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Abstract

Conventional video models rely on a single stream to
capture the complex spatial-temporal features. Recent work
on two-stream video models, such as SlowFast network and
AssembleNet, prescribe separate streams to learn comple-
mentary features, and achieve stronger performance. How-
ever, manually designing both streams as well as the in-
between fusion blocks is a daunting task, requiring to ex-
plore a tremendously large design space. Such manual ex-
ploration is time-consuming and often ends up with sub-
optimal architectures when computational resources are
limited and the exploration is insufficient. In this work, we
present a pragmatic neural architecture search approach,
which is able to search for two-stream video models in giant
spaces efficiently. We design a multivariate search space,
including 6 search variables to capture a wide variety of
choices in designing two-stream models. Furthermore, we
propose a progressive search procedure, by searching for
the architecture of individual streams, fusion blocks and
attention blocks one after the other. We demonstrate two-
stream models with significantly better performance can be
automatically discovered in our design space. Our searched
two-stream models, namely Auto-TSNet, consistently out-
perform other models on standard benchmarks. On Kinet-
ics, compared with the SlowFast model, our Auto-TSNet-L
model reduces FLOPS by nearly 11× while achieving the
same accuracy 78.9%. On Something-Something-V2, Auto-
TSNet-M improves the accuracy by at least 2% over other
methods which use less than 50 GFLOPS per video.

1. Introduction
Video recognition requires to learn both spatial and tem-

poral features, which is arguably more challenging than
image recognition. Many efforts have been made to ex-
tend single-stream image architectures for video recogni-
tion, such as C3D [32], I3D [2], S3D [45], R(2+1)D [34],
TSN [37], and TSM [16]. However, such single-stream
models often underperform two-stream models where each
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Figure 1: Results on Kinetics-400. Comparing the FLOPs
and accuracy with state-of-the-art models, our Auto-TSNet
models achieve better accuracy-to-complexity trade-off.
For a fair comparison, we report the FLOPs for each video
at inference time, taking into account the different number
of views used by each method.

stream takes a separate input and learns spatial-temporal
representations that are complementary to each other [29, 9,
6]. In the pioneering two-stream ConvNet [29], a separate
temporal stream is added which takes multi-frame optical
flow as input to better learn temporal information. Recently,
SlowFast network [9] adds a fast pathway, which operates
at a high frame rate, and captures temporal information at a
finer granularity.

Compared with the single-stream model, the number
of design choices grows exponentially for the two-stream
models as we need to take into account the additional com-
plexity from the second stream, the feature fusion between
the streams. Prior hand-crafted two-stream models mit-
igate such challenges by largely reusing existing single-
stream architectures, and only explore a limited number of
customized design choices for each stream. For example,
in two-stream ConvNet [29], the second temporal stream
shares the same architecture as the spatial stream, which
doubles the overall computational cost of the model. In
the SlowFast network [9], the fast pathway only differs
from the slow pathway by using 1D temporal convolutions
and uniformly reducing the feature channels to balance the
accuracy-to-complexity (ATC) trade-off. We hypothesize
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that the existing two-stream models are sub-optimal, and
pose the following question: Can we more thoroughly ex-
plore the design space of two-stream video architectures
and discover models with better performance?

In this work, we present a pragmatic neural architec-
ture search (NAS) approach, which can effectively explore
large design spaces and discover high-performance two-
stream models automatically. Unlike hand-crafted two-
stream models where streams often use similar architec-
tures, we encourage distinctive architectures at each stream,
and jointly search both streams to learn complementary in-
formation. The core of our approach is a carefully pre-
scribed multi-variate search space, which contains 6 search
variables, including inter-stream fusion blocks, attention
blocks, temporal/spatial kernel sizes, output channels, and
expansion rates of building blocks. All of them have a sub-
stantial impact on both the accuracy and complexity of the
learned model. Together they represent a wide variety of
design choices for two-stream models.

It is computationally challenging to explore such gigan-
tic search spaces efficiently. We propose a multi-step pro-
gressive procedure to decompose the large search space
by only searching a smaller number of design choices at
a time. For the basic search procedure, we adopt PAR-
SEC [3] which is more memory efficient than other differ-
ential NAS methods by avoiding instantiating all choices of
the search variables simultaneously, and only sampling one
architecture at a time. Unlike the process of manually de-
signing architectures which often favors uniform choices of
search variables, searching in our space leads to the discov-
ery of the Auto-TSNet models, which select more nonuni-
form choices for different components of the models. With
extensive experiments, we demonstrate Auto-TSNet models
substantially outperform others with more uniform choices
on Kinetics-400 [13], shown in Figure 1, and Something-
Something V2 [11] dataset.

Our main contributions are summarized below.

• We prescribe a multi-variate search space to accommo-
date the large variations in designing two-stream video
models, by including 6 different search variables, each of
which has a significant impact on the model accuracy and
complexity.

