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Abstract

We propose a new approach to detect atypicality in per-
suasive imagery. Unlike atypicality which has been stud-
ied in prior work, persuasive atypicality has a particular
purpose to convey meaning, and relies on understanding
the common-sense spatial relations of objects. We propose
a self-supervised attention-based technique which captures
contextual compatibility, and models spatial relations in a
precise manner. We further experiment with capturing com-
mon sense through the semantics of co-occurring object
classes. We verify our approach on a dataset of atypicality
in visual advertisements, as well as a second dataset cap-
turing atypicality that has no persuasive intent.

1. Introduction
Visually creative images, such as advertisements or pub-

lic service announcements, may purposefully contain atyp-
ical portrayals of objects as a rhetorical way for attracting
viewers’ attention [15]. In the marketing and communica-
tions research community, atypicality has gained attention
because of its importance to understanding the persuasive-
ness and rhetoric of visual media [28, 23, 48]. However,
detecting this type of atypicality is challenging for intelli-
gent systems. First, atypicality may involve metaphorical
object transformations or intentionally surprising composed
objects. Second, the atypicality transformation types are
diverse and creative. Third, unpacking them may require
common-sense reasoning. For example, Fig. 1a is an atyp-
ical advertisement for a beverage. It is unusual for a pig to
wear a bridal veil even though the pig and veil are both nor-
mal objects. The ability to detect this type of purposefully
atypical objects and understand their roles in conveying the
intent of the image is necessary for an intelligent system to
reason about information in persuasive media. In this work,
we propose to model implicit knowledge of contextual com-
patibility in order to detect persuasive atypicality.

Our first hypothesis is that persuasive atypicality can be
detected by checking the compatibility between each pos-
sibly atypical object and the rest of the image as context.

Figure 1. These images illustrate the importance of object interac-
tions and their spatial relative position for atypicality detection. (a)
Pig wearing a bridal veil is atypical; (b) If a handled brush instead
of a veil is on top of the pig’s head, then the image is typical; (c)
If the veil’s location is different, the image may also be typical.

For example, in Fig. 1a, the pig is not compatible with its
context (a bridal veil on its head), and the veil is also not
compatible with its context — on a pig’s head. We propose
an unsupervised approach by using reconstruction losses of
masked regions. We expect that a self-supervised model
trained on masked region reconstruction could learn enough
implicit knowledge of contextual compatibility; this pre-
trained model may then be used to detect atypical images.

Our second hypothesis is that the interactions between
objects and their spatial relative positions play a key role
in detecting atypicality. If it were a handled brush instead
of a bridal veil over the pig’s head (Fig. 1b), or if the veil
were placed at another location instead of on top of the pig’s
head (Fig. 1c), the image would no longer be atypical. In
order to better interpret object-object spatial interaction, we
propose a new method to compute the attention weights be-
tween key-query regions of our transformer-based models.

Finally, our third hypothesis is that, for some types of
persuasive atypicality, the semantic relation between nearby
object classes may offer compatibility clues beyond visual
features. In Fig. 1a, knowing that there is a “pig” and a
“bridal veil” and their spatial relationship may be helpful
to conclude that the image is atypical, instead of knowing
exactly what that pig or veil look like. To take advantage of
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semantic knowledge learned in language models, we fine-
tune BERT on detected class labels of regions of interest.

Experiments on a recent visual advertising dataset [48]
demonstrate the effectiveness of our approaches and sup-
port our hypotheses. Our approach outperforms prior ap-
proaches for abnormality detection (e.g. a One-Class SVM)
by more than 9%. We have also gleaned insights on how
different types of persuasive atypicality impact the detec-
tion performance. We validate that atypicality transforma-
tions involving spatial interactions between objects are bet-
ter solved by our approaches than baselines. Then we eval-
uate the generalization of our approaches using an existing
dataset of real-scene, non-persuasive atypical images [46].

To understand the labelling requirement of both tasks,
we compare our unsupervised approaches of contextual
compatibility with supervised models which are trained on
the ground-truth labels. We observe very different perfor-
mances on the two datasets, which reveals that the labelling
requirement depends on the training size ratio between su-
pervised and unsupervised methods and the complexity of
the atypicality transformations. Lastly, we investigate two
possibilities for representing the image context: visual com-
patibility versus semantic compatibility. Experimental re-
sults show that visual features are essential, but the seman-
tic compatibility can help when atypicality transformations
feature unusual combination of normal objects.

