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Abstract

Despite the fast progress in training specialized mod-
els for various tasks, learning a single general model that
works well for many tasks is still challenging for computer
vision. Here we introduce multi-task self-training (MuST),
which harnesses the knowledge in independent specialized
teacher models (e.g., ImageNet model on classification) to
train a single general student model. Our approach has
three steps. First, we train specialized teachers indepen-
dently on labeled datasets. We then use the specialized
teachers to label an unlabeled dataset to create a multi-
task pseudo labeled dataset. Finally, the dataset, which
now contains pseudo labels from teacher models trained
on different datasets/tasks, is then used to train a student
model with multi-task learning. We evaluate the feature rep-
resentations of the student model on 6 vision tasks including
image recognition (classification, detection, segmentation)
and 3D geometry estimation (depth and surface normal es-
timation). MuST is scalable with unlabeled or partially la-
beled datasets and outperforms both specialized supervised
models and self-supervised models when training on large
scale datasets. Lastly, we show MuST can improve upon
already strong checkpoints [23] trained with billions of ex-
amples. The results suggest self-training is a promising di-
rection to aggregate labeled and unlabeled training data for
learning general feature representations.

1. Introduction

Visual representation learning is a core problem in com-
puter vision. Supervised and self-supervised pre-training
have shown promising results in transferring the learned
feature representations to downstream tasks. Typically, a
model is pre-trained with a supervised [28, 10] or a self-
supervised objective [5, 16, 17]. Despite the wide adoption
of transfer learning from supervised training, the features
may not necessarily be useful for downstream tasks. For
example, He et al. found that ImageNet pre-training fails
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Figure 1. An overview of Multi-Task Self-Training (MuST).
Specialized Teacher represents a supervised model trained on a
single task and dataset (e.g., classification model trained on Im-
ageNet). Specialized Teacher models are trained independently
on their own tasks and datasets. They then generate pseudo la-
bels on a shared dataset. Finally, a single General Student model
is trained jointly using the pseudo (and supervised) labels on the
shared dataset.

to improve COCO instance segmentation [18]. In contrast,
Shao et al. showed features learned from Objects365 de-
tection dataset improve COCO instance segmentation by a
large margin [46]. Pre-training with a specialized task that
aligns with the downstream target task still yields the best
performance in object detection [32, 46] and semantic seg-
mentation [4].

Intuitively, it is possible to learn general features by
training a model to simultaneously do well on multiple
tasks. Recent work in NLP started to show promising re-
sults on learning a generalist model with multi-task learn-
ing [55, 9]. In computer vision, the biggest challenge of
training a multi-task model is in the data collection and
annotation. Despite datasets like COCO [34], collecting
a wide variety of annotations (e.g., instance segmentation,
person keypoints, image caption) for the same image dataset
is quite challenging. Due to the time consuming nature of
annotating images with labels, it is hard to scale such efforts
with the number of images and the number of tasks. The
lack of large scale multi-task datasets impedes the progress
in multi-task learning for computer vision.

In this work, we study using self-training to remedy the
issue. We propose to use pseudo labeling to enable large
scale multi-task feature learning for computer vision. Zoph
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et al. [62] observed that self-training further improves pre-
training for transfer learning, and that self-training works
even when pre-training fails to outperform a randomly ini-
tialized model. The gap between pre-training and self-
training suggests that self-training can learn better features
from pseudo labels. Inspired by this observation, we first
investigate whether good features can be learned by only
using pseudo labels. We train teacher models using datasets
such as COCO or Objects365 to generate pseudo labels on
unlabeled images. Figure 2 shows example pseudo labels
on ImageNet. Surprisingly, we find a student model trained
with only these pseudo labels preserves most of the trans-
fer learning performance of its specialized teacher model.
This finding suggests pseudo labels are effective at distill-
ing the knowledge in a supervised dataset. Therefore, we
can use pseudo labels to transfer knowledge from multiple
teacher models to a single student model for representation
learning.