• We decompose the search of two-stream models into mul-
tiple steps, and sequentially search different parts of the
model, which renders the exploration in such a large
space more efficient.

• The discovered Auto-TSNet models are distinct from the
hand-crafted ones by selecting more nonuniform choices
for different components. We evaluate them on two large
action recognition benchmarks, and confirm their supe-
rior performance over other models.

2. Related Work
One-Stream Video Models. Video contains spatial-
temporal signals and video recognition requires to extract
both spatial and temporal features. One-stream video mod-
els, which are often built on top of image models, achieve
such capability by various ways, such as replacing 2D
with 3D convolution [32, 2], inserting 1D temporal con-
volution [34, 45], sampling temporal segments from the
video [37], and shifting feature channels along temporal di-
mension [16].
From One-Stream to Two-Stream Video Models. Since
the defining difference between video and image is video
contains the temporal information between frames, a num-
ber of two-stream models are proposed where an extra
stream is dedicated to capture more temporal information
complementary to that from the existing stream [10, 38, 36,
43]. The Two-Stream ConvNet [29] augments the single-
stream model by feeding optical flow to a separate 2D
stream. Two-Stream Residual Network [6] improves it by
introducing residual connections between streams. More re-
cent SlowFast model [9] employs slow and fast pathways to
capture spatial semantics and temporal motion separately.
Neural Architecture Search. NAS methods automati-
cally search models in a predefined space, and the searched
2D models has already surpassed the hand-crafted ones.
NAS methods can be based on RL [30, 31, 49], evolu-
tion [24, 23], and differentiable search [17, 22, 3]. NAS
has also been used to search video models. CAKES [46]
searches channel-wise spatial/temporal kernels to improve
model efficiency. X3D [8] gradually and uniformly expands
a 2D model along 6 dimensions (e.g., spatial resolution,
model width) to derive efficient 3D models.

The design space of two-stream video models is signif-
icantly larger, and prior efforts have focused on searching
fewer variables. AssembleNet [26] only searches the con-
nections between streams, while keeping the architecture of
building blocks fixed. AssembleNet++ [25] introduces the
new object stream, but only searches the block connectivity
for SqueezeExcite [12] module. Different from prior work,
we search two-stream video models over 6 different vari-
ables, which is crucial for improving the ATC trade-off of
the model. Our design space allows different architectures
in individual streams and nonuniform design choices over
different parts of the stream, and captures the variations in
inter-stream fusion blocks, attention blocks, and the stream
architectures. A progressive search process is proposed to
efficiently search in such large spaces.

3. Two-Stream Multivariate Search Space
3.1. Overview

We define a multi-variate search space of two-stream
models which use separate streams to capture complemen-
tary spatial-temporal signals. As shown in Figure 2a, a

8034



Block Group

TS-Fusion

Super
Attention

Super
Attention

TS-Fusion

TS-Fusion

TS-Fusion

Block Group

Block Group

Block Group

Block Group

Block Group

Block Group

Block Group

Block Group

Block Group

classifier

Sparse StreamDense Stream

Stage 1

Stage 4

Stage 2

Stage 3

.

.
.
.

(a) Multi-Variate Two-stream Super Model
Sparse Stream Dense Stream

Sparse Stream

time-strided
convolution

time-strided
sampling

time-to-
channelskip

(b) Super TS-Fusion Block

1×1×1Conv, BN,
ReLU

𝑡! × 𝑘! × 𝑘!DWConv, BN,
SE, Swish

1×1×1Conv,
BN

𝑇 × 𝐻 ×𝑊 × 𝐶!"

𝑇 × 𝐻 ×𝑊 × 𝐶#$%

𝑇 × 𝐻 ×𝑊 × 𝑒𝐶!"

𝑇 × 𝐻 ×𝑊 × 𝑒𝐶!"
⋯ 𝑡!×𝑘&'

MBConv3D

𝑡(×𝑘('

MBConv3D

𝑡)×𝑘"'

MBConv3D
⋯

𝑇 × 𝐻 ×𝑊 × 𝐶"#

𝑇 × 𝐻 ×𝑊 × 𝐶$%&

Super MBConv3D

MBConv3D

(c) Super MBConv3D Block

Figure 2: The multi-variate search space of two-stream
models. (a) The macro-architecture, where we define the
layout of the various block groups in the model. (b) Super
TS-Fusion block, where we search for the type of fusion
operation. (c) Super MBConv3D block, where we search
for the kernel size (t and k) of 3D depthwise convolution,
the output channel Cout, and the expansion rate e.

sparse stream takes sparse frames as input which are sam-
pled from the video with a larger temporal stride, while a
dense stream takes dense frames with a smaller temporal
stride. The proposed search space can be decomposed into
three parts.