2. Related Work
To set our work, which focuses on images with persua-

sive intent, in the context of the broader atypicality de-
tection literature, we present an overview of prior efforts.
Moreover, because our approach for capturing spatial rela-
tionships is based on self-attention, we also review related
work on transformers and self-attention in computer vision,
as well as self-supervised learning through masking.

Atypicality Detection. Prior work focuses on detecting
atypical objects in real-world images. Bergmann et al. de-
velop unsupervised methods for detecting diverse defects
such as scratches, dents, contaminations, and structural
changes [4]. Wang et al. detect atypical objects through
Gaussian Process models based on the distribution of ob-
ject detection scores in different regions of interest [46].
Choi et al. detect out-of-context objects and scenes by a
graphical model and show that physical support relation-
ships between objects are an important clue [8]. Saleh et al.
classify anormalities in images in three categories (object-
centric, context-centric and scene-centric) and build a gen-
erative model from visual attributes in regular images [38].
Most prior studies investigate atypicality that is (1) physi-
cally created in the real world, rather than generated with
computer graphics; and (2) predominantly accidental and
certainly not aiming to convey meaning or persuade an au-
dience to take a certain action. One exception is the work
of Ye et al. [48] on interpreting the visual rhetoric in ad-

Figure 2. Atypical object transformations in ads; [48]’s dataset.

vertisements. Because ad images are intentionally designed
by experts to create an association in viewers’ minds, many
atypical objects in their dataset cannot appear in the real
world (e.g. a kiwi inside an apple). Moreover, those objects
are diverse and not limited to a specific set of categories,
as they are in Wang et al.’s work [46], in which atypical
objects are all from PASCAL VOC [12].

Ye et al. devised a taxonomy of atypicality based on ob-
ject transformations1 but only supervisedly trained a basic
VGG16 model to detect atypicality as a whole, not per cat-
egory. The eight categories they defined are:
1) Texture Replacement 1 (TR1): Objects’ texture bor-
rowed from another object, e.g. kiwi inside apple, Fig. 2a.
2) Texture Replacement 2 (TR2): Texture created by com-
bining several small objects, e.g. owl from beans, 2b.
3) Object Inside Object (OIO), e.g. auto racing in car, 2c.
4) Object w/ Missing Part (OMP), woman w/o mouth, 2d.
5) Combination of Parts (CP): Object composed by parts
from different objects, e.g. deer head with hand horn, 2e.
6) Solid Deformed Object (SDO), e.g. human arm bent, 2f.
7) Liquid Deformed Object (LDO), e.g. beer as player, 2g.
8) Object Replacement (OR): The whole object appear-
ing in the context normally associated with another, e.g.
cigarettes placed in the context where bullets occur, 2h.

Our work closely examines the relationship between our
proposed models and each persuasive atypicality category.

Transformers in Computer Vision. Transformers were
first introduced by Vaswani et al. as a new network archi-
tecture based on attention mechanisms for machine trans-
lation [44]. Transformers can perform a variety of tasks
by computing scores solely based on self-attention layers,

1https://people.cs.pitt.edu/˜nhonarvar/data_
analysis/interface.html
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without the need for expensive and non-parallelizable re-
currence. Recently, transformers have been demonstrated
as an effective architecture in many problems in natural
language processing [9, 34], speech processing [25, 42],
computer vision [30, 6, 11] and vision-language tasks
[43, 24, 20, 40, 50, 32, 22, 7]. Since the transformer ar-
chitecture is permutation-invariant, a positional encoding is
necessary to provide the order information of the sequential
input. For work which represents the image by a set of re-
gions of interest, a common way is to embed the bounding-
box coordinates of each region and potentially the fraction
of image area covered [7, 43, 24]. For pixel-level represen-
tation, Carion et al. explore sinusoidal embeddings based
on the absolute position and a learnt positional encoding
of pixels [6]. However, experimentation in machine trans-
lation [39] and music generation [16] suggested that using
relative positional embeddings results in significantly bet-
ter accuracy. Adding the absolute positional encoding to
the inputs, as done in [11, 6, 43], is not always sufficient.
Explicitly modeling relative position information separately
from other inputs (e.g. features) extends the self-attention
mechanism to efficiently consider spatial relationship be-
tween each query-key pair [39, 35, 3, 51]. Ramachandran
et al. [35] and Bello et al. [3] define 2D relative position em-
beddings by the relative distance between the position of the
query and key pixel. Our approach follows the idea of Ra-
machandran et al. except that our relative position embed-
ding is at the region level. Our objective is to model spatial
relationships between objects, thus a pixel-level representa-
tion does not make sense. Besides, we can add overlapping
area information to the relative spatial feature between two
regions, which a pixel-level representation cannot. Kant et
al. also consider relative spatial relationship between object
regions, but they transform spatial relationship into twelve
categories and then apply the adjacency matrices as an addi-
tional attention mask on their base model architecture [17].
Therefore, they only consider the relative spatial direction
and ignore the concrete relative distance between pairwise
objects, which loses essential information compared to our
method. Another weakness is their spatial relationship cate-
gories do not have full coverage, e.g. the spatial relationship
between two non-overlapped objects far from each other is
ignored. We are not aware of any prior work that performs
atypicality detection with any type of transformer, nor with
the relative-spatial transformer we propose.