We propose Multi-Task Self-Training (MuST) to train a
generalist student model on the information distilled from
teacher models trained on different tasks and datasets. Fig-
ure 1 shows the overview of the algorithm. MuST has three
steps. First, it trains specialized teachers independently on
labeled datasets. For example, one teacher can be trained
with depth prediction and another teacher can be trained
with object detection. The specialized teachers are then
used to label a larger unlabeled dataset to create a multi-
task pseudo labeled dataset. For example, these teachers
can generate depth estimations and object detections on the
ImageNet dataset. Finally, the dataset, which now con-
tains pseudo labels from teacher models trained on different
datasets/tasks, is used to train a student model with multi-
task learning. Hence the student, for example, can do depth
prediction and object detection at the same time.

In our experiments, we have four teacher models: clas-
sification, semantic segmentation, object box detection, and
depth estimation. We design a simple model architecture
(Figure 3) based on ResNet [20] and feature pyramid net-
works (FPN) [33]. The parameters in the ResNet-FPN
backbone are shared across different tasks. For each in-
dividual task, it has a small task-specific head consisting
of a few convolution layers followed by a linear prediction
layer. Our experiments show that this simple model archi-
tecture is able to absorb the knowledge of different tasks in
the shared backbone. The generalist student model is on par
with/outperforms its specialist teacher models for all trans-
fer learning tasks.

The recent self-supervised algorithms like SimCLR [5],
MoCo [17] are shown to create representations that are on
par or better than its supervised counterpart. In our experi-
ments, MuST also outperforms SimCLR [5] by a large mar-
gin on segmentation and depth estimation tasks. We also
observe that the representations learned by SimCLR is on

Figure 2. Examples of pseudo labels on ImageNet. Left: bound-
ing boxes labeled with an Objects365 teacher model. Middle: se-
mantic segmentation labeled with a COCO teacher model. Right:
depth labeled with a MiDaS teacher model.

par with those of supervised learning on ImageNet (1.3M
images) but does not scale as well on JFT (300M images).
On the contrary, MuST outperforms SimCLR [5] on both
ImageNet and JFT. Moreover, MuST also outperforms su-
pervised JFT pre-training for 5 out of 6 tasks except the im-
age classification task. The results indicate the potential of
MuST in learning general feature representations that im-
prove with more unlabeled data.

Lastly, we show MuST can improve upon already strong
checkpoints such as ALIGN [23]. We fine-tune ALIGN
checkpoints, previously trained with billions of supervised
examples, with MuST pseudo labels and find improvements
on a suite of downstream tasks: detection, segmentation,
and depth estimation tasks.

We summarize our contributions below:

e We propose Multi-Task Self-Training (MuST), a sim-
ple algorithm for creating general visual representa-
tions by multi-task learning with pseudo labels.

e We conduct experiments by jointly training across
several datasets (e.g., ImageNet, Objects365, COCO,
JFT) to learn general feature representations that out-
performs representations learned by supervised and
self-supervised methods.

e We perform experiments to compare supervised, self-
supervised, and MuST on 6 computer vision tasks in-
cluding tasks in image recognition (classification, de-
tection, segmentation) and 3D geometry estimation
(depth and surface normal estimation).

e MuST can be used to improve upon already strong
checkpoints and achieve competitive results on a va-
riety of tasks compared to task-specific state-of-the-art
models.

2. Related Work

Multi-Task learning:  Multi-task learning has a rich his-
tory in deep learning [43]. A common strategy for multi-
task learning is to share the hidden layers of a “backbone”
model for different tasks [2]. More recently, multi-task
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learning has led to improved accuracy in NLP [9, 35]. Al-
though, Raffel et al. found that multi-task learning gener-
ally underperformed compared to pre-training followed by
fine-tuning [39].

In the vision domain, Zamir et al. studied the trans-
fer learning dependencies across 26 tasks with an indoor
dataset [59]. Instead of exploring the task dependencies,
we are interested in pushing a single model that can ab-
sorb knowledge of all tasks for learning general represen-
tations. Kokkinos et al. [27] and Xiaoet al. [52] trained
models across multiple datasets by simply zeroing losses
for examples that don’t have labels for a particular task. We
propose to apply pseudo labels so every image is annotated
with all tasks. Girshick et al. used a multi-task loss for clas-
sification and bounding-box regression to improve the train-
ing of object detectors [14]. We follow the similar approach
of using one large backbone model and smaller heads for
multiple tasks.