Fusion. To learn complementary signals between two
streams, we allow to fuse features from two streams at dif-
ferent layers of the model. Rather than manual designing,
we search for the fusion operations and their locations be-
tween the two streams.
Attention. Attention block has been used to improve the
accuracy [39, 44, 40]. Previous work has shown that the
design of the attention blocks and their placement locations
are critical to the final performance. We propose to search
for these design choices to yield more competitive models.
Backbone. The model backbone comprises stacked build-
ing blocks and represents a significant portion of the com-
putational cost. In our work, we adopt a hierarchical back-
bone search space. As shown in Figure 2a, each stream
of the network backbone includes 4 stages, and each stage
has multiple block groups, where blocks in the same group
share the same architecture.

3.2. Searchable Two-Stream Fusion Block
Early two-stream models [38, 37] do not fuse features

from individual streams in the middle of the model. Recent
SlowFast work [9] adds a fusion block to fuse features from
both streams at the end of each stage, and uses the same type
of fusion operation at all places. We hypothesize such uni-
form design choice is sub-optimal, and propose to explore
the design choices of how many fusion blocks to add, where
to add and what type of fusion to use. At the end of each
group, we add a super two-stream fusion block, as shown in
Figure 2b, where we search for the type of fusion operation
for combining the features from two streams and passing
the fused feature to the next block in the sparse stream. The
candidate fusion operations are adopted from [9], and de-
tails are included in the supplement.

3.3. Searchable Attention Block
Attention blocks, such as Non-Local [39] and GloRe

blocks [5], can be inserted into the backbone to improve the
performance. In the case of manual design, one has to care-
fully decide where to add attention blocks and how many
to add [39, 5]. Different choices have a large impact on
both the model recognition performance and model FLOPS.
Therefore, we search for the number and location of atten-
tion blocks, in order to achieve a better ATC trade-off.

In particular, we choose to use GloRe [5] as an instan-
tiation of the attention block. Other attention blocks, such
as non-local block [39], can also be used. In our search
space, searchable attention blocks are placed between block
groups, which is denoted as Super Attention in Figure 2a.
We decide whether the features from each stream should
simply pass through it or enter the attention block to per-
form global reasoning.

3.4. Searchable Backbone Building Block

We design a hierarchical search space, where the back-
bone is composed of block groups of different architec-
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Max Input size Block group Fusion Attention
C × T × S2 Stage Operator Channels Expansion N S Block Block

3× 4× 2242 0 conv 1× 32 24 - 1 2 - -
3× 4× 1122 conv 3× 12 24 1 1
48× 4× 1122 1 MBConv3D (32, 48, 8) (1.5, 6.0, 0.75) 1 2 TS-Fusion -
48× 4× 562 (32, 48, 8) 2 1
88× 4× 562 2 MBConv3D (64, 88, 8) (1.5, 6.0, 0.75) 1 2 TS-Fusion GloRe
88× 4× 282 (64, 88, 8) 4 1
176× 4× 282

3 MBConv3D

(128, 176, 16)

(1.5, 6.0, 0.75)

1 2

TS-Fusion GloRe176× 4× 142 (128, 176, 16) 3 1
176× 4× 142 (128, 176, 16) 3 1
176× 4× 142 (128, 176, 16) 4 1
344× 4× 142

4 MBConv3D
(248, 344, 24)

(1.5, 6.0, 0.75)
1 2

TS-Fusion GloRe344× 4× 72 (248, 344, 24) 3 1
344× 4× 72 (248, 344, 24) 3 1

(a) Sparse stream

Max Input size Block group Attention
C × T × S2 Stage Operator Channels Expansion N S Block

3× 32× 2242 0 conv 1× 32 8 - 1 2 -
3× 32× 1122 conv 3× 12 8 1 1
8× 32× 1122 1 MBConv3D 8 (1.5, 6.0, 0.75) 1 2 -
16× 32× 562 (8, 16, 8) 2 1
24× 32× 562 2 MBConv3D (8, 24, 8) (1.5, 6.0, 0.75) 1 2 GloRe
24× 32× 282 (8, 24, 8) 4 1
32× 32× 282

3 MBConv3D

(16, 32, 8)

(1.5, 6.0, 0.75)

1 2

GloRe32× 32× 142 (16, 32, 8) 3 1
32× 32× 142 (16, 32, 8) 3 1
32× 32× 142 (16, 32, 8) 4 1
56× 32× 142

4 MBConv3D
(32, 56, 8)

(1.5, 6.0, 0.75)
1 2

GloRe56× 32× 72 (32, 56, 8) 3 1
56× 32× 72 (32, 56, 8) 3 1

(b) Dense stream

Table 1: Two-stream macro architecture. (a) The macro-architecture of the sparse stream. Each row represents a block
group, which includes multiple MBConv3D blocks with the same architecture. It also has a searchable GloRe attention block
and a TS-Fusion block at the end. Columns Channel and Expansion denote the output channel and the expansion rate of the
block. Their search choices are denoted as a range (min, max, step). Column N denotes the repeating times of the MBConv3D
block, and column S is the spatial stride of first block in the group. (b) The macro-architecture of the dense stream.