Self-supervised Learning. Self-supervised learning
through masked or next-token prediction is a commonly-
used method for language modeling in natural language
processing [9, 34]. In computer vision, methods exist to
learn visual representations through pretext tasks, e.g. via
colorization [49, 19, 45], jigsaw puzzles [29, 10], inpainting
[31], instance discrimination [47], or even pretext-invariant
objectives [26]. Prior work demonstrates the effectiveness

of these visual representations for transfer learning [13].
Representations can also be learned by predicting context
in a multi-modal setting [43, 24, 41, 5, 27]. Our work fol-
lows Tan et al.’s method by using masked object feature
regression for learning visual representations [43], but Tan
et al. operate in a cross-modal setting, while we operate in
a visual one. To our knowledge, we are the first to use self-
supervised learning based on context prediction for detect-
ing image atypicality.

3. Approach
We define atypicality detection as a binary classification

task: for a given image I , our model aims to predict whether
I is atypical or not. We first present our unsupervised atyp-
icality detection system, which leverages masked region re-
construction as the pretext task, and learns implicit knowl-
edge of contextual compatibility from large-scale unlabeled
data. The reconstruction losses of masked regions are the
clue for predicting atypicality of a test image. We then in-
troduce our Relative-Spatial Transformer which extends the
self-attention layer to explicitly model relative position in-
formation separately from visual features.

3.1. Masked Region Reconstruction
Fig. 3a shows an overview of our approach. An

image I is represented by a set of regions R =
{(v1, p1), (v2, p2), ...(vn, pn)}, where vi could be region i’s
visual feature vector, pixel matrix, class labels, etc., and pi
is the positional information. Our hypothesis is that if an
image is atypical, the objects appearing in it would not be
compatible with each other, thus it would be hard to recon-
struct a masked region from image context. We first pre-
train a model to reconstruct a region from context using
normal cases, then use it to detect atypicality in new test
images.

For the pre-training process, we take inspiration from
masked language modeling (e.g. BERT [9]) and cross-
modality representation learning (e.g. LXMERT [43]). The
model is trained to reconstruct the masked regions given
the remaining regions, on many general, normal images
(which could potentially contain a small proportion of atyp-
ical cases). Different from BERT or LXMERT, which aims
to learn a language or visual-language representation, our
model aims to learn the common co-occurrences and typi-
cal spatial relationship between objects.

At test time, we mask each region in the image and com-
pute the reconstruction loss. We compute the average loss
of all regions as a clue for predicting atypicality. We use
average rather than maximum loss because if an image is
atypical, the masked region reconstruction loss is high not
only when an atypical object is masked, but also when its
surrounding object is masked since it is also hard to recon-
struct a normal object from an atypical context.
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Figure 3. Model overview. (a) A set of regions extracted from the image are the input to the Relative-Spatial Transformer Encoder. The
model is trained for reconstructing the visual feature of the masked region 2. (b) The architecture of Relative-Spatial Transformer Encoder.
The key difference from the standard Transformer Encoder is the attention computation. (c) The mechanism for computing Relative-Spatial
Self-Attention. This scheme shows the case when region 1 is the query.

3.2. Relative-Spatial Transformer
Our model extends the transformer architecture [44]. A

common input representation to a transformer for computer
vision tasks is the summation of the visual embedding and
the positional embedding of the region [6, 43, 11]. How-
ever, this technique has two weaknesses. First, when com-
puting attention weights with these input vectors, the vi-
sual feature and positional information share the same pro-
jection weight without any distinction, therefore the model
cannot flexibly adjust the importance of region visual and
position. Second, the positional embedding represents the
absolute coordinate of the region, however, it is the rela-
tive spatial relationship between the masked and the context
region which matters for detecting atypicality (e.g. is the
veil above or below the pig?). In order to overcome both
weaknesses, we propose the Relative-Spatial Transformer
which (1) computes the visual-visual interaction and visual-
position interaction separately, and (2) is shift-invariant,
similar to convolutions but unlike a standard transformer.