Self-training: Self-training is a popular technique to in-
corporate unlabeled data into supervised learning [57, 45,
42, 31]. The method works by using a supervised model
to generate pseudo labels on unlabeled data. Then a stu-
dent model is trained on the pseudo labeled data. Yalniz et
al. [56] showed a model “pre-trained” with pseudo labels
on a large unlabeled dataset (at hundreds millions scale)
can improve classification accuracy. Noisy Student [53]
used self-training to push state-of-the-art performance on
ImageNet by training jointly with 130M pseudo labeled im-
ages. Chen et al. [3] obtained state-of-the-art panoptic seg-
mentation results on Cityscapes with self-training. Zoph
et al. [62] improved the state-of-the-art on object detec-
tion and semantic segmentation with self-training. All the
above works focused on a single task. On the contrary, our
work focuses on using self-training for multi-task learning
to learn general representations.

Representation learning: Transfer learning from Ima-
geNet pre-training has been the most widely used method
in computer vision. BiT [28] and ViT [10] pre-trained the
model on JFT-300M dataset [48] and obtained strong per-
formance when fine-tuned on downstream vision tasks. In
particular, Mahajan et al. showed model pre-trained with
Instagram benefits other classification tasks but possibly
harms localization performance [36]. Li ef al. found that
OpenlmagesV4 pre-training [30] outperforms ImageNet
pre-training when transferring to object detection and se-
mantic segmentation [32]. Shao et al. showed similar find-
ings using the Objects365 dataset [46]. This finding indi-
cates supervised pre-training on a single classification task
may not create representations general enough for many
kinds of downstream applications.

ResNet-FPN

r Z |

Figure 3. The ResNet-FPN backbone architecture for multi-
task learning. the top-level features for classification.
Cyan: multi-scale features for box detection and instance segmen-
tation. the high resolution features for pixel-wise tasks
(e.g., segmentation, depth, and surface normal estimation.)

Self-supervised training is a popular method for repre-
sentation learning without supervised data [24, 5, 16, 17,
21, 50]. By forcing the representations of an image to agree
with each other under data augmentation [1], SimCLR and
MoCo trained representations useful for downstream clas-
sification tasks [5, 17]. Grill et al. proposed the use of
online and target neural networks for learning representa-
tions, which they evaluated on classification tasks as well
as semantic segmentation, object detection, and depth esti-
mation [16]. On the other hand, recent work has demon-
strated the limitations of current self-supervised learning
methods [38]. They found that aggressive cropping, com-
monly used in self-supervised learning (such as those used
in MoCo [17], PIRL [37], SimCLR [5] etc.), leads to rep-
resentations that are occlusion invariant, which can be ef-
fective for downstream classification tasks. However, these
representations are not necessarily invariant to other sym-
metries of natural images (such as viewpoint invariance),
which might be necessary for other downstream tasks such
as semantic segmentation [38].

3. Method
3.1. Specialized Teacher Models

We want to learn from a set of teachers that provide
rich training signals with their pseudo labels. We adopt
four teacher models including four important tasks in com-
puter vision: classification, detection, segmentation, and
depth estimation. These tasks require visual understanding
of objects and 3D geometry. Examples of the pseudo la-
bels can be found in Figure 2. We train the classification,
detection, and segmentation teacher models from scratch
on medium/large scale datasets (e.g., ImageNet[44], Ob-
jects365 [46], COCO [26]). For depth teacher model, we
download the pre-trained checkpoint from the open-source
repository [41] 1.

Pseudo labeling: We transfer the knowledge in spe-
cialized teacher models to unlabeled or partially labeled
datasets by pseudo labeling. We follow the practice in [62]

Uhttps://github.com/intel-isl/MiDaS
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to generate pseudo labels for detection and segmentation.
For detection, we use a hard score threshold of 0.5 to gen-
erate pseudo box labels. For segmentation, we use a hard
score threshold of 0.5 to generate semantic segmentation
masks whereas pixels with a smaller prediction score are
set to the ignore label. For classification, we use soft labels,
which contain the probability distribution of all classes, be-
cause we find the performance is better than hard labels. For
depth, we simply use the predicted depth as pseudo labels
without further processing.

