
iNAS: Integral NAS for Device-Aware Salient Object Detection

Yu-Chao Gu1 Shang-Hua Gao1 Xu-Sheng Cao1 Peng Du2

Shao-Ping Lu1 Ming-Ming Cheng1*

1TKLNDST, CS, Nankai University 2Huawei Technologies
https://mmcheng.net/inas/

Abstract

Existing salient object detection (SOD) models usually
focus on either backbone feature extractors or saliency
heads, ignoring their relations. A powerful backbone could
still achieve sub-optimal performance with a weak saliency
head and vice versa. Moreover, the balance between model
performance and inference latency poses a great challenge
to model design, especially when considering different de-
ployment scenarios. Considering all components in an
integral neural architecture search (iNAS) space, we pro-
pose a flexible device-aware search scheme that only trains
the SOD model once and quickly finds high-performance
but low-latency models on multiple devices. An evolu-
tion search with latency-group sampling (LGS) is proposed
to explore the entire latency area of our enlarged search
space. Models searched by iNAS achieve similar perfor-
mance with SOTA methods but reduce the 3.8×, 3.3×, 2.6×,
1.9× latency on Huawei Nova6 SE, Intel Core CPU, the
Jetson Nano, and Nvidia Titan Xp. The code is released at
https://mmcheng.net/inas/.

1. Introduction
Salient object detection (SOD) aims to segment the

most attractive objects in images [1, 59]. Served as a pre-
processing step, SOD is required by many downstream
applications, i.e., image editing [8], image retrieval [22],
visual tracking [24], and video object segmentation [20].
These applications often require the SOD model to be de-
ployed with low inference latency on multiple devices,
i.e., GPUs, CPUs, mobile phones, and embedded devices.
Each device has unique properties. For instance, GPUs are
good at massively parallel computing [43] while the embed-
ded devices are energy-friendly at the cost of a low com-
puting budget [27]. Thus, different deployment scenarios
require quite different designs of SOD models.

State-of-the-art (SOTA) SOD methods mostly design
handcraft saliency heads [36, 44, 47, 78, 81] to aggre-
gate multi-level features from the pre-trained backbone,

*M.M. Cheng (cmm@nankai.edu.cn) is the corresponding author.

M
ax

F

Huawei Nova6 SE speed (FPS), batch-size = 1
0 1 2 3 4

90

91

92

93

94

95

3.8× higher speed

4.8
× higher speed

Ours
CSNet [16]
U2Net [46]
PoolNet-R [36]
EGNet-R [78]
DSS [25]

MINet-R [44]
BASNet [47]
R3Net [10]
CPD-R [64]
NLDF [42]
ITSD-R [81]

Figure 1. Mobile latency and performance comparison between
our iNAS and recent state-of-the-art SOD models.

e.g., VGG [51], ResNet [23] and Res2Net [13]. The pro-
hibitive inference latency often prevents them from been ap-
plied on other devices except for GPUs. On the other hand,
handcraft low-latency SOD models designed for resource-
constrained scenarios [16,46] suffer from large performance
drop. It causes heavy workloads to manually design SOD
models for different devices because of the dilemma be-
tween model performance and inference latency. Therefore,
we aim at a device-aware search scheme to quickly find suit-
able low-latency SOD models on multiple devices.

There are several obstacles to achieve low-latency SOD
models on different devices, as shown in Fig. 2. Firstly,
the relative latency of operators varies among different de-
vices due to different parallel computation abilities, IO bot-
tlenecks, and implementations. Transfer the SOD model de-
signed for one device to another would result in sub-optimal
latency and performance. Secondly, conventional hand-
craft SOD models design more powerful saliency heads [36,
44, 47, 81] or more efficient backbones [16, 46], while ig-
noring their relations. Similarly, most neural architecture
search (NAS) methods focus on the backbone for the clas-
sification task [35, 53] or incorporate a fixed segmentation
head [33, 34] while ignoring the backbone and head rela-
tionship. We observe that a powerful backbone achieves

4934

https://mmcheng.net/inas/


Design Space

GPU Mobile Phone
Embedded

Device
Human

Designed Device-Aware
Search

Backbone

Head

Deployment
Devices

Figure 2. iNAS unifies backbone and head design into an integral
design space and specializes low-latency SOD models for different
devices.

sub-optimal efficiency with a weak saliency head and vice
versa. These obstacles prevent the community from de-
signing device-aware low-latency SOD models either with
handcraft or NAS schemes.

To deal with these problems, we propose a device-aware
search scheme with an integral search space to train the
model once and quickly find high-performance but low-
latency SOD models on multiple devices. Specifically, we
propose an integral search space for SOD models that holis-
tically consider the backbone and saliency head. To meet
multi-scale requirements of SOD models while avoiding the
latency increased by multi-branch structures, we construct
a searchable multi-scale unit (SMSU). The SMSU supports
searchable parallel convolutions with different kernel sizes,
and reparameterizes searched multi-branch convolutions to
one branch for low inference latency. We also generalize
handcraft saliency heads [25, 36, 41, 44, 75] into searchable
transport and decoder parts, resulting in a rich saliency head
search space for cooperating with the backbone space.

With multi-scale architectures, the proposed integral
SOD search space is significantly larger than NAS spaces
for the classification task [2,72]. After training the one-shot
supernet, previous methods adopt evolution search with
uniform sampling [2, 21, 72] to explore the search space.
Uniform sampling can ensure different architecture choices
within one layer have equal sampling probability. How-
ever, the overall latency of sampled models obeys a multi-
nomial distribution, which causes extremely low-latency or
extremely high-latency areas to be under-sampled. This im-
balance sampling problem prevents uniform sampling from
exploring the entire latency area of our enlarged search
space. To overcome this imbalance sampling problem, we
propose a latency-group sampling (LGS) that introduces the
device latency to guide sampling. Dividing the layer-wise
search space into several latency groups, and aggregating
samples in specific latency groups, LGS preserves the off-

spring in the under-sampled area but controls the samples of
the over-sampled area. Compared with uniform sampling,
the evolution search with LGS can explore the entire inte-
gral search space and finds a group of models on a higher
and wider Pareto frontier.

The main contributions of this paper are:
• An integral SOD search space that considers the

backbone-head relation and covers existing SOTA
handcraft SOD designs.

• A device-aware evolution search with latency-group
sampling for exploring the entire latency area of the
proposed search space.

• A thorough evaluation of the iNAS on five popular
SOD datasets. Our method can reach a similar per-
formance with handcraft SOTA methods but largely
reduces inference latency on different devices, which
helps to scale up the application of SOD to different
deployment scenarios.

2. Related Work

2.1. Salient Object Detection.

Traditional SOD methods [1, 6, 55, 83] mainly rely on
handcraft features and heuristic priors. [28, 29, 79] make an
early attempt to use convolution neural networks (CNNs) to
extract patch-level features. Inspired by FCN [41], the re-
cent SOD methods [39, 57, 60] formulate SOD as a pixel-
wise prediction task, which achieves large improvement
over traditional or CNN-based methods. We refer readers
to comprehensive surveys [1, 59, 82].

Most of the SOD methods handcraft the saliency head
to effectively fuse the multi-scale information of the multi-
level feature extracted by the pre-trained backbone [14, 23,
51], e.g., ResNet [23]. These methods [4, 17, 25, 36, 38,
58, 67] inherit an encoder-decoder structure, in which the
decoder is responsible for the bottom-up feature fusion.
Transport layers [12, 44, 74, 75, 80] are included inside the
saliency head, enabling both the bottom-up and top-down
feature fusion. Methods that introduce edge cues into the
saliency head for precise boundary refinement [30, 62, 78]
are orthogonal to our search space.