The Relative-Spatial Transformer (RST) follows the
same architecture as the transformer (T) of [44] except for a
new way for computing the multi-head self-attention layer,
as shown in Fig. 3. The attention weight of the query region
i and key region j is computed as:

Arel
i,j = V T

i WT
q Wk,V Vj + V T

i WT
q Wk,PPj−i (1)

where Vi and Vj are visual features of regions i and j; Wq

is the projection weight of the query region visual feature;
Wk,V and Wk,P are respectively the key region’s projection
weights of visual features and relative positions; and Pj−i

is the relative position of region j with respect to region i.
The first term computes the interaction between the query

and key visual content; the second term computes the in-
teraction between the query visual content and the relative
position of the key region. The summation of both terms
shows the importance of the key region to the query region.
Then we compute the normalized attention weight αrel

i,j as
a softmax layer over Arel

i,j for all possible key regions. The
last hidden layer of region i is computed as:

hi =
∑
j

αrel
i,j WvVj (2)

where Wv projects the value region’s visual feature.
The reconstruction loss of the masked region i is com-

puted as the mean squared error (i.e. squared L2 norm) be-
tween the input visual feature vi and the last hidden layer
hi of the encoder:

Li = ||vi − hi||22 (3)

For computing the relative position of j with respect to
i, we compute the x-axis and y-axis distance of the top-left
and bottom-right corners of the two bounding boxes:

Pj−i = [xl
j − xl

i, y
t
j − yti , x

r
j − xr

i , y
b
j − ybi ] (4)

where (xl
i, y

t
i) is the coordinate of the left-top corner of re-

gion i, (xr
i , y

b
i ) is the coordinate of the right-bottom corner

of region i; similarly with region j. We also explore adding
Intersection-over-Union area between region i and j as an
additional relative positional feature.

4. Experiments
In the subsequent experiments, we first evaluate our con-

textual compatibility modeling approach on the intent- and
persuasion-driven atypicality in the Ads dataset [48]. Our
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experiments show that Relative-Spatial Attention leads to
an improvement across a diverse array of atypicality sub-
categories. Then we test the generalization of our approach
on real-world, non-persuasive atypical images, by detecting
atypicality within each object class, on a dataset we refer
to as the Single-Object dataset [46]. To understand the la-
belling requirement of each task, we compare our unsuper-
vised contextual compatibility approaches with supervised
models trained on the atypical/typical labels. When consid-
ering the different possibilities for representing the image
context, we compare visual versus semantic compatibility.

4.1. Setup
Input Representations. We use Faster R-CNN [36] pre-

trained on Visual Genome [18] for extracting the visual fea-
tures [2]. Faster R-CNN itself uses ResNet-101 [14] pre-
trained for classification on ImageNet [37]. We take the fea-
tures of each detected object as the visual representation of
the corresponding region. We select a fixed number of ob-
jects (36) by sorting detections by confidence score. Each
region is represented by its bounding-box coordinates and
its 2048-dimensional region-of-interest (RoI) features.

Self-supervised Training and Testing. Following
BERT [9], we mask 15% of regions in each sequence at
random during training. All masked regions are replaced
by a trainable vector with the same dimension as the RoI
feature. The spatial information of the masked region is
given. We use a batch size of 128 and train for 20 epochs
with learning rate of 1e-3. For testing, we mask one region
with the learned vector at a time, then compute the average
reconstruction loss of all regions. The higher the loss, the
more likely the image is atypical. We compute the ROC-
AUC score as the evaluation metric since it measures model
performance across all possible classification thresholds, by
reporting the probability the model ranks a random atypical
example higher than a random typical one.

Model Size. We denote the number of layers (i.e., trans-
former blocks) as L, the hidden size as H , and the number
of self-attention heads as A. We primarily report results on
the model with L=1, H=768, A=82.

