DO and DA satisfies:

d(rO, ri) = d(rA, ri) (14)

This common boundary forms a smooth surface SOA, and
similarly, the other common boundaries between the MFR
spaceDO and the other three neighboring MFR spacesDB ,
DC and DD form three surfaces SOB , SOC and SOD re-
spectively. Finally, the four surfaces delimit the sub-space
belonging to DO in the 1st quadrant, as shown in Fig. 3(a).

Based on the symmetry, the MFR space DO intersects
with its 14 surrounding MFR spaces to form 14 common
boundaries, and the closed space enclosed by them is the
exact MFR space DO, as shown in Fig. 3(b). Therefore, we
can judge whether a point in the cubeCO is within the MFR
space DO by simply comparing its distance to rO and these
surrounding anchors.

5. Efficient and Stable MF Estimation

This section details the algorithm procedure of MF esti-
mation based on the proposed method, and then extend it to
solve the general rotation problems.

Algorithm 1 The efficient and stable MF estimation.
Initialize the cube list L with CO s.t. CO = (π/2)3.
repeat

Subdivide each cube of L congruently (σ ← σ/2).
for each cube Ci in L do

if L∗ > P (Ci) or Ci outside the MFR space DO do
continue

end if
Calculate the rotation Ri at the center of the cube Ci.
Compute lower bounds L(Ri) and upper bounds U(Ri).
Update L∗ to L∗ = max(L∗, L(Ri)).

end for
i∗ = argmaxi U(Ri), U∗ = U(Ri∗), R∗ = Ri∗ .
Remove all the cubes from L such that U(Ri) < L∗.

until ∃i, such that L(Ri) = U∗ or it reaches a desired accuracy.
Return: R∗ (i.e., the rotation maximizing the number of inliers).

5.1. Algorithm Procedure

For the MF estimation, Bazin et al. proposed a BnB-
based method [15] to guarantee globally optimal solution
with high stability. The proposed method improves the so-
lution of the problem to satisfy both stability and efficiency.

Given a set of image lines, we aim to find which line be-
longs to which axis of the unknown-but-sought MF R. On
the Gaussian sphere, a image line li is back-projected onto
the sphere as a great circle, which is represented by a nor-
mal vector ni. Let vi = Rei be one axis and ei belongs to a
set {ei}3i=1 of three canonical vectors. Concretely, we con-
sider that the normal-axis pair (ni, Rej) is an inlier if their
geometric distance is lower than a residual tolerance τ , i.e.,
|∠(ni, Rej) − π/2| < τ . The consensus set maximization
can be written:

max
{yij},R

N∑
i=1

3∑
j=1

yij

s.t. yij |∠(ni, Rej)− π/2| < yijτ,

yij ∈ {0, 1},∀i = 1. . . N, j = 1, 2, 3

(15)

where yij is auxiliary variable introduced for indicating
whether the normal-axis pair (ni, Rej) is an inlier (yij = 1)
or an outlier (yij = 0). To solve Eq. (15), the basic idea of
BnB is to divide the MFR space into smaller sub-spaces and
remove the spaces that cannot contain a solution better than
the current one. This removing decision is made by a fea-
sibility test and the associated bounds. Iteratively, the size
of the sub-spaces decreases and the estimated solution con-
verges to the optimal solution.

In branching part, let CO be an initial cube that tightly
encloses the MFR space DO, and then divide the search
space into smaller congruent sub-spaces by octal subdivi-
sion of the cube. In bounding part, we re-state the bound
computation suggested by Bazin et al. [15]. Given a cube
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C with the half side length σ, we get the MF R correspond-
ing to the center of it. The lower bound L(R) of the cube
can be written:

max
{yij}

N∑
i=1

3∑
j=1

yij

s.t. yij |∠(ni, Rej)− π/2| < yijτ,

yij ∈ {0, 1},∀i = 1. . . N, j = 1, 2, 3

(16)

The upper bound U(R) can be written:

max
{yij}

N∑
i=1

3∑
j=1

yij

s.t. yij |∠(ni, Rej)− π/2| < yij(τ +
√
3σ),

yij ∈ {0, 1},∀i = 1. . . N, j = 1, 2, 3

(17)

The solutions of Eqs. (16) and (17), i.e., L(R) and U(R),
are simply obtained by exhaustively checking the inlier con-
straint for each normal vector with respect to a given rota-
tion R that corresponds to the center of a given cube C

A typical breadth-first-search (BFS) tests the feasibility
of each cube in the list L layer by layer iteratively. A more
efficient strategy is that each sub-cube Ci inherits its par-
ent’s upper bound P (Ci). At the beginning of each itera-
tion, the maximum lower bound L∗ is first updated by the
cubes with the maximum upper bound and/or the maximum
lower bound, and subsequently, with the real-time update of
L∗, each other cube uses its inherited upper bound to test its
feasibility firstly, if feasible, compute its own bounds. The
improved BnB procedure is formalized in Alg. 1.