The gradually complicated SOD models bring improve-
ments in performance steadily while increasing prohibitive
inference latency. Recent works [16, 20, 63, 64, 81] try to
design lightweight models to eliminate the large inference
latency. Among them, CPD [64] and ITSD [81] design
lightweight saliency heads, achieving fast speed on CPUs
and GPUs, respectively. CSNet [16] designs a light SOD
backbone to achieve the low-latency on the mobile phone
and embedded device. However, separating the design and
the deployment devices causes sub-optimal latency when
the hardware characteristics are quite different.

In this work, we introduce an integral search space that

4935



Handcraft Saliency Head Integral Search Space
Backbone

Transport

Decoder

Skip-Connection

Upsample

DownsampleFCN [41] MINet [44] Amulet [75] FCN [41] PoolNet [36] DSS [25] iNAS

Figure 3. The designs of recent handcraft SOD models and the proposed integral search space.

Backbone Transport Decoder
Stage Operator Resolutions Channels Layers Kernel Level Kernel Fusions Level Kernel Fusions
stem Conv 256x256-384x384 32-40 1 3

1 3,5,7,9 1-5 1 3,5,7,9 2-5
1 MBconv1 128x128-192x192 16-24 1-2 3
2 MBconv6 128x128-192x192 24-32 2-3 3 2 3,5,7,9 1-5 2 3,5,7,9 2-4
3 MBconv6 64x64-96x96 32-48 2-3 3,5,7,9 3 3,5,7,9 1-5 3 3,5,7,9 2-3
4 MBconv6 32x32-48x48 64-88 2-4 3,5,7,9

4 3,5,7,9 1-5 4 3,5,7,9 2
5 MBconv6 32x32-48x48 96-128 2-6 3,5,7,9
6 MBconv6 16x16-24x24 160-216 2-6 3,5,7,9

5 3,5,7,9 1-5 5 3,5,7,9 1
7 MBconv6 16x16-24x24 320-352 1-2 3,5,7,9

Table 1. Detailed configurations of the proposed integral search space.

covers most of the handcraft SOD designs. Based on our
integral search space, we propose a device-aware search
scheme, which achieves similar performance to SOTA
methods but largely reduces latency on different devices.

2.2. Neural Architecture Search.

Neural architecture search (NAS) demonstrates its po-
tential to design efficient networks for various tasks au-
tomatically [15, 18, 32, 34, 49, 70, 73, 76]. Early methods
based on reinforcement learning [84,85] and evolutional al-
gorithm [48, 65] train thousands of candidate architectures
to learn a meta-controller, cost hundreds of GPU days to
search. Later, differentiable NAS [19, 35] and one-shot
NAS [2, 21, 72] exploit the idea of weight-sharing [45] to
reduce the search cost, where the one-shot NAS decouples
the supernet training and architecture search. Most one-shot
NAS methods [2,21,72] target improving the supernet train-
ing and adopt evolution search with uniform sampling to ex-
plore the search space. However, we find uniform sampling
causes an imbalance sampling problem when taking model
latency into account.

Apart from the search method, the search space plays a
vital role in NAS. Early methods [35,45,48,65] utilize cell-
based search space, where the cell is composed of multiple
searchable operations. Based on cell-based search space,
Auto-deeplab [34] additionally supports searching for the
macro-structure of scale transformation. In order to adapt
the segmentation task, Auto-deeplab incorporates fixed par-
allel ASPP [3] decoders. However, the searched structures
of cell-based search space have complicated branch con-

nections, which is hard to be parallelized in current deep
learning frameworks [52], limiting its potential to low-
latency applications. Exploiting the human expert knowl-
edge, MnasNet [53] and following works [9, 54, 61] de-
velop a MobileNet-based [50] search space, which supports
more hardware-friendly architectures than cell-based search
space. However, since these methods are designed for clas-
sification tasks, it has less multi-scale representation capa-
bility and can not be directly applied to SOD.

Two design principles make iNAS different from Auto-
deeplab and MnasNet: 1) The integral search for all compo-
nents reduces the overall inference latency; 2) The search-
able multi-scale unit supports searching for multi-branch
structures without additional inference latency cost. To
fully explore the proposed integral search space, we propose
a latency-group sampling to address the imbalance sam-
pling problem of previous one-shot NAS methods [2, 21,
72]. Different from FairNAS [9], which aims to improve
the fairness of optimizing different components in the su-
pernet training stage, our proposed latency-group sampling
hopes to explore the search space in a balanced way in the
search stage.

3. Methodology

3.1. Integral SOD Design Space.

The previous handcraft SOD models [1, 39, 59]
are mainly based on the fixed pre-trained backbone
(e.g., VGG [51] and ResNet [23]) and design saliency head
to fuse the multi-level feature from the backbone. Some

4936



𝟏 × 𝟏 Conv

BatchNorm

Swish

+

𝑲𝟏 ×𝑲𝟏 Dwise

BatchNorm

𝑲𝟐 ×𝑲𝟐 Dwise

BatchNorm

Swish

𝟏 × 𝟏 Conv

BatchNorm

𝟏 × 𝟏 Conv

BatchNorm

Swish

Swish

𝟏 × 𝟏 Conv

BatchNorm

𝑲𝟐 ×𝑲𝟐 Dwise

+ +

(a) SMSU (train) (b) SMSU (deploy)

𝑲𝟏 = 𝟑
BN parameters

𝑲𝟐 = 𝟓
BN parameters

𝝁 𝝈

𝜸 𝜷

𝝁 𝝈

𝜸 𝜷

𝑲𝟏 = 𝟓

𝑲𝟐 = 𝟓

𝒃

𝒃
𝑲𝟐 = 𝟓

𝒃

(c) Reparameterization of multi-branch structure
Figure 4. Illustration of the searchable multi-scale unit (SMSU).

recent works have noticed that the pre-trained backbone ac-
counts for most of the latency cost [16]. Instead of adopting
a heavy backbone, they design lightweight backbones for
SOD. However, both design strategies separate the back-
bone and decoder design, which hinder finding the low-
latency high-performance SOD model in the integral de-
sign space. This section introduces an integral SOD design
space, composed of the basic search unit (i.e., searchable
multi-scale unit) in Sec. 3.1.1 and the searchable saliency
head in Sec. 3.1.2.

3.1.1 Searchable Multi-Scale Unit.

Since previous general backbones account for most of la-
tency cost, recent designs [16, 46] of SOD backbones re-
place vanilla convolution with group convolution [66] or
separable convolution [50] for reducing latency. To capture
multi-scale representations in images, they design several
branches to encode features with different receptive fields
and fuse multi-scale features. However, multi-branch struc-
tures are not hardware-friendly [50,61,77], which will slow
down inference speed. For example, the CSNet [16] has
reduced 13.4× flops of the ITSD-R [81] but only achieves
similar inference latency on the GPU. We thus propose a
searchable multi-scale unit (SMSU), which automatically
supports finding suitable multi-scale fusions. The SMSU

enables multi-branch structures to capture multi-scale fea-
ture representation in training and adopt the reparameteri-
zation strategy [11] to fuse multiple branches into a single
branch for fast inference.