3.2. Multi-Task Student Model

Model architecture:  Our goal is to train the student with
multiple tasks to learn general visual representations. The
first thing to design is a model architecture that can share
most of the parameters across tasks. We define three task
categories: (1) classification, (2) object detection, (3) pixel-
wise prediction. The pixel-wise prediction task includes se-
mantic segmentation, depth estimation, and surface normal
prediction. Each category of task shares the same feature
representations in the backbone model.

We design the backbone model based on ResNet [20]
and feature pyramid networks (FPN) [33]. Figure 3 shows
the overview of our architecture. We follow the common
practice to design the feature representations for classifica-
tion and detection tasks. We use C5 feature map (orange)
for classification and {P3, P4, P5 P6, P7} feature pyra-
mid (cyan) for detection. We follow the practice in [62] to
fuse {P3, P4, P5, P6, P7} into P2 feature map (green) for
pixel-wise prediction. The fuse operation simply rescales
all feature maps into level 2 and sums them (which does not
introduce any new parameters).

Each task category shares the same head architecture.
The classification head follows the ResNet design. It is a
linear prediction layer followed by average pooled C5 fea-
tures. The object detection task follows the head architec-
ture in the Mask R-CNN [19]. We use 2 hidden convolu-
tion layers for RPN and 4 hidden convolution layers and 1
fully connected layers for Fast R-CNN. The pixel-wise pre-
diction head has 3 convolution layers followed by the C2
features before the final linear prediction layer. If the stu-
dent model learns from multiple tasks in the same task cat-
egory (e.g., semantic segmentation and depth prediction),
each task owns its task specific head without sharing their
parameters.

Teacher-student training:  We want to study the effec-
tiveness of learning from pseudo labels. Therefore, we de-
sign the training of teacher and student models such that the
main differences between them are in the dataset and the la-
bels. Unlike model distillation [22] and noisy student [53],
we use the same model capacity and data augmentation in
both the teacher and the student training. Despite that a

teacher can be trained with a more specialized architecture
for its own task, we train the teacher and student models
using the same architecture shown in Figure 3.

Learning From Multiple Teachers: = We propose Multi-
Task Self-Training (MuST) to train a student model with
multiple teachers. Prior multi-task learning works, which
harnessed the information in multiple datasets, mainly fo-
cused on the scenario where each example is only labeled
with one task or a few tasks [9, 27]. In MuST, every image
has supervision for all tasks. The labels may come from su-
pervised or pseudo labels. For example, when training on
ImageNet, we can use supervised labels for classification
and pseudo labels for detection, segmentation, and depth.

Balancing the loss contribution for each task is an open
research area in multi-task learning [25, 6, 7, 58]. The loss
of multi-task learning is the weighted sum of the losses from
all tasks L = Zl w; L;. The weight w; decides the loss con-
tribution for the task <. In ImageNet experiments, we adopt
w; = Z”l#;, where b denotes the batch size, [r denotes the
learning rate, and the subscript denotes student or teacher
model. The equation is derived from the scaling rule in [15],
which scales the learning rate propotionally with batch size.
The only exception is the depth loss, of which we choose its
weight by a parameter sweep. In our experiments on JFT-
300M, we use the algorithm in [25] to learn w; for each task
over the course of training.

Cross Dataset Training: MuST has the flexibility to
leverage both labeled and unlabeled data. It can scale up the
number of images by generating pseudo labels on the unla-
beled data. Or it can use images which are partially labeled
with one or more tasks. In our experiments, we show an
example training across ImageNet, objects365, and COCO
datasets. We use supervised labels whenever they are avail-
able and generate labels for all absent tasks using pseudo
labels.

One challenge in cross dataset training is to balance the
data coming from datasets of different sizes. Instead of de-
signing sampling heuristics [9], we uniformly sample from
the union of datasets. This works because every task is
labeled on every image in MuST, thus we do not need to
worry about under/over-sampling a task due to the imbal-
anced dataset size.