ture (Figure 2a). Each group consists of several blocks,
which are stacked sequentially and share the same archi-
tecture. In this work, we adopt a 3D version of MBConv
(Mobile inverted Bottleneck Conv), originating from Mo-
bileNetV2 [27], namely MBConv3D (Figure 2c), which has
4 search variables, including temporal & spatial kernel size
t & k, output channel Cout and expansion rate e.
Temporal kernel of depthwise convolution. Temporal
kernel size has a large impact on the model FLOPS and ac-
curacy. When it is set to 1, the MBConv3D block only has
2D convolution, which is computationally cheaper but is not
able to capture temporal information. When it is larger than
1, the MBConv3D block is doing convolution in 3D, which
is more costly but can improve the recognition performance
by capturing temporal signals. We search the temporal ker-
nel size for each block group. This not only avoids the te-
dious manual tuning but also improves the ATC trade-off.
Spatial kernel of depthwise convolution. Spatial kernel
size is always considered to be critical for the model com-
plexity and performance [30, 41]. In hand-crafted video
models, such as I3D [2], S3D, SlowFast, and X3D, the spa-
tial kernel is fixed to be 3 in almost all convolutional layers.
We hypothesize such simple choice is sub-optimal, and add
spatial kernel size to our search space as well.
Output channel of MBConv3D block. In X3D [8], which
also adopts MBConv3D block as the building block, the
output channel of each block is manually prescribed fol-
lowing simple heuristics, such as the output channel num-
ber doubles when the spatial resolution is reduced by half.
As the choices of output channels substantially impact both
the computation cost and capacity of the model, we search
for the output channel from a wider range of choices.
Expansion rate of the MBConv3D block. A MBConv3D
block expands the feature channel through a point-wise con-
volution by an expansion rate, performs 3D depth-wise con-
volution, and finally shrinks the feature channel through an-

Search variable Temporal kernel Spatial Kernel

Choices {1, 3, 5} {3, 5}

Table 2: The choices of kernel size for MBConv3D block.

other point-wise convolution. The expansion rate affects the
number of feature channels where the depth-wise convolu-
tion operates, and consequently the ATC trade-off of the
model. Previous models [27, 8] uses a constant expansion
rate for all blocks. In contrast, we search for a separate ex-
pansion rate for each block.
3.5. The Final Search Space

The full specification of the macro architecture of our
search space is shown in Table 1. Our search space has 6
variables (temporal & spatial kernel size, channel width,
expansion rate, fusion, and attention block), where each
block group can have its unique choice. It contains over
2 × 1053 architectures, and poses a great challenge to effi-
ciently search architectures within it. The choices of tem-
poral and spatial kernel sizes for the MBConv3D block are
shown in Table 2.

4. Search Method
4.1. Background of Search Algorithm

We adopt the PARSEC [3] method as our basic search
procedure, which is a probabilistic version of the differen-
tiable NAS method DARTS [17]. Unlike DARTS, which
requires to simultaneously instantiate all the layer choices
and has a large memory footprint, PARSEC only samples
one architecture at a time, and uses the same memory as in
the standard model training.

PARSEC constructs a supernet where we can sample ar-
chitectures {Ai} according to a distribution P (A|ααα). Ar-
chitecture parameters ααα denote the probabilities of choos-
ing different operations. Leveraging Importance Weighted
Monte-Carlo algorithm [1], we jointly optimize ααα and
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model weights of the supernet to maximize the data like-
lihood of sampled architectures, which are weighted by a
proxy architecture performance indicator (video-level accu-
racy on validation set in our paper). We also add a hinge-
type regularization term in the loss function to penalize ar-
chitectures exceeding the target FLOPs range.

4.2. Progressive Search

Directly searching for the architecture of all parts of the
two-stream model in our large search space is challeng-
ing. Therefore, we consider a divide-and-conquer strategy
by breaking down the search process into multiple steps,
and searching for different parts of the model sequentially.
Empirically, we found such progressive procedure can ac-
celerate searching efficiency without sacrifice on the per-
formance of the final discovered architecture, compared to
searching for all model parts simultaneously.
Step 1: We first search the architecture of the sparse stream,
including temporal/spatial kernel, the output channel, and
expansion rate of the MBConv3D blocks, which lives in a
greatly reduced search space of size 8× 1024.
Step 2: After that, we fix the architecture of the sparse
stream and inherit the model weight from step 1, and further
search the architecture of the dense stream as well as the fu-
sion blocks to optimize the performance of the overall two-
stream model. Therefore, the search of dense stream and
fusion blocks favors the architectures which are more capa-
ble of learning complementary features from two streams.
The search space in this step contains 6 × 1024 unique ar-
chitectures.
Step 3: In the final step, we search for the location to add
the attention blocks which can improve the performance
of the overall two-stream model at low computational cost,
while keeping previous searched architecture fixed and in-
heriting their model weights. The search space in this step
has a small size of 4096.

