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Abstract

Motion blur caused by the moving of the object or cam-
era during the exposure can be a key challenge for visual
object tracking, affecting tracking accuracy significantly. In
this work, we explore the robustness of visual object track-
ers against motion blur from a new angle, i.e., adversarial
blur attack (ABA). Our main objective is to online transfer
input frames to their natural motion-blurred counterparts
while misleading the state-of-the-art trackers during the
tracking process. To this end, we first design the motion
blur synthesizing method for visual tracking based on the
generation principle of motion blur, considering the mo-
tion information and the light accumulation process. With
this synthetic method, we propose optimization-based ABA
(OP-ABA) by iteratively optimizing an adversarial objective
function against the tracking w.r.t. the motion and light ac-
cumulation parameters. The OP-ABA is able to produce
natural adversarial examples but the iteration can cause
heavy time cost, making it unsuitable for attacking real-
time trackers. To alleviate this issue, we further propose
one-step ABA (OS-ABA) where we design and train a joint
adversarial motion and accumulation predictive network
(JAMANet) with the guidance of OP-ABA, which is able to
efficiently estimate the adversarial motion and accumula-
tion parameters in a one-step way. The experiments on four
popular datasets (e.g., OTB100, VOT2018, UAV123, and
LaSOT) demonstrate that our methods are able to cause
significant accuracy drops on four state-of-the-art trackers
with high transferability. Please find the source code at
https://github.com/tsingqguo/ABA

1. Introduction
Visual object tracking (VOT) has played an integral part

in multifarious computer vision applications nowadays rang-
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Figure 1: An example of our adversarial blur attack against a deployed
tracker, e.g., SiamRPN++ [30]. Two adjacent frames are fed to our attack
and it generates an adversarially blurred frame that misleads the tracker to
output an inaccurate response map.

ing from augmented reality [1, 46] to video surveillance
[47], from human-computer interaction [36, 32] to traffic
control [49], etc. Since the infusion of deep learning, VOT
has become more powerful in terms of both algorithmic
performance and efficiency [20], leading to the more per-
vasive deployment of VOT-enabled on-device applications.
However, the VOT can still exhibit robustness brittleness
when faced with less ideal video feed. Among many known
degrading factors such as illumination variations, noise vari-
ations, etc., motion blur is perhaps one of the most important
adverse factors for visual object tracking, which is caused
by the moving of the object or camera during the exposure,
and can severely jeopardize tracking accuracy [18]. Most of
the existing benchmarks [28, 50, 35] only indicate whether
a video or a frame contains motion blur or not and this piece
of information is still insufficient to analyze the influence
from motion blur by means of controlling all the variables,
e.g., eliminating other possible interference from other degra-
dation modes, which may lead to incomplete conclusions
regarding the effects of motion blur in these benchmarks.

Moreover, the currently limited datasets, albeit being
large-scale, cannot well cover the diversity of motion blur
in the real world because motion blur is caused by camera
and object moving in the scene which is both dynamic and
unknown. Existing motion blur generation methods cannot
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thoroughly reveal the malicious or unintentional threat to
visual object tracking, i.e., they can only produce natural
motion blur which falls short of exposing the adversarial
brittleness of the visual object tracker. As a result, it is nec-
essary to explore a novel motion blur synthetic method for
analyzing the robustness of the visual object trackers, which
should not only generate natural motion-blurred frames but
also embed maliciously adversarial or unintentional threats.

In this work, we investigate the robustness of visual track-
ers against motion blur from a new angle, that is, adversarial
blur attack (ABA). Our main objective is to online transfer in-
put frames to their natural motion-blurred counterparts while
misleading the state-of-the-art trackers during the tracking
process. We show an intuitive example in Fig. 1. To this
end, we first design the motion blur synthesizing method for
visual tracking based on the generation principle of motion
blur, considering the motion information and the light accu-
mulation process. With this synthetic method, we further
propose optimization-based ABA (OP-ABA) by iteratively
optimizing an adversarial objective function against the track-
ing w.r.t. the motion and light accumulation parameters.