The second main difference compared to other self-
training algorithm is that the supervised and pseudo labels
are treated equally. We do not batch the examples of su-
pervised and pseudo labels independently and assign them
different weights like in [62, 53]. The images are uniformly
sampled from the union of datasets and put into one mini-
batch. Each example shares the same weight on its loss
regardless if the loss is computed against a supervised or a
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Training Datasets

Evaluation Datasets

Name Task Num Images ‘ Name Task Num Images
ImageNet [44] Classification 1.2M CIFAR-100 [29] Classification 50k
Objects365 [46] Detection 600k Pascal [12] Detection 16.5k
COCO [34] Segmentation 118k Pascal [12] Segmentation 1.5k
MiDaS [41] Depth 1.9M NYU V2 [47] Depth 47k
JFT [48] Classification 300M ADE [61] Segmentation 20k
DIODE [51] Surface Normal 17k

Table 1. Datasets using for MuST and for downstream fine-tuning evaluation.

pseudo label. This makes MuST significantly simpler to use
and to scale with multiple tasks.

3.3. Transfer Learning

To evaluate the representational quality of MuST and
other baseline representations, we fine-tune them on a suite
of downstream computer visions tasks. We adopt end-to-
end fine-tuning instead of linear probe to the performance
of each fine-tuning task. We fine-tune on CIFAR-100 clas-
sification, Pascal detection, Pascal semantic segmentation,
NYU depth, ADE semantic segmentation and DIODE sur-
face normal. Also note that all downstream datasets are
different than the ones the specialized teacher models are
trained on. Furthermore, surface normal prediction is a task
that no specialized teacher model was trained for, testing
the robustness of representations to held out tasks.

When fine-tuning a representation on a downstream task
we sweep over the learning rate and number of training
steps (See Appendix for full details). This allows for fair
comparison between different representations.

4. Experiments
4.1. Experimental Settings

Training Datasets: Table 1 provides an overview of the
datasets we use in the experiments. We experiment with
four different datasets and tasks for training our supervised
teacher models. These supervised models will then be the
ones to generate pseudo labels on unlabeled/partially la-
beled images.

Evaluation Datasets: Next we describe the datasets that
all of our representations will be fine-tuned on. Table 1 pro-
vides the list. We have different datasets with a total of five
different tasks. Note the Surface Normal task is never used
as a training task to test the task generality of the represen-
tations.

4.2. Learning with Multi-Task Self-Training

We run experiments to compare our MuST representa-
tion learning algorithm to state-of-the-art self-supervised
and supervised learning methods.

MuST Improves Pre-training on ImageNet: Table 2
compares the MuST algorithm to self-supervised and su-
pervised learning on ImageNet. On a suite of 6 downstream
tasks MuST representations improves over state-of-the-art
self-supervised learning and supervised learning on 4 and 5
tasks, respectively. MuST makes use of not only the Ima-
geNet classification labels, but also pseudo labels generated
from supervised models trained on Objects365 detection,
COCO semantic segmentation, and MiDas depth. This ad-
ditional information being trained on for ImageNet images
leads to much more generalizable feature representations.
We observe that self-supervised and supervised pre-training
on ImageNet does not learn features that generalize nearly
as well to tasks other than image classification.

MuST Improves With More Tasks/Datasets For Learn-
ing General Features: The MuST algorithm makes use
of pseudo labels generated from independent supervised
models trained on different datasets. We next study
the importance of having pseudo labels being generated
from multiple different teacher models trained on different
tasks/datasets. Table 3 shows the representational quality
improvement starting from using only supervised ImageNet
labels and then adding three different types of pseudo labels
obtained from three different datasets. As we continue to
add pseudo labels from different tasks/datasets our repre-
sentations improve in quality. For each new task added we
obtain strong improvement across all 6 of our downstream
tasks.

Pseudo Labels Preserve Transfer Learning Performance
of Teacher Model: We next study how effectively pseudo
labels preserve the transfer learning performance of teacher
models trained on supervised datasets. To test this we train
two supervised teacher models: object detection model on
Objects365 and semantic segmentation model on COCO.
The first two rows in Table 4 shows their supervised learn-
ing performance and their transfer learning performance on
6 downstream tasks. Next we generate pseudo labels on
two datasets without labels: ImageNet (1.2M images) and
JFT (300M images) . Now we train models from scratch
on the pseudo labels on ImageNet and JFT. The next 4 rows
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Settings ‘

Transfer Learning Performance

Method Epochs | CIFAR-100 Pascal Pascal NYU ADE DIODE
Classification ~ Detection Segm. Depth Segm. Normal