5. Experiments
5.1. Datasets

We use two large-scale video benchmarks Kinetics-
400 [13] and Something-Something-V2 [11], which capture
different aspects of video recognition tasks. (i) Kinetics-
400: It contains 240K training- and 20K validation trimmed
videos in 400 action classes, and focuses on general-
purpose action recognition. (ii) Something-Something-V2:
Unlike Kinetics, it decouples human actions and the objects
involved in the actions, and forces the model to learn tem-
poral information instead of recognizing objects. It con-
tains 169K and 25K videos in the training and validation
set from 174 human action classes. Our proposed Auto-
TSNet can generalize to datasets of different characteristics
and achieve superior performance. Following the standard
protocol, we report the top-1/top-5 validation accuracy for

both datasets.

5.2. Implementation details

We briefly introduce the searching, training and evalu-
ation setup below, and include more details in the supple-
ment.
Architecture Search We randomly select 100 classes from
Kinetics-400 dataset, denoted as MiniKinetics-100, and
search architectures on it for fast search. The architecture
of sparse stream is searched for 800 epochs. The search
for dense stream and the locations of attention blocks takes
400, 200 epochs respectively. Adam optimizer is adopted to
update the architecture parameters, with learning rate 0.025
and zero weight decay. Model weights in the supernet are
optimized with SGD, which uses learning rate 0.4 with a
schedule of cosine decaying.

The sparse and dense stream take 4 and 32 frames as
input, respectively. We use a scale jittering range of [182,
228] and then take a random crop of size 160 × 160 from
each frame of the input video.
Training the searched models. After the search, we take
the most probable architecture and train it from scratch with
model weights randomly initialized. We train the model for
300 epochs. We use SGD optimizer, and learning rate 0.4
with a schedule of cosine decaying.
Evaluating the searched models. The trained model is
evaluated on the validation set. We uniformly sample 10
clips from each video, and use two different ways of tak-
ing crops to obtain results comparable to those from prior
work. (1) 10-Center: we resize the clip to have a short edge
182. A single central crop of size 1602 is taken. (2) 10-
LeftCenterRight: we take 3 crops of size 1822 to cover the
longer axis of the clip. The predictions is averaged over all
crops of the clips. By default, our results are obtained by
10-Center crop testing, unless explicitly stated. With regard
to the comparison of method complexity, we consider to use
total FLOPs (FLOPs per video) as the main metric.

5.3. Main Results
Here we present the main results of our Auto-TSNet

models in Table 3, including S, M and L variants which
stand for small, medium, and large model. We also com-
pare them with other state-of-the-art video models whose
architectures are searched. Auto-TSNet-S and Auto-TSNet-
M shared the same architecture, and only differ in the in-
put video spatial resolution (1822 vs 2562). Auto-TSNet-L
model is obtained by naively stretching the depth of Auto-
TSNet-S by 2×, and increasing the input spatial resolution
to 3562. We also report results of another three variants
of our model, namely Auto-TSNet-S†, Auto-TSNet-M† and
Auto-TSNet-L†, where the attention blocks are removed.

In the first section of Table 3 where we compare small
models, Auto-TSNet-S† outperforms X3D-S by a signifi-
cant margin of 1.3%, while using similar FLOPs. When at-
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Model Params GFLOPS Total Top-1
(M) ×views GFLOPs Acc (%)

X3D-S [8] 3.8 2.7 × 30 81 73.31

Auto-TSNet-S†(ours) 7.7 2.8 × 30 84 74.6
Auto-TSNet-S (ours) 8.6 3.4 × 30 102 75.4

EfficientNet3D-B3 [31] 8.2 6.9 × 10 69 72.4
X3D-M [8] 3.8 6.2 × 30 186 76.0

Auto-TSNet-M†(ours) 7.7 5.2 × 30 156 76.6
Auto-TSNet-M (ours) 8.6 6.1 × 30 183 77.3
EfficientNet3D-B4 [31] 12.2 23.8 × 10 238 74.5

X3D-L [8] 6.1 24.8 × 30 744 77.5
Auto-TSNet-L†(ours) 12.2 18.1 × 30 543 78.3
Auto-TSNet-L (ours) 13.2 19.9 × 30 597 78.9

Table 3: Comparisons with other NAS models on
Kinetics-400. Auto-TSNet and X3D models are evalu-
ated using 10-LeftCenterRight testing. † denotes the model
without attention blocks.

Model FLOPS Ratio P Top-1 Acc (%)

X3D-S - 72.9

Manual-TSNet
85% 72.8
70% 73.2
55% 72.4

Table 4: Comparing X3D-S model with our Manual-
TSNet models on Kinetics-400. All models use about 2.0G
FLOPS. Ratio P denotes the ratio of FLOPS used by the
sparse stream.

tention blocks are searched and added, Auto-TSNet-S fur-
ther improves the accuracy by 0.8%. In the second sec-
tion where we compare medium-size models, Auto-TSNet-
M improves X3D-M by a large gap of 1.3% using simi-
lar FLOPs. The performance of Auto-TSNet-M is even on
par with X3D-L (77.3% Vs 77.5%), while using 66% less
FLOPs. In the last section of Table 3 for comparing big
models, Auto-TSNet-L significantly surpasses X3D-L by
1.4% (78.9% Vs 77.5%), while using 20% less FLOPs.