The OP-ABA is able to produce natural adversarial ex-
amples but the iteration can lead to a heavy time-consuming
process that is not suitable for attacking the real-time tracker.
To alleviate this issue, we further propose one-step ABA (OS-
ABA) where we design and train a joint adversarial motion
and accumulation predictive network (JAMANet) with the
guidance of OP-ABA, which is able to efficiently estimate
the adversarial motion and accumulation parameters in a
one-step way. The experiments on four popular datasets
(e.g., OTB100, VOT2018, UAV123, and LaSOT) demon-
strate that our methods are able to cause significant accuracy
drops on four state-of-the-art trackers while keeping the high
transferability. To the best of our knowledge, this is the very
first attempt to study the adversarial robustness of VOT and
the findings will facilitate future-generation visual object
trackers to perform more robustly in the wild.

2. Related Work
Visual object tracking (VOT). VOT is an important task

in computer vision. Recently, a great number of trackers,
which extract features with convolutional neural networks
(CNNs), are proposed and achieve amazing performance.

Among these works, Siamese network-based methods
[2, 14, 31, 19, 55, 45, 54, 44] offline train Siamese networks
and conduct online matching between search regions and
the object template, which are significantly fast with high
tracking performance. In particular, SiamRPN [31, 30] em-
bed the regional proposal network [40] in the naive Siamese
tracker [2], allowing high-efficient estimation of the object’s
aspect ratio variation and achieving state-of-the-art tracking
accuracy. After that, some works use historical frames to on-
line update tracking models. For example, DiMP [3] collects

past frames’ features and online predict convolution kernels
that can estimate object’s position. Furthermore, PrDiMP [9]
improves the loss function with KL divergence and informa-
tion entropy from the perspective of probability distribution.
KYS [4] considers the correlation between previous frames
and the current frame. These trackers run beyond real time
and get top accuracy on several benchmarks. Although great
progress has been achieved, there are few works studying
their robustness to motion blur. In this work, we identify a
new way to achieve this goal by actively synthesizing adver-
sarially motion blur to fool the state-of-the-art trackers.

Motion blur synthesis. In VOT task, motion blur is a
very common scene due to the high-speed movement of
the target. It is usually used to evaluate the quality of the
trackers [50, 13, 18]. In recent years, motion blur synthesis
has been extensively studied in the rendering community
[38, 18]. However, these methods usually require a complete
understanding of the speed and depth of the scene as input.
In order to get more realistic and high-quality images with
motion blur, Brooks et al. [5] identify a simple solution that
warps two instant images by optical flow [42, 26] and fuses
these intermediate frames with specific weights, to synthe-
size a blur picture. This method is to synthesize realistic
motion blur for the deblurring task while our work is used
for adversarially blurring the frames for tracking. Another
related work, i.e., ABBA [21], takes a single image as its in-
put and generates visually natural motion-blurred adversarial
example to fool the deep neural network-based classification.
Specifically, ABBA simulates the motion by adversarially
shifting the object and background, respectively, neglecting
the real motion in the scene. Different from ABBA, our
approach focuses on visual object tracking with real object
movement indicated by two adjacent frames. Recently, some
techniques [4, 9, 44] have been proposed to counter the in-
terference of the environment. To this end, our method is
proposed to better evaluate the robustness of these VOTs.

Adversarial attack. Extensive works have proved that
state-of-the-art deep neural networks are still vulnerable to
adversarial attacks by adding visually imperceptible noises
or natural degradation to original images [16, 43, 8, 15, 21].
FGSM [16] perturbs normal examples along the gradient
direction via the fast gradient sign method. MI-FGSM [11]
integrates momentum term into the iterative process that
can help stabilize the update directions. C&W [6] intro-
duces three new attacks for different norms (L0, L2, L∞)
through iterative optimization. However, the above meth-
ods are unable to meet the real-time requirements due to
the limited speed [22]. To realize the efficient attacking,
[52, 51] propose one-step attacks by offline training on the
targeted model. However, these methods are designed for
the classification task and could not attack trackers directly.