Self-supervised (SimCLR [5]) 800 ‘ 87.1 83.3 722 83.7 41.0 52.8

ImageNet Supervised 90 85.4 79.3 70.6 81.0 39.8 48.9

+ Multi-task Pseudo Labels 90 86.3 (+0.9) 85.1(+5.8) 80.6 (+10.0) 87.8 (+6.8) 43.5(+3.7) 52.7 (+3.8)

Table 2. Multi-Task Self-Training (MuST) outperforms supervised and self-supervised representations on ImageNet. We compare
MuST to state-of-the-art self-supervised and supervised learning using the same pre-training dataset (ImageNet). MuST learns more
general features and achieves the best performance on 4/6 downstream fine-tuning tasks. The performance differences show the impact of

different training objectives.

Settings ‘ Transfer Learning Performance
Method CIFAR-100 Pascal Pascal NYU ADE DIODE
Classification  Detection Segm. Depth Segm. Normal
ImageNet Supervised 85.4 79.3 70.6 81.0 39.8 48.9
+ Depth Pseudo Labels 84.4(-1.0) 79.3(+0.0) 71.0+04) 86.0+5.00 39.5(-0.3) 51.3(+2.9)
+ Depth / Segm. Pseudo Labels 85.3(-0.1) 81.6(+2.3)  78.6(+8.0)  87.2(+62) 41.5(+1.7) 52.4(:+3.5)
+ Depth / Segm. / Detection Pseudo Labels 86.3(+0.9) 85.1(+58)  80.6(+10.0) 87.8(+6.8) 43.5(+3.7) 52.7(+3.8)

Table 3. Multi-Task Self-Training (MuST) benefits from increasing the number of different pseudo label tasks. We add depth,
segmentation, and detection pseudo labels in addition to supervised ImageNet classification labels and test the representational quality.
The results reveal that adding pseudo labels from more tasks leads to more general pre-trained models. All models are trained for 90

epochs on ImageNet.

in Table 4 reveal these results. We observe for both ob-
ject detection and segmentation pseudo labels we obtain a
degradation in the supervised learning quality (e.g. 26.1 vs
20.6/20.7), but that when the representations are transferred
they obtain similar or better transfer learning performance
than the teacher model. Furthermore, the representations
obtained by training on JFT over ImageNet typically lead
to better transfer learning performance, which reveals the
scalability of the MuST method. As we get more and more
unlabeled data, our method can easily take advantage of it
and the representational quality improves.

Multi-Task Self-Training Across Datasets: MuST uti-
lized pseudo labels generated from teacher models trained
on different supervised learning datasets. A natural com-
parison is then to see how MuST compared against su-
pervised multi-task supervised training where a model is
trained on the union of the datasets and labels [27]. Ta-
ble 5 compares the representational quality of MuST versus
supervised multi-task training on three datasets: ImageNet,
COCO and Objects365. For multi-task training we sample
examples from the datasets with equal probability. Sam-
pling examples with probabilities proportional to the size of
the datasets does not work well. Because ImageNet and
Objects365 datasets are much larger than COCO dataset
and as a result for a batch size of 256 only 15 examples
have non zero loss values for segmentation. On the other
hand, for MuST every image has any type of label and we

can sample examples with probabilities proportional to the
size of datasets. When comparing the representation quali-
ties MuST obtains the best performance on 6,/6 downstream
tasks.

4.3. Scaling Multi-Task Self-Training

One benefit of MuST is that it can scale to unbounded
amounts of unlabeled images. To test this hypothesis we
move from the ImageNet setup with 1.2M images to JFT
with 300M images.