We show a two-branches setting of SMSU in Fig. 4 (a,b).
The SMSU can extract multi-scale feature representation
with different kernel sizes. Specifically, assume there are
3×3 Conv and 5×5 Conv, we denote the depthwise convo-
lution parameters W1 ∈ RC×1×3×3 and W2 ∈ RC×1×5×5.
The batchnorm (BN) parameters following 3× 3 Conv and
5× 5 Conv are denoted as µ1, σ1, γ1, β1 and µ2, σ2, γ2, β2,
respectively. Given an input feature Fin ∈ RC×H×W , we
denote the output feature as M = Fin ∗W , where ∗ is the
convolution. The fusion of two branches can be denoted as

F
(i)
out =(M

(i)
1 − µ

(i)
1 )

σ
(i)
1

γ
(i)
1

− β
(i)
1

+(M
(i)
2 − µ

(i)
2 )

σ
(i)
2

γ
(i)
2

− β
(i)
2 ,

(1)

where i represents i-th channel. Eqn. (1) describes multi-
scale fusions of SMSU in the training time. In deployment,
we merge the convolution weight and its following BN pa-
rameters into a single convolution, defined as

V (i) =
γ(i)

σ(i)
W (i), b(i) = −µ(i)γ(i)

σ(i)
+ β(i), (2)

where V is the merged convolution weight and b is the bias.
Then we zero-pad the small kernel in given branches to
match the size of the largest kernel. Finally, we average
these two branches to get a single convolution weight and
bias.

The introduced two-branches fusion can be easily ex-
tended to any branches. Thus, we enable searching for fu-
sion kernel combinations in the SMSU. We replace the in-
verted bottleneck of MobileNet search space with SMSU
and summarize the search space in Tab. 1.

3.1.2 Searchable Saliency Head.

Previous handcraft saliency head incorporates transports or
decoders to fuse multi-level features from the backbone.
The high-level feature provides a rough location of the
salient object, and the low-level feature provides the de-
tailed information for recovering the edge and boundary.
As shown in Fig. 3, typical transport designs [44, 75] en-
able both bottom-up and top-down fusions of multi-level
features. Our searchable transport connects to all resolution
levels of the backbone. In our largest child transport, each
level can aggregate features from all five resolution levels
like Amulet [75], while our smallest child transport only
keeps identity branches, like FCN [41]. The downsample
and upsample branches are composed of 1 × 1 Conv-BN

4937



… ………………

Latency Latencylower
bound

upper
bound

lower
bound

upper
bound

layer-1

layer-2

layer-n

#S
am

pl
es

#S
am

pl
es

(a) US (b) LGS
Figure 5. Illustration of uniform sampling (US) and latency-group
sampling (LGS).

Elite
Offspring

Population
Pareto frontier

Crossover Mutation

Initialization La
te

nc
y

LU
T

Trained SuperNet SampleNet

Deploy

Figure 6. Illustration of iNAS search and deployment.

and maxpool operation/bilinear interpolation. Our search-
able transport covers many SOTA SOD transport designs
[12, 37, 44, 80].

Unlike the transport, the decoders [25,36] only support a
bottom-up prediction refinement and gradually add in low-
level features to recover the boundary. Thus, we do not sup-
port top-down fusion branches in the decoder. The identity
and upsample branches from the adjacent resolution level
are fixed, while other branches are searchable. The largest
child decoder has a similar structure to DSS [25], while the
smallest child decoder is similar to FCN [41]. The search-
able decoder covers many handcraft SOD decoder designs
[4, 38, 58, 64, 67].

Considering that best receptive fields for multi-scale fu-
sions may be different at different resolution levels, we use
SMSU as a basic search unit in the transport and decoder.
Though the multi-scale fusion is proven to be effective
in the SOD, how to prune redundant fusion branches and
choose appropriate fusion kernels with latency constraints is
a labor-intensive work. Our proposed saliency head makes
these key components searchable, automatically designed
with backbone to minimize inference latency.

3.2. Latency-group Sampling.

Previous one-shot methods adopt evolution search with
uniform sampling, which causes an imbalance sampling
problem when considering model latency. As illustrated in

Algorithm 1: Evolution Search with LGS
Input: Trained supernet, initial population size N ,

latency lookup table (LUT), latency groups G,
offspring size k, crossover probability pc,
mutation probability pm, iteration iter.

Output: Pareto frontier of population P .
1 Compute the lower-bound and upper-bound of latency

(i.e., LATl
min and LATl

max) in each layer l based on
LUT;

2 Divide the (LATl
min,LATl

max) in each layer l into G
groups;

3 Sample N
G

child models for each latency group
{Pi|i = 1 . . . G};

4 Set initial population P = P1 ∪ ... ∪ PG;
5 Evaluate performance for models in P ;
6 for j = 1...iter do
7 for each Pi do
8 Si← Select k

G
models from the Pareto frontier

of Pi;

9 S = S1 ∪ ... ∪ SG;
10 for each model in S do
11 Crossover and mutate the model under

probability pc and pm.
12 Evaluate performance for models in S;
13 P = P ∪ S

14 P ← Select Pareto frontier of P ;
15 Return P

Fig. 5, the whole search space is composed of layer-wise
block choices. The block choices within each layer vary in
latency. Suppose we uniformly sample the block layer-by-
layer, the accumulated latency of overall sampled models
will obey a multinomial distribution, i.e., the extremely low-
latency or extremely high-latency areas are under-sampled
but the middle latency area is over-sampled. To explore the
entire latency area of our integral search space, we propose
latency-group sampling (LGS). Given a latency lookup ta-
ble (LUT), we divide the layer-wise search space into sev-
eral latency groups. To get a model in specific latency
group, we sample blocks within this latency group at each
layer. Although samples remain imbalance within each lo-
cal latency group, we can get balanced samples in global la-
tency range if we divide adequate groups. Moreover, when
selecting elite offsprings, we also keep a balance number of
offsprings in different latency groups.

The general pipeline of device-aware evolution search
is depicted in Fig. 6. We first build a latency lookup ta-
ble (LUT) on target device. Then we perform the evolution
search based on LGS. After searching, the searched model
inherits the supernet weight and can be directly deployed
without retraining. As shown in Algorithm. 1, the evolution
search with LGS contains four stages:

4938



Method FLOPs Latency (ms) ECSSD(1000) DUT-O(5168) DUTS-TE(5019) HKU-IS(4447) PASCAL-S(850)
(G) GPU Embedded maxF MAE Sm maxF MAE Sm maxF MAE Sm maxF MAE Sm maxF MAE Sm