More recently, some works have been proposed to attack
visual object tracking. PAT [48] generates physical adversar-
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Figure 2: (a) shows the motion blur synthesizing process with two frames, i.e., It and It−1, and two sets of variables, i.e., {Ai
t} and {Wi

t}, should be
determined for attacking. (b) shows three cases of the normal blur under uniform motion, the OP-ABA blurring results, and OS-ABA blurring results.

ial textures via a white-box attack. SPARK [22] studies how
to adapt existing adversarial attacks on tracking. Chen et al.
[7] propose to add adversarial perturbations on the template
at the initial frame. CSA [52] raises a one-step method and
makes objects invisible to trackers by forcing the predicted
bounding box to shrink. Different from above works, we
employ motion blur to perform adversarial attack. Our work
is designed to address three challenges: how to synthesize
natural motion blur that meets the motion of object and back-
ground in the video; how to make the blurred frame fool
state-of-the-art trackers easily; how to perform the adversar-
ial blur attack efficiently. To best of our knowledge, this is
the very first attempt in the community of adversarial attack.

3. Adversarial Blur Attack against Tracking

In this section, we first study how to synthesize natural
motion blur under the visual tracking task in Sec. 3.1 and
summarize the variables that should be solved to perform
attacks. Then, we propose the optimization-based ABA (OP-
ABA) in Sec. 3.2 with a novel objective function to guide
the motion blur generation via the iterative optimization
process. To allow high-efficient attack for real-time trackers,
we further propose one-step ABA (OS-ABA) in Sec. 3.3 by
training a new designed joint motion and kernel predictive
network under the supervision of the objective function of
OP-ABA. Finally, we summarize the attacking details with
OP-ABA and OS-ABA in Sec. 3.4.

3.1. Motion Blur Synthesizing for Visual Tracking

In a typical tracking process, given the t-th frame It of a
live video and an object template specified at the first frame,
a tracker uses a pre-trained deep model ϕθt(It) to predict
the location and size of the object (i.e., the bounding box
tightly warping the object) in this frame where θt denotes
the template-related parameter and can be updated during
the tracking process. For the adversarial blur attack, we aim

to generate a motion-blurred counterpart of It, which is able
to fool the tracker to estimate the incorrect bounding box of
the object while having the natural motion-blur pattern.

To this end, we review the generation principle of realistic
motion blur [37, 39, 5, 21, 18]: the camera sensor captures an
image by receiving and accumulating light during the shutter
procedure. The light at each time can be represented as an
instant image, and there are a series of instant images for the
shutter process. When the objects or background move, the
light accumulation will cause blurry effects, which can be
approximated by averaging the instant images.

Under the above principle, when we want to adversarially
blur It, we need to do two things: First, synthesizing the
instant images during the shutter process and letting them
follow the motion of object and background in the video;
Second, accumulating all instant images to get the motion-
blurred It. The main challenge is how to make the two
steps adversarially tunable to fool the tracker easily while
preserving the natural motion blur pattern.

For the first step, we propose to generate the instant im-
ages under the guidance of the optical flow Ut that describes
the pixel-wise moving distance and direction between It
and its neighbor It−1. Specifically, given two neighboring
frames in a video, e.g., It−1 and It, we regard them as the
start and end time stamps for camera shutter process, re-
spectively. Assuming there are N instant images, we denote
them as {Iit}Ni=1 where I1t = It−1 and INt = It. Then, we
calculate the optical flow Ut between It−1 and It and split it
into N −1 sub-motions, i.e., {Ui

t}N−1
i=1 where Ui

t represents
the optical flow between Iit and Ii+1

t . We define Ui
t as a

scaled Ut with pixel-wise ratios (i.e., Wi
t)

Ui
t = Wi

t ⊙Ut, (1)

where Wi
t has the same size with Ut and ⊙ denotes the

pixel-wise multiplication. All elements in Wi
t range from

zero to one and we constraint the summation of {Wi
t}Ni=1

at the same position to be one, i.e., ∀p,
∑N−1

i Wi
t[p] = 1
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where Wi
t[p] denotes the p-th element in Wi

t. Note that, the
ratio matrices, i.e., {Wi

t}Ni=1, determine the motion pattern.
For example, if we have ∀p, {Wi

t[p] = 1
N−1}

N−1
i=1 and

can calculate the sub-motions by {Ui
t =

1
N−1Ut}N−1

i=1 , all
pixels follow the uniform motion.