Scaling Dataset Size and Training Iterations: Now in-
stead of generating pseudo labels on 1.2M images, we scale
the MuST training to have all three supervised teacher mod-
els to generate pseudo labels on 300M images. This process
is trivially parallelizable, which makes the overall runtime
low compared to training of the models. Table 6 shows the
comparison of MuST vs self-supervised learning and super-
vised learning on the JFT dataset. On 5/6 downstream tasks
MuST outperforms the self-supervised SimCLR algorithm
when using the same unlabeled data. We also train a su-
pervised baseline on the multi-class labels available on JFT
and find that MuST, using only the unlabeled images, out-
performs the representation on 5/6 downstream tasks. This
is quite impressive considering the total sum of supervised
images that MuST indirectly makes use of from the pseudo
labels is only about 3.7M images compared to the 300M
labeled JFT images. Adding JFT supervised labels can fur-
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Settings ‘ Performance Transfer Learning Performance
Task Train Dataset Obj365 COCO | CIFAR-100 Pascal Pascal NYU ADE DIODE
Detection  Segm. | Classification Detection Segm. Depth Segm. Normal
‘ Teacher Model
Detection Objects365 26.1 — 84.0 87.6 78.8 90.1 46.0 55.6
Segmentation COCO — 53.8 80.8 82.2 80.2 86.6 42.8 51.0
‘ Student Model
Detection ImageNet 20.6 — 83.2 86.0 78.5 88.5 44.7 55.2
Detection JFT 20.7 — 85.2 87.7 79.5 89.6 45.4 55.0
Segmentation ImageNet — 55.5 82.3 80.5 79.2 86.3 41.8 51.2
Segmentation JFT — 49.0 83.1 82.8 78.2 86.6 41.9 51.6

Table 4. Models trained on supervised data or pseudo labeled data have similar transfer learning performance. Results comparing
how representations transfer if they are trained on supervised data or on pseudo labels that are generated by the supervised model. Pseudo
labels effectively compress the knowledge in a supervised dataset. The performance of student models increases with the size of the
unlabeled dataset. As the unlabeled dataset size increased, the performance of student model increases. This reveals the scalability of
MuST. All student models are trained for the same training iterations (90 ImageNet epochs and 0.36 JFT epochs).

Settings ‘ Transfer Learning Performance
Method CIFAR-100 Pascal Pascal NYU ADE DIODE
Classification  Detection Segm. Depth Segm. Normal
Supervised Multi-Task 85.3 85.1 82.1 87.6 43.9 534
Supervised Multi-Task + Pseudo Labels 86.3 (+1.1) 86.2 +1.1) 823 (+0.2) 88.2 (+0.6) 454 (+1.5) 54.7 (+1.3)

Table 5. Comparing Multi-Task Training versus Multi-Task Self-Training. We compare MuST against a baseline of doing supervised
multi-task training on the union of all teacher datasets. We use three datasets: ImageNet, COCO and Objects365. Supervised model is
jointly trained on the supervised labels of these three datasets. MuST trains jointly on all three supervised and pseudo labels generated by
the teacher models. The transfer learning performance gets strong improvements by incorporating pseudo labels into every image.

Settings Transfer Learning Performance
Method Epochs CIFAR-100 Pascal Pascal NYU ADE DIODE
Classification  Detection Segm. Depth Segm. Normal
Self-Supervised with JFT images (SimCLR [5]) 1 85.6 82.4 71.0 83.7 414 54.4
Self-Supervised with JFT images (SimCLR [5]) 2 85.8 83.7 73.3 84.3 42.2 55.3
Self-Supervised with JFT images (SimCLR [5]) 5 86.1 84.1 74.9 84.8 43.0 56.0
JFT supervised 3 87.7 84.6 78.2 86.0 43.4 50.7
JFT supervised 5 88.6 84.9 79.7 86.1 443 51.1
JFT supervised 10 89.6 85.2 80.4 86.5 45.7 53.1
Multi-Task Pseudo Labels 2.5 87.6 87.8 82.2 89.8 47.0 56.2
JFT supervised + Multi-Task Pseudo Labels 2 88.3(+0.5) 87.9+0.1)  82.9(+0.7) 89.5(-0.3) 47.2(+0.2) 56.4(+0.2)

Table 6. Scaling Multi-Task Self-Training to 300M images. We repeat the experiments in Table 2 on the JFT dataset (300M images with
classification labels). The supervised learning benefits more from the additional images and annotations compared to the self-supervised

SimCLR algorithm.

ther improve the performance on image classification and
segmentation, showing the flexibility of MuST in using la-
beled and unlabeled data. Lastly, the student model not only
learns general features for transferring, it is also capable of
generating high quality predictions for multiple tasks. Fig-
ure 4 shows the predictions made by our strongest model.