VGG-16/VGG-19
NLDFCVPR17 [42] 66.68 9.48 505.59 0.905 0.063 0.875 0.753 0.080 0.770 0.813 0.065 0.805 0.902 0.048 0.879 0.822 0.098 0.805
DSSCVPR17 [25] 48.75 5.85 N/A 0.921 0.052 0.882 0.781 0.063 0.790 0.825 0.056 0.812 0.916 0.040 0.878 0.831 0.093 0.798
PiCANetCVPR18 [39] 59.82 34.21 N/A 0.931 0.046 0.914 0.794 0.068 0.826 0.851 0.054 0.861 0.921 0.042 0.906 0.856 0.078 0.848
CPD-VCVPR19 [64] 24.08 3.78 266.40 0.936 0.040 0.910 0.793 0.057 0.818 0.864 0.043 0.866 0.924 0.033 0.904 0.861 0.072 0.845
ITSD-VCVPR20 [81] 17.08 9.97 494.93 0.939 0.040 0.914 0.807 0.063 0.829 0.876 0.042 0.877 0.927 0035 0.906 0.869 0.068 0.856
PoolNet-VCVPR19 [36] 48.80 8.81 N/A 0.941 0.042 0.917 0.806 0.056 0.833 0.876 0.042 0.878 - - - 0.865 0.072 0.852
EGNet-VICCV19 [78] 120.15 11.58 N/A 0.943 0.041 0.919 0.809 0057 0.836 0.877 0.044 0.878 0.930 0.034 0.912 0.858 0.077 0.848
MINet-VCVPR20 [44] 71.76 14.78 N/A 0.943 0.036 0.919 0.794 0.057 0.822 0.877 0.039 0.875 0.930 0.031 0.912 0.865 0.064 0.854

ResNet-34/ResNet-101/ResNetXt-101
R3NetIJCAI18 [10] 26.19 6.70 335.14 0.934 0.040 0.910 0.795 0.063 0.817 0.831 0.057 0.835 0.916 0.036 0.895 0.835 0.092 0.807
CPD-RCVPR19 [64] 7.19 2.52 124.09 0.939 0.037 0.918 0.797 0.056 0.825 0.865 0.043 0.869 0.925 0.034 0.906 0.859 0.071 0.848
BASNetCVPR19 [47] 97.51 16.37 N/A 0.942 0.037 0.916 0.805 0.056 0.836 0.859 0.048 0.865 0.928 0.032 0.909 0.854 0.076 0.838
PoolNet-RCVPR19 [36] 38.17 9.13 N/A 0.944 0.039 0.921 0.808 0.056 0.836 0.880 0.040 0.883 0.932 0.033 0.916 0.863 0.075 0.849
EGNet-RICCV19 [78] 120.85 12.01 N/A 0.947 0.037 0.925 0.815 0.053 0.841 0.888 0.039 0.887 0.935 0.031 0.917 0.865 0.074 0.852
MINet-RCVPR20 [44] 42.68 7.38 N/A 0.947 0.033 0.925 0.810 0.056 0.833 0.884 0.037 0.884 0.935 0.029 0.919 0.867 0.064 0.856
ITSD-RCVPR20 [81] 9.65 3.57 164.76 0.947 0.034 0.925 0.820 0.061 0.840 0.882 0.041 0.884 0.934 0.031 0.917 0.870 0.066 0.859

Handcraft SOD Backbone
CSNetECCV20 [16] 0.72 3.63 95.75 0.916 0.065 0.893 0.775 0.081 0.805 0.813 0.075 0.822 0.898 0.059 0.881 0.828 0.103 0.813
U2-NetPR20 [46] 9.77 4.45 173.61 0.943 0.041 0.918 0.813 0.060 0.837 0.852 0.054 0.858 0.928 0.037 0.908 0.847 0.086 0.831

Searched Models on Different Devices
iNAS(GPU)-S 0.43 1.32 48.56 0.944 0.037 0.921 0.819 0.055 0.842 0.872 0.043 0.875 0.930 0.033 0.914 0.864 0.071 0.852
iNAS(Embedded)-S 0.41 1.53 40.99 0.944 0.038 0.920 0.816 0.056 0.840 0.871 0.043 0.875 0.931 0.033 0.915 0.865 0.070 0.852
iNAS(GPU)-L 0.70 1.94 71.70 0.947 0.036 0.924 0.824 0.052 0.846 0.879 0.040 0.881 0.935 0.031 0.918 0.867 0.071 0.852
iNAS(Embedded)-L 0.63 2.30 63.39 0.947 0.036 0.924 0.820 0.055 0.842 0.875 0.041 0.879 0.935 0.031 0.919 0.865 0.070 0.852

Table 2. Comparison with existing SOD methods. The FLOPs and latency are measured with 224× 224 input images. N/A means that it
could not be deployed on the embedded device because of the out-of-memory error.

M
ax

F

NVIDIA GTX TITAN Xp Speed (FPS) , batch-size = 32

100 200 300 400 500 600 700 800
90

91

92

93

94

95

1.9× higher speed

2.1× higher speed

Ours
CSNet [16]
U2Net [46]
PoolNet-R [36]
EGNet-R [78]
DSS [25]

MINet-R [44]
BASNet [47]
R3Net [10]
CPD-R [64]
NLDF [42]
ITSD-R [81]

M
ax

F

Intel Core CPU Speed (FPS) , batch-size = 1
0 5 10 15 20 25 30

90

91

92

93

94

95

3.3× higher speed

3.7× higher speed

Ours
CSNet [16]
U2Net [46]
PoolNet-R [36]
EGNet-R [78]
DSS [25]

MINet-R [44]
BASNet [47]
R3Net [10]
CPD-R [64]
NLDF [42]
ITSD-R [81]

M
ax

F

Jetson Nano Speed (FPS) , batch-size = 4

5 10 15 20 25
90

91

92

93

94

95

2.6× higher speed

2.
5×

higher speed

Ours
CSNet [16]
U2Net [46]
R3Net [10]
CPD-R [64]
NLDF [42]
ITSD-R [81]

Figure 7. Speed comparison with existing SOD methods on different devices. iNAS achieves SOTA performance and consistent speedup.

• S1: Initialization. We divide latency ranges of block
choices in each layer into G latency groups. We sam-
ple N candidates for an initial population P, where
each latency group has n

G samples.
• S2: Selection. We select k models from the Pareto

frontier of P into a candidate set S, where each latency
group contains k

G samples.
• S3: Crossover. For each model in S, it has a proba-

bility of pc to crossover with another model in S. We
allow swap the stage-wise configuration in the back-
bone and swap level-wise configuration in the head.

• S4: Mutation. For each model in S, each configura-
tion has a probability of pm to mutate. Then we merge
the S into the population P and continue to S2 until
target iterations iter.

The main difference between LGS and uniform sampling
is in the initialization and selection. In the initialization
step, LGS balances the samples in different latency area

while uniform sampling over-samples the middle latency
area. Then in the selection step, LGS preserves a certain
number of elite offsprings in different groups, which en-
ables the evolution search to find better models in different
latency areas.

4. Experiments
4.1. Implementation Details.

Details of supernet training. We implement iNAS us-
ing Pytorch [52] and Jittor [26] library. We organize the
search space as a nested supernet as [2, 72]. Specifically,
the weight of smaller convolution kernel copies from the
center part of the larger kernel, then transformed by a fully
connected layer. And also, the lower-index channels and
layers are sharing. The supernet is trained on DUTS-TR for
100 epochs with ImageNet pre-training. The training batch
size is set to 40. We use an Adam optimizer with a learning

4939



40 50 60 70
Latency (ms)

93.8

94.0

94.2

94.4

94.6

M
ax

F

Integral Search Space

Fix-B + Search-H

Search-B + Fix-H

Fix-B + Fix-H

(a) Search space exploration. B: backbone, H: head.

Searchable Low Latency Arch High Performance Arch
Backbone Head Latency (ms) maxF Latency (ms) maxF

✗ ✗ 45.17 0.941 45.17 0.941
✓ ✗ 41.20 0.941 63.56 0.946
✗ ✓ 36.20 0.940 44.30 0.942
✓ ✓ 33.06 0.944 61.24 0.947

(b) Quantitative analysis of the integral and partial search.