5.4. From One-Stream to Two-Stream Model

X3D [8] is a family of single-stream models, and achieve
good performance on standard benchmarks. However, we
hypothesize two-stream models can achieve higher perfor-
mance than single-stream models. Before automatically
searching for two-stream models, we manually build two-
stream baseline models and compare with X3D models.

We fix the number of input frames of sparse and dense
stream to be 4 and 32. For each stream, we reuse the macro
structure of the X3D-S model and only modify it by uni-
formly scaling down the feature channel at each block un-
der the following constraints. (i): the total FLOPS of the
two-stream model per crop is close to X3D-s’s FLOPs. (ii):
the FLOPS of the sparse stream account for P% of the
overall FLOPS, where P is a hyper-parameter. Following
the design in SlowFast [9], we use time-strided convolution

*Accuracy reported in the official repo. X3D paper doesn’t report the
result of X3D-S using 10-LeftCenterRight testing.

as fusion block between 2 streams, which are placed uni-
formly along the network. We experiment with 3 choices
of P ∈ {85, 70, 55}, and denote the resulting models as
Manual-TSNet-P%. The results are shown in Table 4. On
Kinetics-400, the Manual-TSNet-70% model achieves the
best performance, and improves the X3D-S model by 0.3%
top-1 accuracy using similar FLOPS.

Note our hand-crafted Manual-TSNet models only rep-
resent a fairly sparse set of data points in our multi-variate
search space, and are not expected to be optimal in that
space. Nevertheless, Manual-TSNet-70% already outper-
forms the delicately designed X3D-S model, which encour-
ages us to more extensively explore the space at finer gran-
ularity beyond simple uniform channel scaling.

5.5. Progressive Search of Two-Stream Models
5.5.1 Searching For Sparse Stream
As described in Section 4, we adopt a progressive search
process that starts with searching the architecture of the
sparse stream. We set the target FLOPS of the sparse
stream to 1.4G FLOPS based on the design of our man-
ually explored two-stream models Manual-TSNet-70% in
Table 4. The search of the sparse stream takes 2.3 days.
The searched sparse stream achieves 70.8% Top-1 accuracy
on Kinetics-400, with 1.39G FLOPs, as shown in Table 5,
which is a good starting point for our progressive search.

5.5.2 Searching For Dense Stream and Fusion Blocks
In the 2nd step of the progressive search, we fix the archi-
tecture of the sparse stream from the previous step as well
as the model weights of the supernet, and further search for
the architecture of the dense stream and TS-Fusion blocks.
We set the target FLOPS of the overall two-stream model
to 2.0G. The results are shown in Table 5. The discov-
ered model includes sparse stream, dense stream, and fu-
sion blocks. Compared with the searched sparse stream
network from the previous step, the searched two-stream
model achieves a performance boost of 3.3%. The FLOPs
of the searched model is 2.05 GFLOPs, which is close to
the target 2 GFLOPs.

5.5.3 Searching for Attention Blocks
In the final step of the progressive search, we search for the
insertion location of the attention block, where we choose
to use GloRe as an instance of attention block. We consider
inserting GloRe blocks at stage 2, 3, and 4. We uniformly
pick 6 locations at stage 2, 3, and 4 for each stream as the
candidate attention locations, which leads to a space of 26×
26 = 4096 choices in total. We set the target FLOPs to
2.5G. The search only takes 0.9 days and the results are
shown in the last row of Table 5.

The final searched Auto-TSNet model chooses to insert
two GloRe blocks to the sparse stream of stage 3 (see Fig-
ure 3), which improves the accuracy of the searched archi-
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# Sparse Dense Fusion Attention Search 1-View Top-1
Streams stream stream block block days GFLOPs Acc (%)

1 ✓ 2.3 1.39 70.8
2 ✓ ✓ ✓ 1.6 2.05 74.1 (+3.3)
2 ✓ ✓ ✓ ✓ 0.9 2.46 74.6 (+0.5)

Table 5: Results of progressive architecture search.

Design Method Search Days 1-View GFLOPs Top-1 Acc (%)

Manual - 1.40 70.2
Searched 2.3 1.39 70.8

Table 6: Ablation on backbone search on Kinetics-400.
Design Search Total Fusion Fusion Blocks per Stage Top-1
Method Days Blocks S1 S2 S3 S4 Acc (%)

Manual -
0 - - - - 70.7
5 +1 +1 +2 +1 73.2
10 +2 +2 +4 +2 71.2

Searched 0.7 4 +1 +1 +2 - 73.7

Table 7: Evaluating the choices of fusion locations on
Manual-TSNet on Kinetics-400.

tecture of step 2 by 0.5% (74.6% Vs 74.1%). The FLOPs of
the searched architecture is also closed to our target FLOPs.