With Eq. (1), we get all sub-motions (i.e., {Ui
t}N−1

i=1 ) and
produce the instant images by warping It w.r.t. different
optical flows. For example, we synthesize Iit by

Iit =
1

2
warp(It−1,

i−1∑
j=1

Wj
t ⊙Uj

t) +
1

2
warp(It,

N−1∑
j=i

Wj
t ⊙Uj

t),

(2)

where
∑i−1

j=1 W
j
t ⊙Uj

t represents the optical flow between

It−1 and Iit while
∑N−1

j=i Wj
t ⊙Uj

t denotes the optical flow
between Iit and It The function warp(·) is to wrap the It−1

or It according to the corresponding optical flow, and uses
the implementation in [21] for spatial transformer network.

For the second step, after getting {Iit}Ni=1, we can syn-
thesize the motion-blurred It by summing up the N instant
images with pixel-wise accumulation weights {Ai}Ni=1

Ît =

N∑
i=1

Ai
t ⊙ Iit. (3)

where Ai
t has the same size with Iit and all elements range

from zero to one. For simulating realistic motion blur, all
elements of Ai

t are usually fixed as 1
N , which denotes the

accumulation of all instant images.
Overall, we represent the whole blurring process via

Eqs. (3) and (2) as Ît = Blur(It, It−1,Wt,At). To perform
adversarial blur attack for the frame It, we need to solve
two sets of variables, i.e., Wt = {Wi

t}N−1
i=1 determining the

motion pattern and At = {Ai
t}Ni=1 deciding the accumula-

tion strategy. In Sec. 3.2, we follow the existing adversarial
attack pipeline and propose the optimization-based ABA by
defining and optimizing a tracking-related objective function
to get Wt and At. In Sec. 3.3, we design a network to predict
Wt and At in a one-step way.

3.2. Optimization-based Adversarial Blur Attack

In this section, we propose to solve Wt and At by opti-
mizing the tracking-related objective function. Specifically,
given the original frame It, a tracker can estimate a response
or classification map by Yt = ϕθt(It) whose maximum
indicating the object’s position in the It. Our attack aims to
generate a blurred It (i.e., Ît = Blur(It, It−1,Wt,At)) to
let the predicted object position indicated by Ŷt = ϕθt(Ît)
be far away from the original one indicated by Yt.

To this end, we optimize Wt and At by minimizing

argmin
Wt,At

J(ϕθt(Blur(It, It−1,Wt,At)),Y
∗
t )

subject to ∀p,∀i,
N−1∑

i

Wi
t[p] = 1,

N∑
i

Ai
t[p] = 1, (4)

where the two constraints on Wi
t and Ai

t make sure the
synthetic motion blur does not have obvious distortions. The
function J(·) is a distance function and is set as L2. The
regression target Y∗

t denotes the desired response map and is
obtained under the guidance of the original Yt. Specifically,
with the original response map Yt, we know the object’s
position and split Yt into two regions the object region and
background region according to the object size. Then, we can
find the position (e.g., q) having the highest response score
at the background region of Yt and then we set Y∗[q] = 1
and other elements of Y∗ to be zero. Note that, above setup
is suitable for regression-based trackers, e.g., DiMP and
KYS, and can be further adapted to attack classification-
based trackers, e.g., SiamRPN++, by setting J(·) as the
cross-entropy loss function and Y∗[q] = 1 with its other
elements to be −1.

Following the common adversarial attacks [17, 12, 22,
21], we can solve Eq. (4) via the signed gradient descent and
update the Wt and At iteratively with specified step size and
iterative number. We show the synthesized motion blur of
OP-ABA in Fig. 2. Clearly, OP-ABA is able to synthesize
natural motion-blurred frames that have a similar appearance
to the normal motion blur.