Figure 8. Comparison between the integral and partial search.

rate of 1e-4 and the poly learning rate schedule [40]. We
sample the largest, the smallest, and two middle models for
each iteration and fuse their gradients to update the super-
net. Following [25], we add deep supervision on the predic-
tion of each decoder level. The supernet training costs 17
hours on four Tesla V100.

Details of search and deployment. We set the initial pop-
ulation size N to 1000, and the latency group G to 10.
The evolution iteration iter is set to 20. Each selection
step retains k = 100 offspring. The crossover and muta-
tion probability (pc and pm) are set to 0.2. For evaluating
the performance of each child model, we copy their weight
from supernet and finetune their BN parameters for 200 it-
erations [71]. We use the Pytorch-Mobile [52] library to
build the LUT on the mobile phone. On other devices, we
directly benchmark their speeds with Pytorch toolkit. The
search phase costs 0.8 GPU-Days on one Tesla V100 GPU.

Dataset. The supernet is trained with the DUTS-TR
dataset [56]. We conduct evaluations on five popular SOD
datasets, i.e., ECSSD [68], DUT-O [69], DUTS-TE [56],
HKU-IS [28], PASCAL-S [31], containing 1000, 5168,
5019, 4447, and 850 pairs of images and saliency maps.

Evaluation metrics. Following common settings [39, 47],
we use MAE [7], Max F-measure (Fβ) [6] and S-measure
(Sm) [5] as the evaluation metrics to evaluate our results.
Since we aim to design low-latency SOD models, the infer-
ence latency is also used as the evaluation metric.

6.43 ms 14.52 ms

94.2

94.3

94.4

94.5

94.6

94.7

94.8

M
ax

F

30 40 50 60 70
Latency (ms)

LGS

US
Real Latency Bound

Latency Bound of US

Figure 9. Comparison of the evolution search with uniform sam-
pling (US) and proposed LGS.

Search Dev.
Latency (ms)

GPU CPU Mobile Embedded
GPU 1.94 48.90 397.17 71.70
Device-Aware 1.94 42.99 339.61 63.39
Latency Reduction 0% 12.1% 14.5% 10.9%

Table 3. Comparison of searching on GPU and specialized device.

4.2. Performance Evaluation.

Comparison to the state-of-the-art. Tab. 2 shows the com-
parison between our searched models and previous hand-
craft SOD methods. The iNAS(GPU)-L, a large model
searched on GPU, requires similar FLOPs to the CSNet,
but reduces 47% inference latency and improves 3.1% Fβ

on ECSSD, which suggests that FLOPs is not highly related
to the inference latency. We also show the latency compar-
ison of our searched models on different devices in Fig. 1
and Fig. 7. Our method achieves similar performance to
SOTA but reduces 1.9×, 3.3×, 2.6×, 3.8× latency on GPU,
CPU, embedded device, and mobile phone, respectively.
Compared to the previous fastest methods, the fastest mod-
els searched by iNAS speed up 2.1×, 3.7×, 2.5×, and 4.8×
on these devices. Current SOD models are mostly designed
for GPU while ignoring other devices. Some ResNet-based
and VGG-based methods can not even be applied to the em-
bedded device due to the out-of-memory error. In compar-
ison, our device-aware searched models achieve consistent
latency reduction on all devices.

Device-aware search. To verify the effectiveness of device-
aware search, we compare the models searched on GPU and
specialized devices in Tab. 3. We benchmark the latency
of the iNAS(GPU)-L on target devices. With aligned per-
formance, models searched on specialized devices achieve
12.1%, 14.5%, 10.9% latency reductions on CPU, mobile
phone, and embedded device, respectively. This observa-
tion verifies that device-aware search can find suitable mod-

4940



40 50 60 70
Latency (ms)

94.0

94.1

94.2

94.3

94.4

94.5

94.6

94.7

M
ax

F

SMSU
IB

Figure 10. Comparison of the search space constructed by the in-
verted bottleneck (IB) [50] and our proposed searchable multi-
scale unit (SMSU).

els for target devices to reduce latency.

Integral search space. iNAS supports an integral search
space for SOD. Fig. 8 verifies the importance of the integral
search space. For the baseline network, we use the Mo-
bileNetV2 structure [50] as the fixed backbone and com-
bine the Amulet transport [75] and DSS decoder [25] to
form the fixed saliency head. As shown in Fig. 8 (b), the
fixed baseline network csots 45.17 ms inference latency on
the CPU and gets 94.1% on ECSSD. Only enabling the
searchable backbone or searchable saliency head reduces
the lower-bound of latency to 41.20 ms (-8.7%) or 36.20
ms (-19.8%) with similar performance. While using the in-
tegral search space greatly reduces the lower-bound latency
to 33.06 ms (-26.8%) but improves the performance of the
fastest architecture to 94.4%. Similarly, the upper-bound of
performance is promoted to 94.7%. Fig. 8 (a) shows the in-
tegral search space has a consistently better Pareto frontier
over partial searchable space and significantly improves the
handcraft structure on both the latency and performance.

Latency-group sampling. Fig. 9 compares the evolution
search based on uniform sampling and proposed latency-
group sampling (LGS). The lower-bound and upper-bound
latency of the search space is 32.12 ms and 74.14 ms, re-
spectively. As shown in Fig. 9, the lower-bound and upper-
bound latency obtained by uniform sampling are 38.55 ms
and 59.62 ms, which only account for 50.2% of whole la-
tency range. While LGS ensures each latency group to have
balanced samples and offsprings, thus can explore 99% of
the search space. As a result, our proposed LGS obtains a
broader Pareto frontier over uniform sampling.

Searchable multi-scale unit. Fig. 10 verifies the effective-
ness of the proposed searchable multi-scale unit (SMSU).
We compare the search space constructed by SMSU with
the inverted bottleneck (IB). Enhancing the IB with multi-
scale ability, search space constructed by SMSU shows a

head latency grows→

backbone
latency

grow
s→ pe

rf
or

m
an

ce
gr

ow
s
→

Figure 11. Visualization of the correspondence between the back-
bone/head latency and the performance.

better latency-performance Pareto frontier. We observe that
the improvement of higher latency models is larger, because
a relaxed latency constrain enables large kernel, which sup-
ports more powerful multi-scale kernel combinations.

4.3. Observation

To explore the relation of performance with the back-
bone and head latency, we divide the backbone and the head
latency into 10 groups and sample 20 models in each grid,
resulting in 2000 samples. Observing Fig. 11, we find (1) a
more complicated backbone consistently improves the per-
formance; (2) while the complicated saliency head is not
always the best choice. These observations show why inte-
gral search space can reduce model latency, i.e., iNAS can
choose appropriate saliency heads for backbones of specific
latency. Because choosing appropriate saliency heads for
better latency-performance balance has no apparent pattern,
searching may be an efficient solution for designing low-
latency SOD models.

5. Conclusion
In this work, we propose an integral search (iNAS) space

for SOD, which generalizes the designs of handcraft SOD
models. The integral search can automatically find cor-
respondence between backbone and head and get the best
performance-latency balance. Then we propose a latency-
group sampling to explore our entire integral search space.
The experiment demonstrates that iNAS has similar perfor-
mance to the handcraft SOTA SOD methods but largely re-
duces their latency in various devices. Our work paves the
way for SOD applications on low-power devices.