5.6. Ablation of Searchable Components

In this section, we consider isolating each searchable
component (backbone, fusion, and attention), to verify the
necessity of searching for their architectures.
Searching for Backbone Only. In the first step of pro-
gressive search of Auto-TSNet, we searched for a sparse
stream, whose target FLOPs is set to 1.4 GFLOPS. We
directly compare the performance of the searched sparse
stream with the sparse stream of Manual-TSNet-70% in Ta-
ble 6, which shows that the searched sparse stream outper-
forms the hand-crafted one by 0.6% top-1 accuracy (70.2%
vs 70.8%).
Searching for Fusion Only. We conduct a toy study where
we only search for the fusion location between two streams
with pre-defined architectures, identical to those in Manual-
TSNet-70%. The candidate fusion operations include time-
strided-conv and no-connection. We create 3 variant models
based on the backbone architecture of Manual-TSNet-70%
with different number of fusion blocks, which are 0, 5 and
10 respectively. The candidate searchable fusion locations
fully cover the fusion location of Manual-TSNet-70% and
its two variants. The results are in Table 7. We observe
the searched architecture has surpassed other manually de-
signed baselines with a considerable accuracy boost 0.5%,
demonstrating fusion search is non-trivial.
Searching for Attention Only. To demonstrate the need of
searching attention blocks, we also conduct an experiment
where we only search for the location of attention block,
while keeping other searchable components fixed (identical
to Manual-TSNet-70%). We adopt Manual-TSNet-70% as
the baseline, along with its variants with different insertions

Design Search Use GloRe per Stage Params 1-View Top-1
Method Days GloRe S2 S3 S4 (M) GFLOPs Acc (%)

Manual-TSNet-70% - × - - - 7.71 2.03 73.2

Manual - ✓
+2 - - 8.03 2.19 72.7
+2 +2 - 8.24 2.41 73.2
+2 +2 +2 8.37 2.51 73.3

Searched 0.9 ✓ +1 +1 - 8.15 2.40 73.6

Table 8: Comparing manually inserted and searched
attention blocks in Manual-TSNet-70% model on
Kinetics-400.

Progressive Search End Params GFLOPs Top-1
search days entropy (M) ×views Acc (%)

× 6.5 18.9 8.9 3.41× 30 72.8
✓ 4.8 9.7 8.6 3.25× 30 75.4

Table 9: Comparisons of one-step search and progressive
search on Kinetics-400. Models are evaluated using 10-
LeftCenterRight testing. The entropy of progressive search
is averaged across the search for each part.

of attention blocks. Results in Table 8 confirm the network
with searched attention location outperforms other manual
designed variations. Compared to Manual-TSNet-70%, the
searched network obtains an accuracy boost of 0.4%.

5.7. Ablation of Progressive Search
In our paper, we adopted a progressive search algorithm

to decompose the tremendous search space (2 × 1053) into
several small sub search space ([8×1024, 6×1024, 4.096×
103]), for more efficient search. We compare the search-
ing time of progressive search and one-step search, as well
as their search performances. Here one-step search denotes
searching all variates simultaneously, instead of searching
part by part in a progressive way. The only difference be-
tween them is that the one-step search algorithm search for
all variables at once, and we keep other settings to be iden-
tical for fairness. We also introduce the entropy of architec-
ture parameters ααα as a convergence indicator for the search
process. A lower entropy value indicates the searching is
closer to convergence. The results are shown in Table 9.
We confirm the progressive search mechanism reduces the
search time by 26%, and also converges better (18.9 vs 9.7
in entropy). The searched architecture of progressive search
also achieves better performance, outperforming the non-
progressive one by 2.6%.

5.8. Comparisons with SOTA on Kinetics-400

In Table 10, we compare Auto-TSNet models with state-
of-the-art results using 10-LeftCenterRight testing setting.
Compared with X3D-S, Auto-TSNet-S outperforms it with
a significant margin of 2.4%. Using similar FLOPs, Auto-
TSNet-M surpasses X3D-M by 1.3%. The performance
of Auto-TSNet-M is even on par with X3D-L, while us-
ing 66% less FLOPs. Auto-TSNet-L surpasses X3D-L
by a considerable gap of 1.4%, while using 20% fewer
FLOPs. The performance of Auto-TSNet-L is even close
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# Model Pre- Params Total Top-1
streams training (M) GFLOPs Acc (%)

1

I3D [2]

Im
ag

eN
et

12 - 71.1
MF-Net [4] 8.0 555 72.8
TSM [16] 24.3 650 74.7
Nonlocal, R50 [39] 35.3 8, 460 76.5
Nonlocal, R101 54.3 10, 770 77.7
Oct-I3D+NL 33.6 867 75.7
SmallBigNet [15] - 5, 016 77.4