3.3. One-Step Adversarial Blur Attack

To allow efficient adversarial blur attack, we propose
to predict the motion and accumulation weights (i.e., Wt

and At) with a newly designed network denoted as joint
adversarial motion and accumulation predictive network
(JAMANet) in a one-step way, which is pre-trained through
the objective function Eq. (4) and a naturalness-aware loss
function. Specifically, we use JAMANet to process the neigh-
boring frames (i.e., It and It−1) and predict the Wt and At,
respectively. Meanwhile, we also employ a pre-trained net-
work to estimate the optical flow Ut between It and It−1.
Here, we use the PWCNet [42] since it achieves good results
on diverse scenes. Then, with Eq. (2)-(3), we can obtain the
motion-blurred frame Ît. After that, we feed Ît into the loss
functions and calculate gradients of parameters of JAMANet
to perform optimization. We show the framework in Fig. 3.

Architecture of JAMANet. We first build two pa-
rameter sets with constant values, which are denoted as
Anorm = {Ai

norm} and Wnorm = {Wi
norm}. All elements in

Anorm and Wnorm are fixed as 1
N and 1

N−1 , respectively. We
then use Wnorm, It−1, and It to generate N instant images
through Eq. (2). JAMANet is built based on the U-Net ar-
chitecture [41] but contains two decoder branches, which
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Figure 3: Architecture of JAMANet.

is fed the N instant images {Iit}Ni=1 and outputs the offsets
w.r.t. Wnorm and Anorm. We name them as Woff and Aoff.
The input {Iit}Ni=1 is size of (N, 3, H,W ). We resize it to
(1, 3N,H,W ) and normalize the values to the range of -1 to
1. The architecture is a full convolutional encoder/decoder
model with skip connections. In encoder stage, we use six
convolutions with the kernel size 4x4 and the LeakyReLU
[33] activation function. Unlike the standard U-Net, JA-
MANet has two decoders. Specifically, one branch is set
to estimate the Aoff, containing six transposed convolutions
[53] with the latest activation function as Tanh. We can
calculate the final At through At = Anorm +Aoff. Another
branch is to predict Woff and get Wt = Wnorm +Woff. This
architecture is the same with the previous one but following
an Softmax for catering to constraints of Eq. (4)1.

Loss functions. We train the JAMANet with two loss
functions:

L = Ladv + λLnatural, (5)

where the first loss function, i.e., Ladv1, is set to the objective
function in Eq. (4) to make sure the background content
instead of the object be highlighted. Note that, this loss func-
tion means to enhance the capability of adversarial attack,
that is, misleading the raw trackers. It, however, neglects the
naturalness of adversarial blur. To this end, we set the loss
function Lnatural as

Lnatural =

N∑
i

∥Ai
t −Ai

norm∥2. (6)

This loss function encourages the estimated accumulation
parameters to be similar to normal ones, leading to natural
motion blur.

1To let At also meet the constraints, for any pixel p, we first select the element
j = argmini,i∈[1,N] A

i
off[p] and then set Aj

t [p] = 1 −
∑N

i,i ̸=j Ai
t[p].

Training details. We use GOT-10K [25] as our training
dataset, which includes 10,000+ sequences and 500+ object
classes. For each video in GOT-10K [25], we set the first
frame as template and take two adjacent frames as an image
pair, i.e., (It−1, It). We select eight image pairs from each
video. The template and two adjacent frames make up a train-
ing sample. Here, we implement the OS-ABA for attacking
two trackers, i.e., SiamRPN++ [30] with ResNet50 and Mo-
bileNetv2, respectively. In the experiment, we show that
OS-ABA has strong transferability against other state-of-the-
art trackers. During the training iteration, we first calculate
the template’s embedding to construct tracking model ϕθt

and the original response map Yt (i.e., the positive activa-
tion map of SiamRPN++). Then, we get Y∗

t and initialize
the blurred frame via Blur(It, Ît−1). We can calculate the
loss via Eq. (5) and obtain the gradients of the JAMANet
via backpropagation for parameter updating. We train the
JAMANet for 10 epochs, requiring a total of about 9 hours
on a single Nvidia RTX 2080Ti GPU. We use the Adam
[27] with the learning rate of 0.0002 to optimize network
parameters, and the loss weight λ equals 0.001.