Acknowledgement. This research was supported by
NSFC (61922046), S&T innovation project from Chinese
Ministry of Education, BNRist (No. BNR2020KF01001)
and the Fundamental Research Funds for the Central Uni-
versities (Nankai University, No. 63213090).

4941



References
[1] Ali Borji, Ming-Ming Cheng, Qibin Hou, Huaizu Jiang, and

Jia Li. Salient object detection: A survey. Computational
Visual Media, 5(2):117–150, 2019. 1, 2, 3

[2] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and
Song Han. Once-for-all: Train one network and specialize
it for efficient deployment. In Int. Conf. Learn. Represent.,
2020. 2, 3, 6

[3] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos,
Kevin Murphy, and Alan L Yuille. Deeplab: Semantic image
segmentation with deep convolutional nets, atrous convolu-
tion, and fully connected crfs. IEEE Trans. Pattern Anal.
Mach. Intell., 40(4):834–848, 2017. 3

[4] Shuhan Chen, Xiuli Tan, Ben Wang, and Xuelong Hu. Re-
verse attention for salient object detection. In Eur. Conf.
Comput. Vis., pages 234–250, 2018. 2, 5

[5] Ming-Ming Cheng and Deng-Ping Fan. Structure-measure:
A new way to evaluate foreground maps. Int. J. Comput. Vis.,
129(9):2622–2638, 2021. 7

[6] Ming-Ming Cheng, Niloy J Mitra, Xiaolei Huang, Philip HS
Torr, and Shi-Min Hu. Global contrast based salient re-
gion detection. IEEE Trans. Pattern Anal. Mach. Intell.,
37(3):569–582, 2015. 2, 7

[7] Ming-Ming Cheng, Jonathan Warrell, Wen-Yan Lin, Shuai
Zheng, Vibhav Vineet, and Nigel Crook. Efficient salient
region detection with soft image abstraction. In Int. Conf.
Comput. Vis., pages 1529–1536, 2013. 7

[8] Ming-Ming Cheng, Fang-Lue Zhang, Niloy J Mitra, Xiaolei
Huang, and Shi-Min Hu. Repfinder: finding approximately
repeated scene elements for image editing. ACM Trans.
Graph., 29(4):1–8, 2010. 1

[9] Xiangxiang Chu, Bo Zhang, and Ruijun Xu. Fairnas: Re-
thinking evaluation fairness of weight sharing neural archi-
tecture search. In Int. Conf. Learn. Represent., 2021. 3

[10] Zijun Deng, Xiaowei Hu, Lei Zhu, Xuemiao Xu, Jing Qin,
Guoqiang Han, and Pheng-Ann Heng. R3net: Recurrent
residual refinement network for saliency detection. In IJCAI,
pages 684–690, 2018. 1, 6

[11] Xiaohan Ding, Yuchen Guo, Guiguang Ding, and Jungong
Han. Acnet: Strengthening the kernel skeletons for powerful
cnn via asymmetric convolution blocks. In Int. Conf. Com-
put. Vis., pages 1911–1920, 2019. 4

[12] Mengyang Feng, Huchuan Lu, and Errui Ding. Attentive
feedback network for boundary-aware salient object detec-
tion. In IEEE Conf. Comput. Vis. Pattern Recog., pages
1623–1632, 2019. 2, 5

[13] Shang-Hua Gao, Ming-Ming Cheng, Kai Zhao, Xin-Yu
Zhang, Ming-Hsuan Yang, and Philip Torr. Res2net: A
new multi-scale backbone architecture. IEEE Trans. Pattern
Anal. Mach. Intell., pages 1–1, 2020. 1

[14] Shang-Hua Gao, Qi Han, Duo Li, Pai Peng, Ming-Ming
Cheng, and Pai Peng. Representative batch normalization
with feature calibration. In IEEE Conf. Comput. Vis. Pattern
Recog., 2021. 2

[15] Shang-Hua Gao, Qi Han, Zhong-Yu Li, Pai Peng, Liang
Wang, and Ming-Ming Cheng. Global2local: Efficient struc-

ture search for video action segmentation. In IEEE Conf.
Comput. Vis. Pattern Recog., 2021. 3

[16] Shang-Hua Gao, Yong-Qiang Tan, Ming-Ming Cheng,
Chengze Lu, Yunpeng Chen, and Shuicheng Yan. Highly
efficient salient object detection with 100k parameters. In
Eur. Conf. Comput. Vis., 2020. 1, 2, 4, 6

[17] Yanliang Ge, Cong Zhang, Kang Wang, Ziqi Liu, and
Hongbo Bi. Wgi-net: A weighted group integration network
for rgb-d salient object detection. Computational Visual Me-
dia, 7(1):115–125, 2021. 2

[18] Golnaz Ghiasi, Tsung-Yi Lin, and Quoc V Le. Nas-fpn:
Learning scalable feature pyramid architecture for object de-
tection. In IEEE Conf. Comput. Vis. Pattern Recog., pages
7036–7045, 2019. 3

[19] Yu-Chao Gu, Li-Juan Wang, Yun Liu, Yi Yang, Yu-Huan
Wu, Shao-Ping Lu, and Ming-Ming Cheng. Dots: Decou-
pling operation and topology in differentiable architecture
search. In IEEE Conf. Comput. Vis. Pattern Recog., pages
12311–12320, 2021. 3

[20] Yu-Chao Gu, Li-Juan Wang, Zi-Qin Wang, Yun Liu, Ming-
Ming Cheng, and Shao-Ping Lu. Pyramid constrained self-
attention network for fast video salient object detection. In
AAAI, pages 10869–10876, 2020. 1, 2

[21] Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng,
Zechun Liu, Yichen Wei, and Jian Sun. Single path one-
shot neural architecture search with uniform sampling. In
Eur. Conf. Comput. Vis., pages 544–560, 2020. 2, 3

[22] Junfeng He, Jinyuan Feng, Xianglong Liu, Cheng Tao, and
S F Chang. Mobile product search with bag of hash bits
and boundary reranking. In IEEE Conf. Comput. Vis. Pattern
Recog., 2012. 1

[23] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In IEEE Conf.
Comput. Vis. Pattern Recog., pages 770–778, 2016. 1, 2, 3

[24] Seunghoon Hong, Tackgeun You, Suha Kwak, and Bohyung
Han. Online tracking by learning discriminative saliency
map with convolutional neural network. In ICML, pages
597–606, 2015. 1

[25] Qibin Hou, Ming-Ming Cheng, Xiaowei Hu, Ali Borji,
Zhuowen Tu, and Philip Torr. Deeply supervised salient ob-
ject detection with short connections. IEEE Trans. Pattern
Anal. Mach. Intell., 41(4):815–828, 2019. 1, 2, 3, 5, 6, 7, 8

[26] Shi-Min Hu, Dun Liang, Guo-Ye Yang, Guo-Wei Yang, and
Wen-Yang Zhou. Jittor: a novel deep learning framework
with meta-operators and unified graph execution. Science
China Information Sciences, 63(222103):1–21, 2020. 6

[27] Agus Kurniawan. Introduction to nvidia jetson nano, 2021.
1

[28] Guanbin Li and Yizhou Yu. Visual saliency based on mul-
tiscale deep features. In IEEE Conf. Comput. Vis. Pattern
Recog., pages 5455–5463, 2015. 2, 7

[29] Guanbin Li and Yizhou Yu. Deep contrast learning for salient
object detection. In IEEE Conf. Comput. Vis. Pattern Recog.,
pages 478–487, 2016. 2