Bootstrapping from Pre-trained Models. Next we study
if MuST can improve upon checkpoints trained with billions
of training examples. We use ALIGN checkpoints [23],
which are trained with 1.8B image-text pairs, to initialize
parameters for training both teacher models and the stu-
dent model. We use the same teacher model tasks as our
previous experiments. The pseudo labels are generated on
JFT-300M dataset and the MuST student model is trained
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Figure 4. Visualization of the predictions generated by a multi-
task student model. The MuST student model not only learns
general feature representations, but also makes high quality visual
predictions with a single model.
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Figure 5. Relative transfer learning performance gains over
the ImageNet pre-trained model [49]. Checkpoints trained with
more data or labels typically provide gains on transfer learning
to downstream tasks. Fine-tuning the EfficientNet-B7 ALIGN
checkpoint with MuST can further improve transfer learning per-
formance for 4/6 downstream tasks.

on JFT for 1 epoch. Figure 5 shows relative transfer learn-
ing performance gains of Noisy Student [53], ALIGN [23],
and MuST w/ ALIGN compared to the ImageNet check-
point [49]. The figure shows MuST w/ ALIGN improves
the ALIGN checkpoint by respectable margins for 4 out
of the 6 downstream tasks. The performances are slightly
worse for CIFAR-100 and DIODE surface normal predic-
tion. We repeat the experiments with EfficientNet-L2 ar-
chitecture and train the student model for 0.36 epoch on
JFT. We report 4 downstream tasks showing improvements
over the ALIGN checkpoint in Table 7. We find the stu-
dent model trained with MuST improves the large ALIGN
EfficientNet-L2 checkpoint and is competitive to the state-
of-the-art models specialized for each dataset and task. No-
tably, MuST provides checkpoints ready to be fine-tuned
for short iterations to achieve state-of-the-art performance
while typical self-training methods [62] require pseudo la-
beling and long training iterations for each downstream
task.

5. Discussion

Which pre-training method performs the best with
large scaling training? Although self-supervised learn-
ing can outperform supervised learning on the ImageNet
size dataset (1.3 million images/lk classes), supervised
learning is still a better pre-training method on JFT size
dataset (300 million images/18k classes). The gap may be

Settings ‘ Transfer Learning Performance

Method Pascal Pascal NYU ADE
Detection Segm. Depth Segm.
Previous SoTA | 89.3[13] 90.0 [62] 90.4[40] 54.1[8]
ALIGN [23] 86.2 86.6 91.1 54.0
MuST w/ [23] 88.2 89.8 91.9 54.3

Table 7. MuST checkpoints are versatile and achieve com-
petitive performance compared to state-of-the-art models.
MuST improves the transfer learning performance of the ALIGN
EfficientNet-L2 checkpoint on these four downstream tasks.

compensated by training with more unlabeled data for self-
supervised learning. However, self-training can also expand
one or multiple supervised models by generating pseudo
labels on unlabeled data. Overall, both self-supervised
and self-training are able to scale, but at the moment self-
training presents better performance in learning general fea-
tures. A promising direction is to combine self-supervised
and self-training for representation learning [60, 11, 54].

Why use MuST over self-supervised learning? Both of
the methods are scalable with the unlabeled training data,
however, MuST can easily combine together all labeled and
unlabeled data. However, self-supervised learning relies
on the generalization from the pre-text task to downstream
tasks, which does not always give good performance. It is
easier to design pseudo labels if the downstream tasks of in-
terest are known in advance. MuST also generalizes to un-
seen tasks (e.g., surface normal prediction) given the tasks
of the teacher model in this paper.

6. Conclusion

In this paper, we present MuST, a scalable multi-task
self-training method for learning general representations.
We compare with supervised and self-supervised learning
approaches on ImageNet and JFT and evaluate on 6 datasets
including visual recognition, localization, and 3D geometry
prediction. We show that MuST outperforms or is on par
with supervised and self-supervised learning on 5 out of 6
transfer learning tasks, except the classification task. More-
over, MuST can improve upon already strong checkpoints
trained with billions of examples. The results show multi-
task self-training is a scalable pre-training method and is
able to learn general feature representations. We hope this
work will encourage further research towards creating uni-
versal visual representations.
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