5.2. Extension to Rotation Estimation

Let ui and vi be the ith matching pair of two sets of 3D
points related by a rotation R and we define the matching
pair (ui, vi) an inlier if the distance is lower than a resid-
ual tolerance τ , i.e., ∠(vi, Rui) < τ . Then we modify the
formulation of Eq. (15) to general rotation estimation:

max
{yi},R

N∑
i=1

yi

s.t. yi∠(vi, Rui) < yiτ,

yi ∈ {0, 1},∀i = 1. . . N

(18)

To solve Eq. (18), according to Result 1 and Result 2,
the BnB-based algorithm associated with a whole rotation
space search can be modified to search in the 24 MFR
spaces theoretically.

Given a rotation R0 in the MFR space DO, it can be
moved to any other candidate MF rotation Ri in the corre-
sponding MFR space Di according to Eq. (6). Then the
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Figure 4. Efficiency and accuracy comparison on synthesized data
for MF estimation. (a) Evolution of the volume of the search
space. (b) Evolution of the number of tested cubes. (c) Execu-
tion time of various methods w.r.t. the number of image lines. (d)
The distribution of recall ratio of various methods.

Method θx θy θz θ

RANSAC [23] 2.00◦ 1.65◦ 1.39◦ 2.19◦

Hybrid [30] 1.07◦ 0.93◦ 1.01◦ 1.28◦

BnB [15] 0.61◦ 0.56◦ 0.47◦ 0.71◦

Proposed 0.60◦ 0.54◦ 0.44◦ 0.67◦

Table 1. Comparison of the mean angular errors on synthesized
data for MF estimation.

MFR space DO can be moved to the location of the corre-
sponding MFR spaceDi by this transformation. Finally, we
complete the exhaustive search of the whole rotation space
by only searching in DO.

Since tangential stretching at the periphery of the rota-
tion space parametrized by angle-axis representation [26],
when use an initial cube with the half side length π to en-
close the ball Bπ [15], the search space of the exhaustive
BnB framework is further expanded to 8π3. However, when
use the cube CO to enclose the MFR space DO to com-
plete the whole rotation space search, the total volume of the
search space is equivalent to 24× (π/2)3, which is far less
than 8π3. Therefore, the efficiency of the general rotation
estimation will be improved theoretically. Experimental re-
sults illustrate the performance of the improved procedure.

6. Experiments
We present our experimental results to explore the per-

formance of the proposed method and to compare with the
state-of-the-art methods:
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Figure 5. Some example images obtained by the exhaustive BnB
and the proposed method on YUD [18]. The first row shows the
example images with extracted lines. The second row shows the
line classification results of the exhaustive BnB. The third row
shows the line classification results of the proposed method.

• For MF estimation, besides the exhaustive BnB [15],
we also compare two most recently reported algo-
rithms featuring remarkable performance: RANSAC
[23] that retrieves the optimal MF rotation hypoth-
esized by 3 sampled image lines and Hybrid [30]
that samples two DOF of MF rotation hypothesis and
searches for the optimal third DOF based on BnB.

• For the general rotation estimation, we show the per-
formance of the proposed method by comparing with
the exhaustive BnB [15].

All the mentioned methods are implemented in C++ and run
on a laptop equipped with an Intel i5-7360U 2.3GHz CPU
(a single core was used) and 8GB RAM.

Given a ground truth MF rotation matrix and its esti-
mated MF rotation matrix, we evaluate the MF estimation
accuracy in terms of 1) the recall ratio [32] defined by
Nc/(Nc+Nm), where Nc and Nm are the numbers of cor-
rectly clustered inliers and missing inliers respectively; 2)
the mean angular error θ of the rotation between the two
matrices; 3) the mean angular errors θx, θy and θz between
the axes of the estimated MF and that of the ground truth.
Similarly, we use criteria 1) and 2) to evaluate the accuracy
of the general rotation estimation.

6.1. Synthesized Data: MF Estimation

The number of iterations of RANSAC is adaptively se-
lected from 40 to 100 and the number of samples of Hy-
brid is automatically adjusted according to the outliers ra-
tio, which is set to 30%. For the exhaustive BnB and the
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Figure 6. Efficiency and accuracy comparison on YUD [18]. (a)
Execution time of various methods w.r.t. the number of image
lines. (b) The distribution of recall ratio of various methods.

proposed method, the desired accuracy (the side length of
cube) is set to 0.1◦. Accordingly, we define the residual
tolerance τ = 2◦. In the synthetic simulation, we perform
various experiments to demonstrate accuracy, convergence
and efficiency of the proposed method. Three mutually or-
thogonal unit vectors corresponding to three axes of MF are
synthesized, and three sets of orthogonal parallel 3D lines
are generated according to these axes. Then three sets of
image lines are obtained by the projection of a synthetic
camera. We perturb the endpoints of these image lines by
a zero-mean Gaussian noise with standard deviation of 3
pixels, and corrupt the outlier ratio 30% to generate outlier
image lines by randomizing their positions and directions.