[30] Xin Li, Fan Yang, Hong Cheng, Wei Liu, and Dinggang
Shen. Contour knowledge transfer for salient object detec-
tion. In Eur. Conf. Comput. Vis., pages 355–370, 2018. 2

4942



[31] Yin Li, Xiaodi Hou, Christof Koch, James M Rehg, and
Alan L Yuille. The secrets of salient object segmentation.
In IEEE Conf. Comput. Vis. Pattern Recog., pages 280–287,
2014. 7

[32] Yingwei Li, Xiaojie Jin, Jieru Mei, Xiaochen Lian, Linjie
Yang, Cihang Xie, Qihang Yu, Yuyin Zhou, Song Bai, and
Alan L Yuille. Neural architecture search for lightweight
non-local networks. In IEEE Conf. Comput. Vis. Pattern
Recog., pages 10297–10306, 2020. 3

[33] Yanwei Li, Lin Song, Yukang Chen, Zeming Li, Xiangyu
Zhang, Xingang Wang, and Jian Sun. Learning dynamic
routing for semantic segmentation. In IEEE Conf. Comput.
Vis. Pattern Recog., pages 8553–8562, 2020. 1

[34] Chenxi Liu, Liang-Chieh Chen, Florian Schroff, Hartwig
Adam, Wei Hua, Alan L Yuille, and Li Fei-Fei. Auto-
deeplab: Hierarchical neural architecture search for seman-
tic image segmentation. In IEEE Conf. Comput. Vis. Pattern
Recog., pages 82–92, 2019. 1, 3

[35] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS:
Differentiable architecture search. In Int. Conf. Learn. Rep-
resent., 2019. 1, 3

[36] Jiang-Jiang Liu, Qibin Hou, Ming-Ming Cheng, Jiashi Feng,
and Jianmin Jiang. A simple pooling-based design for real-
time salient object detection. In IEEE Conf. Comput. Vis.
Pattern Recog., pages 3917–3926, 2019. 1, 2, 3, 5, 6

[37] Jiang-Jiang Liu, Zhi-Ang Liu, and Ming-Ming Cheng. Cen-
tralized information interaction for salient object detection.
arXiv preprint arXiv:2012.11294, 2020. 5

[38] Nian Liu and Junwei Han. DHSNet: Deep hierarchical
saliency network for salient object detection. In IEEE Conf.
Comput. Vis. Pattern Recog., pages 678–686, 2016. 2, 5

[39] Nian Liu, Junwei Han, and Ming-Hsuan Yang. PiCANet:
Learning pixel-wise contextual attention for saliency detec-
tion. In IEEE Conf. Comput. Vis. Pattern Recog., pages
3089–3098, 2018. 2, 3, 6, 7

[40] Yun Liu, Yu-Chao Gu, Xin-Yu Zhang, Weiwei Wang, and
Ming-Ming Cheng. Lightweight salient object detection via
hierarchical visual perception learning. IEEE TCYB, 2020. 7

[41] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully
convolutional networks for semantic segmentation. In IEEE
Conf. Comput. Vis. Pattern Recog., pages 3431–3440, 2015.
2, 3, 4, 5

[42] Zhiming Luo, Akshaya Kumar Mishra, Andrew Achkar,
Justin A Eichel, Shaozi Li, and Pierre-Marc Jodoin. Non-
local deep features for salient object detection. In IEEE Conf.
Comput. Vis. Pattern Recog., pages 6609–6617, 2017. 1, 6

[43] NVIDIA, Péter Vingelmann, and Frank H.P. Fitzek. Cuda,
release: 10.2.89, 2020. 1

[44] Youwei Pang, Xiaoqi Zhao, Lihe Zhang, and Huchuan Lu.
Multi-scale interactive network for salient object detection.
In IEEE Conf. Comput. Vis. Pattern Recog., pages 9413–
9422, 2020. 1, 2, 3, 4, 5, 6

[45] Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff
Dean. Efficient neural architecture search via parameters
sharing. In ICML, pages 4095–4104, 2018. 3

[46] Xuebin Qin, Zichen Zhang, Chenyang Huang, Masood De-
hghan, Osmar R Zaiane, and Martin Jagersand. U2-net: Go-

ing deeper with nested u-structure for salient object detec-
tion. Pattern Recognition, 106:107404, 2020. 1, 4, 6

[47] Xuebin Qin, Zichen Zhang, Chenyang Huang, Chao
Gao, Masood Dehghan, and Martin Jagersand. BASNet:
Boundary-aware salient object detection. In IEEE Conf.
Comput. Vis. Pattern Recog., pages 7479–7489, 2019. 1, 6,
7

[48] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V
Le. Regularized evolution for image classifier architecture
search. In AAAI, volume 33, pages 4780–4789, 2019. 3

[49] Tonmoy Saikia, Yassine Marrakchi, Arber Zela, Frank Hut-
ter, and Thomas Brox. Autodispnet: Improving disparity
estimation with automl. In Int. Conf. Comput. Vis., October
2019. 3

[50] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. In IEEE Conf. Comput. Vis.
Pattern Recog., June 2018. 3, 4, 8

[51] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. In Int.
Conf. Learn. Represent., 2015. 1, 2, 3

[52] Benoit Steiner, Zachary DeVito, Soumith Chintala, Sam
Gross, Adam Paszke, Francisco Massa, Adam Lerer, Gre-
gory Chanan, Zeming Lin, Edward Yang, et al. Pytorch:
An imperative style, high-performance deep learning library.
Adv. Neural Inform. Process. Syst., 32:8026–8037, 2019. 3,
6, 7

[53] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,
Mark Sandler, Andrew Howard, and Quoc V Le. Mnas-
net: Platform-aware neural architecture search for mobile. In
IEEE Conf. Comput. Vis. Pattern Recog., pages 2820–2828,
2019. 1, 3

[54] Alvin Wan, Xiaoliang Dai, Peizhao Zhang, Zijian He, Yuan-
dong Tian, Saining Xie, Bichen Wu, Matthew Yu, Tao Xu,
Kan Chen, et al. Fbnetv2: Differentiable neural architecture
search for spatial and channel dimensions. In IEEE Conf.
Comput. Vis. Pattern Recog., pages 12965–12974, 2020. 3

[55] Jingdong Wang, Huaizu Jiang, Zejian Yuan, Ming-Ming
Cheng, Xiaowei Hu, and Nanning Zheng. Salient object
detection: A discriminative regional feature integration ap-
proach. Int. J. Comput. Vis., 123(2):251–268, 2017. 2

[56] Lijun Wang, Huchuan Lu, Yifan Wang, Mengyang Feng,
Dong Wang, Baocai Yin, and Xiang Ruan. Learning to de-
tect salient objects with image-level supervision. In IEEE
Conf. Comput. Vis. Pattern Recog., pages 136–145, 2017. 7

[57] Linzhao Wang, Lijun Wang, Huchuan Lu, Pingping Zhang,
and Xiang Ruan. Saliency detection with recurrent fully con-
volutional networks. In Eur. Conf. Comput. Vis., pages 825–
841, 2016. 2

[58] Tiantian Wang, Lihe Zhang, Shuo Wang, Huchuan Lu, Gang
Yang, Xiang Ruan, and Ali Borji. Detect globally, refine
locally: A novel approach to saliency detection. In IEEE
Conf. Comput. Vis. Pattern Recog., pages 3127–3135, 2018.
2, 5