Baseline Models. We consider two baselines, Auto-
encoder and One-Class SVM, since they are standard meth-
ods for detecting abnormality and outliers [1, 21]. For the
Auto-encoder, we implement the same encoder as DC-
GAN’s discriminator and DCGAN’s generator as the de-
coder [33], using the hyperparameters in [33]. The loss is
L2 error between input and generated images. However,
we make an interesting observation that atypicality relates
to image complexity in a potentially counter-intuitive way:
We found strong correlation between atypical images and

2There are no extra trainable parameters in RST compared to T. In
Fig. 3c, Wk,v is extra parameters of size of dp∗dv (dimensions of position
p & visual v vectors), but unlike RST, T requires trainable parameters of
size dp∗dv for projecting p to the same dimension as v for the summation.

relatively plain backgrounds, likely because ad designers of
atypical images want to make sure the image is plain enough
for the audience to notice the atypicality. Images with uni-
form background are more easily reconstructed while im-
ages with plenty of objects are harder. Further, images with
more pixels tend to contain more information to be com-
pressed and reconstructed. To ensure the auto-encoder cap-
tures atypicality rather than complexity, we need to normal-
ize for image complexity. We first prepossess all images by
resizing them to a fixed number of pixels (64*64). We also
measure image complexity (IC) as the average of horizon-
tal and vertical gradient of pixels (IC = avg(I2x+I2y ) where
Ix and Iy are respectively the horizontal and vertical gradi-
ent). Then we divide the auto-encoder reconstruction loss
by IC. In addition, to force the auto-encoder model to learn
an effective encoder and decoder, we limit the dimension of
the middle hidden layer to 2048 which is much smaller than
the input image dimension (3*64*64). For the One-Class
SVM model, we represent each image by the average of its
36 RoI feature vectors. Then we fit the One-Class SVM
model3 with default settings on the training images.
4.2. Unsupervised persuasive atypicality detection

Data. We evaluate our method on a dataset of advertise-
ment images where atypicality is creative and has a purpose
to convince an audience to take a certain action [48]. The
Ads dataset contains in total 64,832 ad images and the au-
thors annotated 3,928 of them for the atypicality task. Since
each image is annotated by one or multiple annotators, we
set a rule for deciding the atypical/typical label if annota-
tors do not agree with each other. In particular, we consider
an ad atypical if any annotator labels it as atypical. We use
the ifany rule because some atypical cases are subtle, sub-
jective or need background knowledge, thus any annotator
providing the atypical label is cause to believe the image is
not quite typical. Under this labeling rule, there are 2,285
atypical ads and 1,643 typical ads. For the self-supervised
training, we use all ads except for those 3,928 with atypical-
ity labels. For supervised training and for testing, we ran-
domly split the 3,928 atypical/typical images using a 7:1:2
ratio for train:val:test sets. Note we did not use any training
data from the atypicality dataset for our unsupervised meth-
ods, to make them fairly comparable to supervised methods.
All methods are evaluated on the exact same test set.

Results. The experimental results of our unsupervised
contextual compatibility approaches are shown in the up-
per part (unsup) of Tab. 1. To gain insights on the im-
pact of different types of persuasive atypicality on the de-
tection result, we also report the model performance on
the eight atypicality categories separately, as defined in the
Ads dataset (Sec. 2). Experimental results in Tab. 1 show
that our approaches significantly outperform baseline mod-
els overall (MICRO AVE) and for CP, OR, Others (with p-

3https://scikit-learn.org/stable/modules/generated/sklearn.svm.OneClassSVM
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Methods TR1 TR2 OIO OMP CP SDO LDO OR Others MICRO AVE
un

su
p

Auto-encoder 54.67 63.28 38.79 52.98 57.78 56.62 56.05 48.57 50.99 52.52
One-Class SVM 64.81 68.27 59.36 65.81 54.21 65.12 54.43 56.31 54.23 58.82

Transformer (ours) 62.66 60.72 63.07 42.52 69.18 63.71 61.63 64.05 63.68 62.86
RS Transformer (ours) 67.50 68.37 67.31 55.18 71.26 68.67 63.99 61.84 59.68 64.32

su
p RoI Feature only 66.40 65.80 60.13 56.82 63.77 67.41 62.67 62.98 59.41 62.85

Transformer 66.11 63.16 63.37 64.07 66.55 71.58 70.21 66.03 62.21 65.58
RS Transformer 65.56 64.00 62.20 53.43 70.80 71.11 75.37 67.07 65.59 66.75

Table 1. Experimental results on the Ads dataset. AUC scores for each atypicality category and the micro average are reported.