Fig. 4(a,b) shows a representative comparison with 200
inlier lines. The volume of initial search space of the pro-
posed method is only 1 / 64 of that of the exhaustive BnB
(Fig. 4(a)), and the number of tested cubes of the pro-
posed method is far less than that of the exhaustive BnB
(Fig. 4(b)). Therefore, the proposed method maintains a
relatively lower level for memory utilization. For statisti-
cal comparison, with the same outlier ratio and noise level,
we generate 100 synthesized data whose inlier lines ranges
from tens to hundreds. We evaluate the execution time with
respect to the number of inlier lines (Fig. 4(c)) and the re-
call ratio (Fig. 4(d)). The comparison of the several angluar
errors of these methods is listed in the Table 1. These exper-
imental data show that the proposed method reveals efficient
computation time and reliable accuracy.

6.2. Real Data: MF Estimation

We test the proposed method on the York Urban
Database (YUD) [18] which is composed of 102 images ac-
quired in man-made environments. Each image contains a
set of manually extracted lines corresponding to 2 or 3 VPs.
For each line clustered by the proposed method, we suc-
cessfully obtain the true clustering, which demonstrates the
correctness of our strategy. Fig. 5 shows some represen-
tative results obtained by the exhaustive BnB and the pro-
posed method. Fig. 6(a) illustrates the distribution of the
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Figure 7. Remaining volume and tested cubes comparison on syn-
thesized data for rotation estimation. (a) Evolution of the volume
of the search space. (b) Evolution of the number of tested cubes.

Method
θ Recall ratio

Time
Mean Median Mean Median

BnB[15] 0.63◦ 0.62◦ 99.11% 99.00% 40.43ms
Proposed 0.59◦ 0.58◦ 99.10% 99.00% 9.29ms

Table 2. Comparison of the mean angular error θ, the recall ratio
and runtime on synthesized data for rotation estimation.

execution time, and Fig. 6(b) reports the recall ratio of var-
ious methods on all the images. The exhaustive BnB and
the proposed method stably obtain all the inliers, however
the running time of the proposed method is about 25 times
faster than that of the exhaustive BnB statistically.

6.3. Synthesized Data: Rotation Estimation

In the coordinate interval of [–2, 2] × [–2, 2] × [–2, 2],
we randomly generate two sets of 300 points related by any
random 3D rotation. We apply a zero-mean Gaussian noise,
whose standard deviation is 0.1, to the coordinates of these
points and corrupt 20% of these points to create outliers.
For the comparison methods, the desired accuracy is 0.1◦,
and the residual tolerance τ is 2◦.

The volume of initial search space of the proposed
method is far less than that of the exhaustive BnB. Fig.
7(a,b) illustrates the evolution of the volume of the search
space and the number of tested cubes. It shows the pro-
posed method converges to the optimal solution with less
computation. For statistical comparison, with the same out-
lier ratio and noise level, we generate 100 synthesized data
whose inlier point-point pair ranges from tens to hundreds.
Table 2 shows the performance comparison of the two meth-
ods. The efficiency of the proposed method is about 4 times
faster than that of the exhaustive BnB statistically.

6.4. Real Data: Panorama Stitching

We use the PASSTA dataset to test the proposed method
in panorama stitching applications [35]. To obtain corre-
spondences between the two images, we extract and match
SIFT features [36] and apply the inverse of the known cam-
era intrinsic matrix K to obtain unit-norm bearing vectors.

(a) (b)

Figure 8. Result of panoramic image stitching on LRBD [35]. (a)
Inlier (green lines) and outlier (red lines) matches detected by the
proposed method between the two input images. (b) Stitching of
the two images to build a panoramic view.

Method Recall ratio Cubes Time
BnB[15] 67.24% 5154 54.88ms
Proposed 67.24% 2595 26.77ms

Table 3. Comparison of the recall ratio, the average of the maxi-
mum number of tested cubes and runtime on LRBD [35]

Using the estimated rotation, we compute the homography
matrix as H = KRK−1 to stitch the pair of images to-
gether. For statistical comparison, we randomly select 30
pairs of images that have overlapping area. Fig. 8(a) illus-
trates the established correspondences between two input
images from the Lunch Room Blue dataset (LRBD). The
final stitching result is shown in Fig. 8(b). Table 3 shows
the performance comparison of the two methods. We mea-
sure the memory usage by the average of the tested cubes,
i.e., the comparison item ”Cubes” in Table 3. The proposed
method performs same accurate stitching with less time.

7. Conclusions

Motivated by meeting both the stability and efficiency
of MF estimation, we proposed a pioneering theory of ro-
tation space delimitation that the whole rotation space can
be evenly divided into 24 congruent MFR spaces. Based
on this theory, the MF estimation method with BnB frame-
work meets these two requirements. The broader impact of
our theory is beneficial to improve the efficiency of general
rotation estimation problems, e.g., camera pose estimation,
online camera calibration, 3D registration and panoramic
stitching. We have demonstrated the validity of our theory
by experimenting on various synthetic and real datasets.

Since our contribution is the delimitation of the MFR
space, we search for rotation solution based on a simple and
general BFS. Alternative search methods like Best-First-
Search or A*, may speed up the solution of optimal rotation
more or less and we leave this in the future.
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