[59] Wenguan Wang, Qiuxia Lai, Huazhu Fu, Jianbing Shen,
Haibin Ling, and Ruigang Yang. Salient object detection
in the deep learning era: An in-depth survey. IEEE Trans.
Pattern Anal. Mach. Intell., 2021. 1, 2, 3

4943



[60] Wenguan Wang, Jianbing Shen, Ming-Ming Cheng, and
Ling Shao. An iterative and cooperative top-down and
bottom-up inference network for salient object detection. In
IEEE Conf. Comput. Vis. Pattern Recog., pages 5968–5977,
2019. 2

[61] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang,
Fei Sun, Yiming Wu, Yuandong Tian, Peter Vajda, Yangqing
Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient
convnet design via differentiable neural architecture search.
In IEEE Conf. Comput. Vis. Pattern Recog., pages 10734–
10742, 2019. 3, 4

[62] Runmin Wu, Mengyang Feng, Wenlong Guan, Dong Wang,
Huchuan Lu, and Errui Ding. A mutual learning method for
salient object detection with intertwined multi-supervision.
In IEEE Conf. Comput. Vis. Pattern Recog., pages 8150–
8159, 2019. 2

[63] Yu-Huan Wu, Yun Liu, Jun Xu, Jia-Wang Bian, Yuchao Gu,
and Ming-Ming Cheng. Mobilesal: Extremely efficient rgb-
d salient object detection. arXiv preprint arXiv:2012.13095,
2020. 2

[64] Zhe Wu, Li Su, and Qingming Huang. Cascaded partial de-
coder for fast and accurate salient object detection. In IEEE
Conf. Comput. Vis. Pattern Recog., pages 3907–3916, 2019.
1, 2, 5, 6

[65] Lingxi Xie and Alan Yuille. Genetic cnn. In IEEE Conf.
Comput. Vis. Pattern Recog., pages 1379–1388, 2017. 3

[66] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and
Kaiming He. Aggregated residual transformations for deep
neural networks. In IEEE Conf. Comput. Vis. Pattern Recog.,
pages 1492–1500, 2017. 4

[67] Yingyue Xu, Dan Xu, Xiaopeng Hong, Wanli Ouyang, Ron-
grong Ji, Min Xu, and Guoying Zhao. Structured modeling
of joint deep feature and prediction refinement for salient ob-
ject detection. In Int. Conf. Comput. Vis., pages 3789–3798,
2019. 2, 5

[68] Qiong Yan, Li Xu, Jianping Shi, and Jiaya Jia. Hierarchi-
cal saliency detection. In IEEE Conf. Comput. Vis. Pattern
Recog., pages 1155–1162, 2013. 7

[69] Chuan Yang, Lihe Zhang, Huchuan Lu, Xiang Ruan, and
Ming-Hsuan Yang. Saliency detection via graph-based man-
ifold ranking. In IEEE Conf. Comput. Vis. Pattern Recog.,
pages 3166–3173, 2013. 7

[70] Lewei Yao, Hang Xu, Wei Zhang, Xiaodan Liang, and Zhen-
guo Li. Sm-nas: structural-to-modular neural architecture
search for object detection. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 34, pages 12661–
12668, 2020. 3

[71] Jiahui Yu and Thomas S Huang. Universally slimmable net-
works and improved training techniques. In Int. Conf. Com-
put. Vis., pages 1803–1811, 2019. 7

[72] Jiahui Yu, Pengchong Jin, Hanxiao Liu, Gabriel Bender,
Pieter-Jan Kindermans, Mingxing Tan, Thomas Huang, Xi-
aodan Song, Ruoming Pang, and Quoc Le. Bignas: Scaling
up neural architecture search with big single-stage models.
In Eur. Conf. Comput. Vis., pages 702–717, 2020. 2, 3, 6

[73] Qihang Yu, Dong Yang, Holger Roth, Yutong Bai, Yixiao
Zhang, Alan L Yuille, and Daguang Xu. C2fnas: Coarse-

to-fine neural architecture search for 3d medical image seg-
mentation. In IEEE Conf. Comput. Vis. Pattern Recog., pages
4126–4135, 2020. 3

[74] Lu Zhang, Ju Dai, Huchuan Lu, You He, and Gang Wang. A
bi-directional message passing model for salient object de-
tection. In IEEE Conf. Comput. Vis. Pattern Recog., pages
1741–1750, 2018. 2

[75] Pingping Zhang, Dong Wang, Huchuan Lu, Hongyu Wang,
and Xiang Ruan. Amulet: Aggregating multi-level convo-
lutional features for salient object detection. In Int. Conf.
Comput. Vis., pages 202–211, 2017. 2, 3, 4, 8

[76] Wenqiang Zhang, Jiemin Fang, Xinggang Wang, and Wenyu
Liu. Efficientpose: Efficient human pose estimation with
neural architecture search. Computational Visual Media,
pages 1–13, 2021. 3

[77] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun.
Shufflenet: An extremely efficient convolutional neural net-
work for mobile devices. In IEEE Conf. Comput. Vis. Pattern
Recog., pages 6848–6856, 2018. 4

[78] Jia-Xing Zhao, Jiangjiang Liu, Den-Ping Fan, Yang Cao,
Jufeng Yang, and Ming-Ming Cheng. EGNet: Edge guid-
ance network for salient object detection. In Int. Conf. Com-
put. Vis., pages 8779–8788, 2019. 1, 2, 6

[79] Rui Zhao, Wanli Ouyang, Hongsheng Li, and Xiaogang
Wang. Saliency detection by multi-context deep learning. In
IEEE Conf. Comput. Vis. Pattern Recog., pages 1265–1274,
2015. 2

[80] Xiaoqi Zhao, Youwei Pang, Lihe Zhang, Huchuan Lu, and
Lei Zhang. Suppress and balance: A simple gated network
for salient object detection. In Eur. Conf. Comput. Vis., pages
35–51, 2020. 2, 5

[81] Huajun Zhou, Xiaohua Xie, Jian-Huang Lai, Zixuan Chen,
and Lingxiao Yang. Interactive two-stream decoder for ac-
curate and fast saliency detection. In IEEE Conf. Comput.
Vis. Pattern Recog., June 2020. 1, 2, 4, 6

[82] Tao Zhou, Deng-Ping Fan, Ming-Ming Cheng, Jianbing
Shen, and Ling Shao. Rgb-d salient object detection: A sur-
vey. Computational Visual Media, 7(1):37–69, 2021. 2

[83] Wangjiang Zhu, Shuang Liang, Yichen Wei, and Jian Sun.
Saliency optimization from robust background detection. In
IEEE Conf. Comput. Vis. Pattern Recog., pages 2814–2821,
2014. 2

[84] Barret Zoph and Quoc V Le. Neural architecture search
with reinforcement learning. In Int. Conf. Learn. Represent.,
2017. 3

[85] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V
Le. Learning transferable architectures for scalable image
recognition. In IEEE Conf. Comput. Vis. Pattern Recog.,
pages 8697–8710, 2018. 3

4944


	. Introduction
	. Related Work
	. Salient Object Detection.
	. Neural Architecture Search.

	. Methodology
	. Integral SOD Design Space.
	Searchable Multi-Scale Unit.
	Searchable Saliency Head.

	. Latency-group Sampling.

	. Experiments
	. Implementation Details.
	. Performance Evaluation.
	. Observation

	. Conclusion