Figure 4. Detection results by the baseline and our models for se-
lected images from the Ads dataset.

value < 0.1).4 While Transformer (T) is an existing archi-
tecture, and Relative-Spatial Transformer (RST) is our new
design, neither has been used for atypicality detection be-
fore. T outperforms the simpler baselines significantly, but
RST achieves the best results overall. By looking into each
category, RST leads to an improvement across a diverse ar-
ray of atypicality types. In particular, the improvement of
RST over T is large for TR1, TR2 and OIO where atypi-
cality mainly comes from unusual spatial relationship be-
tween normal objects (these categories involve object com-
positions). These results demonstrate that our approach of
checking for contextual compatibility is effective for detect-
ing persuasive atypicality and our proposed RST architec-
ture does capture object-object spatial relationships well.
OMP is the only atypicality category for which the base-
line model (One-Class SVM) is better than ours. This is
because this type of atypicality only comes from a single
object without any complex interaction with surrounding
objects.

Error analysis. We qualitatively show several cases
where the One-Class SVM fails (Fig. 4a - d) or both the
baseline and our models fail (Fig. 4e - h). One-Class SVM
fails when atypicality involves composition of normal ob-
jects (e.g., cream on top of alcohol bottle), while our trans-
former models (especially RST) detect this atypicality by
learning context via self-supervised training and show large

4Details on the significance tests are in the supplementary file.

Methods MICRO AVE

un
su

p

Transformer - L1 62.86
Transformer - L4 64.14

RS Transformer - L1 64.32
RS Transformer - L4 64.39

RS Transformer - L1 - IoU 64.99
Table 2. Ablation study of layer number of encoder and relative
positional feature. The micro average AUC scores are reported.

gains. However, our model fails to capture metaphoric sim-
ilarity: Fig. 4e and 4f look typical at first, but shade versus
puma, surfboard versus brand make them atypical. It also
fails to interpret symbolic meanings: vodka is held like a
microphone by Hitler who is a symbol of power in Fig. 4g.
Thus, typicality judgment requires more fine-grained visual
features, and knowledge of historical figures.

Ablation. To see the impact of the number of trans-
former blocks (model depth), we conduct an ablation study
on the layer number (L). Considering the variation of
relation position features, we add an additional feature,
Intersection-over-Union area (IoU), to the previous relative
coordinates. Results are shown in Tab. 2. We find that the
deeper Transformer greatly improves over a shallow Trans-
former, while Relative-Spatial Transformers are less sen-
sitive to depth. In addition, we observe that a shallow RS
Transformer is competitive against a deep Transformer, sug-
gesting that the proposed RS Transformer is more efficient.
We also observe that adding the area overlap (IoU) feature
slightly improves performance.

4.3. Performance on non-persuasive atypicality
Data. We investigate how our approach generalizes to

non-persuasive atypicality, where the unusual object itself
is the main source of atypicality and there is no need to
consider the complex spatial relationship between objects
for predicting atypicality. For answering this question, we
use Wang et al.’s Single-Object dataset [46] for evalua-
tion. Their dataset contains 20,420 regular/unusual images
belonging to 20 classes. Different from the Ads dataset
with various atypicality transformations, each image in the
Single-Object dataset has only one main object which is
atypical or not.

Definition. Let C denote a given object category, with
C = Cr∪Cu and Cr∩Cu = ∅, where Cr and Cu respec-
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Methods aeroplane apple bicycle boat building bus car chair cow dining table

un
su

p AE 0.74 0.44 0.58 0.78 0.85 0.55 0.74 0.52 0.52 0.33
T (ours) 0.93 0.86 0.84 0.90 0.86 0.86 0.92 0.78 0.74 0.90

RST (ours) 0.90 0.78 0.76 0.88 0.83 0.78 0.87 0.70 0.65 0.82

su
p T (ours) 0.99 0.96 0.99 0.98 0.95 0.99 0.99 0.98 0.99 0.93

RST (ours) 1.00 0.99 0.96 0.99 1.00 0.99 1.00 0.95 0.97 0.99
Methods horse house motorbike road shoes sofa street table lamp train tree mAP

un
su

p AE 0.42 0.65 0.40 0.65 0.71 0.64 0.59 0.39 0.45 0.56 0.58
T (ours) 0.80 0.90 0.71 0.91 0.87 0.83 0.90 0.82 0.77 0.80 0.85

RST (ours) 0.75 0.90 0.60 0.85 0.76 0.75 0.90 0.62 0.67 0.74 0.78

su
p T (ours) 1.00 1.00 0.96 0.99 0.98 0.92 1.00 0.92 1.00 1.00 0.98

RST (ours) 0.95 1.00 0.93 0.97 1.00 0.89 1.00 0.92 0.96 1.00 0.97
Table 3. Experimental results on the Single-Object dataset. Average Precision for each class and the macro average (mAP) are reported.