1

R(2+1)D [34]

-

63.6 17, 480 72.0
ip-CSN-152 [33] 32.8 30, 270 77.8
VoV3D-M [14] 3.8 132 73.9
VoV3D-L 6.2 279 76.3
X3D-S [8] 3.8 75 73.31

X3D-M 3.8 186 76.0
X3D-L 6.1 744 77.5
X3D-XL 11.0 1, 452 79.1

2

2-Stream I3D [2]

Im
ag

eN
et 25 - 75.7

2-Stream S3D-G[45] 23.1 - 77.2
2-Stream TSN [37] - - 73.9
2-Stream ARTNet, R18 [35] - - 72.4

2

2-Stream R(2+1)D[34]

-

127.2 34, 960 73.9
A3D-SF 4×16, R50 [48] 34.4 1, 083 75.7
SF 4×16, R50 [9] 34.4 1, 083 75.6
SF 8×8, R101 53.7 3, 180 77.9
SF 16×8, R101 53.7 6, 390 78.9

2
Auto-TSNet-S (ours)

-
8.6 102 75.4

Auto-TSNet-M (ours) 8.6 183 77.3
Auto-TSNet-L (ours) 13.2 597 78.9

Table 10: Comparing Auto-TSNet models with others on
Kinetics-400.

to that of X3D-XL (78.9% vs 79.1%), but saves FLOPS
by 60%. Comparing with SF 16 × 8 R101, Auto-TSNet-L
achieves the same performance with it, but it is incredibly
11× smaller than SF 16× 8 R101 w.r.t. FLOPs cost.

5.9. Transferability on Something-Something-V2

The next question we try to answer is: Does the searched
Auto-TSNet models overfit the dataset? In other words,
would the same model attain high performance, when we
train it from scratch on a different dataset? To address
this question, We further evaluate the searched Auto-TSNet
models on Something-Something-V2 dataset. As men-
tioned before, the characteristic of Something-Something-
V2 dataset is quite distinct from Kinetics-400, which fo-
cuses more on temporal modeling. The results are shown in
Table 11, where we choose state-of-the-art efficient models
under 50 GFLOPs to compare. Auto-TSNet models achieve
highly competitive performance without any pre-training.
Comparing with GST8F , Auto-TSNet-S shows a significant
performance gain of 0.7%, while using 20% fewer FLOPs.
Auto-TSNet-M further boosts the accuracy to 63.6%, and
outperform all other methods.

5.10. Visualization of Auto-TSNet Model
We visualize the discovered Auto-TSNet architecture in

Figure 3. For backbone, we can observe that the spatial ker-
nel size of 5 and temporal kernel size of 1 are widely used
in both streams, which is quite different from the design in
current hand-crafted models. Surprisingly, we notice that
the attention blocks only appear on the sparse stream, indi-
cating they are less effective on the dense stream. Unlike

# Model Pre- Params Total Top-1
streams training (M) GFLOPs Acc (%)

1

TSN [37]

Im
ag

eN
et

- - 41.1
TSN, Dual attention [44] - - 42.1
TRN, Dual attention - 51.6
TRN [47] - - 48.8
TSM, Dual attention - - 55.0
I3D + STIN + OIE [21] - - 60.2
Dynamic Inference [42] - 35.4 58.2
bLVNet-TAM [7] 40.2 32.1 60.2
MSTNet [28] 24.3 33.2 59.5
TANet [19] 30.4 33.0 60.5
GST8F [20] - 29.5 61.6
TEINet [18] - 33.0 61.3

2 2-Stream TRN [47] ImageNet - - 55.5
2-stream TRN, Dual attention [44] - - 58.4

2 Auto-TSNet-S (ours) - 8.6 23.7 62.3
Auto-TSNet-M (ours) 8.6 46.5 63.6

Table 11: Comparing Auto-TSNet models with other ef-
ficient SOTA models (under 50 GFLOPs) on Something-
Something-V2 dataset.

Figure 3: The visualization of our searched Auto-TSNet-
S. Each rectangle box (except fusion blocks between the
two streams) denotes a block group. We use height to de-
note the expansion rate, and the block output channel of the
group is marked in the box. Different colors are used to de-
note kernel size, as shown in the legend. We use the shadow
texture to distinguish spatial kernel size from temporal one.
The star symbol is used to represent the attention block.

manual designed architectures which often favor the uni-
form choices of search variables, the searched model uses
nonuniform architecture choices.

6. Conclusions
We present an approach to searching for high-

performance two-stream models for video recognition. We
meticulously prescribe a multivariate space with 6 search
variables, which have a substantial impact on the model per-
formance and complexity, and reflect the large variations in
designing two-stream models. A progressive search pro-
cess is proposed to efficiently search in the proposed large
design space, and the discovered two-stream models out-
perform other models on two large-scale action recognition
benchmarks.
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