tively means the set of regular images or unusual images in
category C. The task is to determine, for any test image
I ∈ C, whether I ∈ Cu. In other words, our task is to de-
tect atypical images from each single object class. This is
different from Wang et al.’s [46] problem setting: their task
aims to determine, for any test image I ∈ C ∪Or (with Or

denoting regular images not containing the object in cate-
gory C), if I ∈ Cu. We formulate the task in a different
way because our focus is to evaluate our methods on atypi-
cality detection within a single object class and we only use
Cr as our training data. In contrast, [46] also train object
detectors on Cr ∪ Or then use the object detection scores
for predicting atypicality in C. In conclusion, our method
performance is not directly comparable to theirs since nei-
ther our training nor test set includes Or.

We use the Auto-encoder model as a baseline. Given
that each image only contains one main object, we do not
normalize the auto-encoder loss with image complexity as
we did for the Ads Dataset. We follow the same split as
Wang et al., dividing Cr into training (Cr

train) and test set
(Cr

test). For each object category C, our models and the
baseline are trained on Cr

train and evaluated on Cu ∪Cr
test.

The upper part (unsup) of Tab. 3 shows the results. We
use the same evaluation metric, Average Precision, as Wang
et al. Different from what we observe with the Ads dataset,
Transformer is generally more effective than the RS Trans-
former here. The reason is that RST does not capture use-
ful information for predicting atypicality since the Single-
Object dataset has little object-object spatial relationship as
the atypicality source. Moreover, some learnt interactions
between objects by RST might be noisy because of over-
fitting with only hundreds of training samples (as shown in
Tab. 4). For this task, a standard attention mechanism with
regions’ absolute position as input can handle those single
atypical objects well, and Transformer achieves comparable
results to those shown in [46] (mAP of 0.90).5 In conclu-

5Even though they are not directly comparable, the inclusion of these
earlier results is still informative because we aimed to show our approach
produces results in the same ballpark.

Methods Ads aeroplane apple bicycle
Unsupervised 46,757 169 667 268

Supervised 2,741 189 429 312
Table 4. Training size for unsupervised and supervised models.

sion, our unsupervised approach by checking for contextual
compatibility works well not only on persuasively creative
images with complex atypicality transformation, but also on
single-object images. As expected, RST is not beneficial for
detecting non-persuasive atypicality of single object.
4.4. Are supervised labels essential for these tasks?

Models. To understand the labelling requirement for de-
tecting atypicality, we compare our unsupervised contextual
compatibility approaches with supervised models trained
on the atypical/not labels, for both Ads and Single-Object.
We use the same Transformer and RS Transformer architec-
tures for fair comparison. We also add a supervised baseline
model which is trained only on the RoI features (each im-
age is represented by the average of all regions-of-interest
features).6 For transformers, the output layer is an aver-
age pooling over the last hidden layer followed by a simple
2-layer neural network for predicting the atypicality label.
For the RoI baseline, the input image features feed directly
to the output layer which is the same 2-layer network.

Results. Tab. 1 and Tab. 3 show the comparison of unsu-
pervised and supervised approaches for the Ads and Single-
Object datasets, respectively. We find that for Ads, our
unsupervised approaches achieve comparable performance
to the supervised approaches, which highlights that even
with labeling the task is still difficult. This also demon-
strates the effectiveness of our proposed contextual com-
patibility method. When looking into each atypicality cat-
egory, we observe the unsupervised RS Transformer wins
on those atypicality transformations which involve more
object-object interaction, e.g. TR1, TR2, OIO, CP. This is
expected because RST efficiently learns contextual compat-

6The input features are the same as the One-Class SVM baseline. This
baseline is conceptually similar to the approach in Ye et al. [48] except that
they use VGG16 for extracting the image features.
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Methods TR1 TR2 OIO OMP CP SDO LDO OR Others MICRO AVE
un

su
p

Transformer with VF 62.66 60.72 63.07 42.52 69.18 63.71 61.63 64.05 63.68 62.86
RS Transformer with VF 67.50 68.37 67.31 55.18 71.26 68.67 63.99 61.84 59.68 64.32

Transformer with CL 51.39 58.28 61.90 41.53 62.76 54.80 60.49 56.09 62.38 57.63
RS Transformer with CL 54.89 62.30 60.49 47.03 61.47 58.25 53.00 58.28 61.76 58.46

sup Fine-tuned BERT with CL 62.94 69.59 59.02 56.25 70.74 69.87 62.00 65.96 62.30 64.71
Table 5. Comparison of Faster R-CNN RoI visual feature (VF) and predicted class label (CL). AUC for each atypicality category and micro
ave are reported, with best AUC per column bolded. AUC for Fine-tuned BERT with CL is bolded if it outperforms all unsup. methods.

ibility knowledge from the large-scale normal images with
the RS self-attention mechanism which is designed for pre-
cisely modeling spatial relationship between objects. In ad-
dition, the RS Transformer outperforms the original Trans-
former for the supervised setting as well. For the Single-
Object dataset shown in Tab. 3, we see the supervised ap-
proaches give a nearly-perfect performance, which reveals
that providing labels greatly reduces the difficulty of the
atypical detection task for single object.

When comparing the performance of unsupervised and
supervised approaches, we have different observations on
the Ads and Single-Object datasets: for Ads, our unsuper-
vised approaches achieve comparable performance to the
supervised ones; for Single-Object, the supervised methods
substantially outperform the unsupervised ones. One reason
may be that unsupervised models have 20 times more train-
ing data for the Ads task, while the training size is similar
between unsupervised and supervised methods for Single-
Object, as shown in Tab. 4. Another reason may be that for
the single-object task, it is easy for models to capture the
key features of a normal object from unusual training ex-
amples, e.g. what does an apple usually look like. However,
for more complex atypicality transformation as in Ads, a
few labels do not help compared to learning various forms
of compatibility through many unlabeled samples.

4.5. Visual versus semantic compatibility
We next consider different possibilities for representing

the image context, namely checking visual versus seman-
tic compatibility. Our previous experiments use Faster R-
CNN RoI features which represent the visual content of the
region and then learn compatibility from them. We now
consider using the class labels predicted by Faster R-CNN
as the semantic features of the region and then we use the
same model for learning semantic compatibility.

Training. For unsupervised training with transformer-
based models, the input is a sequence of class labels with
the bounding-box coordinates of regions ordered by the de-
tection confidence score. Similarly with visual features, we
mask one (or several during the training) object class label
by a [MASK] token in the input, and the model is trained
to predict the class label of the masked region. We use the
cross-entropy loss for training and testing; the loss is the
atypicality signal. Since the input of class labels are dis-
crete textual tokens, we project them through an embedding

layer before feeding to the transformer; at the output, we
project the last hidden layer of the masked input back to the
class label by a decoder which shares the same weight as
the embedding layer. We follow the same experimental set-
ting as with the visual features. For supervised training, we
fine-tune the pre-trained BERT model (bert-base-uncased)7

with the sequence of class labels as input. We use batch size
16, leaning rate 3e-5 and 5 epochs, as suggested in [9].

Results. Experimental results on the Ads dataset are
shown in Tab. 5. We find that checking semantic compat-
ibility (CL) is not as effective as checking the visual com-
patibility (VF) under the unsupervised setting. Thus, visual
features contain more useful information (e.g., the visual
features of an atypical apple and a typical apple are differ-
ent; however, the class label input does not have this in-
formation when the atypical apple is correctly detected as
”apple” by Faster R-CNN), and only checking the seman-
tic compatibility is not enough for solving this task. How-
ever, fine-tuned BERT with predicted class labels slightly
outperforms the unsupervised RS Transformer using visual
feature input, especially for those categories whose atyp-
icality transformations are mainly from unusual combina-
tion of normal objects, such as TR2 and OR, which are well
captured by the semantic compatibility.

5. Conclusion
We have proposed to model contextual compatibility as

an unsupervised approach to detect atypicality in persuasive
imagery. Our new self-supervised Relative-Spatial Trans-
former improves the detection performance on a visual ad-
vertising dataset, compared to standard baselines and to a
novel application of a classic transformer architecture that
has not been used for atypicality prediction before. Fur-
thermore, analyses by atypicality categories show that our
method is especially effective on atypicality transforma-
tions involving spatial interactions between objects.

In the future, we will extend the relative-spatial self-
attention mechanism by adding terms capturing relations
specific to individual atypicality categories, and we will
capture inputs from other modalities, e.g. the slogans in ads,
to model contextual compatibility more efficiently.

Acknowledgement: This work was supported by National
Science Foundation Grant No. 1718262.

7https://huggingface.co/transformers/model doc/bert.html
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