3.4. Attacking Details

Intuitively, given a targeted track, we can attack it by
blurring each frame through OP-ABA and OS-ABA during
the online tracking process, as shown in Fig. 1. The attack
could be white-box, that is, the tracking model in Eq. (4) is
the same as the targeted track, leading to high accuracy drop.
It also could be black-box also known as the transferabil-
ity, that is, the tracking model Eq. (4) is different from the
targeted one. Note that, OP-ABA is based on iterative opti-
mization and is time-consuming, thus we conduct OP-ABA
every five frames while performing OS-ABA for all frames.
In practice, we perform the blurring on the search regions
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Table 1: Attacking results of OP-ABA and OS-ABA against SiamRPN++ with ResNet50 and MobileNetv2 on OTB100 and VOT2018. The best results are
highlighted by red color.

SiamRPN++ Attacks OTB100 VOT2018
Org. Prec. Prec. Drop ↑ Org. Succ. Succ. Drop ↑ Org. EAO EAO Drop ↑

ResNet50 OP-ABA 87.8 41.7 66.5 31.2 0.415 0.375
OS-ABA 87.8 32.5 66.5 28.1 0.415 0.350

MobNetv2 OP-ABA 86.4 49.6 65.8 37.6 0.410 0.384
OS-ABA 86.4 37.3 65.8 30.1 0.410 0.338

Table 2: Attacking results of OP-ABA and OS-ABA against SiamRPN++ with ResNet50 and MobileNetv2 on UAV123 and LaSOT. The best results are
highlighted by red color.

SiamRPN++ Attacks UAV123 LaSOT
Org. Prec. Prec. Drop. ↑ Org. Succ. Succ. Drop ↑ Org. Prec. Prec. Drop ↑ Org. Succ. Succ. Drop ↑

ResNet50 OP-ABA 80.4 30.4 61.1 23.1 49.0 28.7 49.7 25.2
OS-ABA 80.4 29.6 61.1 19.9 49.0 26.8 49.7 26.4

MobNetv2 OP-ABA 80.2 34.7 60.2 26.9 44.6 29.7 44.7 28.1
OS-ABA 80.2 31.9 60.2 24.0 44.6 22.5 44.7 18.7

between two frames to accelerate the attacking speed. Specif-
ically, at the frame t, we crop a search region centered at the
detected object as the It. At the same time, we crop a region
from the previous frame at the same position as the It−1.
Then, we use the PWCNet [42] to calculate optical flow. We
get the original response map with the targeted tracker and
It if we employ the OP-ABA as the attack method. After
that, we can conduct the OP-ABA or OS-ABA to generate
the adversarial blurred frame. In terms of the OP-ABA, we
set the iteration number to be 10 and the step sizes for up-
dating Wt and At are set as 0.002 and 0.0002, respectively.
The number of intermediate frames N is fixed as 17 for both
OP-ABA and OS-ABA.

4. Experimental Results

We design experiments to investigate three aspects: First,
we validate the effectiveness of our two methods against
state-of-the-art trackers on four public tracking benchmarks
in Sec. 4.2. Second, we design ablation experiments to
validate the influences of At and Wt in Sec. 4.3. Third, we
compare our method with state-of-the-art tracking attacks
about their transferability and frame quality in Sec. 4.4.

4.1. Setups

Datasets. We evaluated adversarial blur attack on four
popular datasets, i.e., VOT2018 [28], OTB100 [50], UAV123
[35], and LaSOT [13]. VOT2018 and OTB100 are widely
used datasets containing 100 videos and 60 videos, respec-
tively. LaSOT is a recent large-scale tracking benchmark,
which contains 280 videos. UAV123 [35] focuses on track-
ing the object captured by unmanned aerial vehicle’s camera,
including 123 videos.

Tracking models. We conduct attack against state-of-
the-art trackers including SiamRPN++ [30] with ResNet50
[23] and MobileNetv2 [24], DiMP [3] with ResNet50 and
ResNet18, and KYS [4]. Specifically, we validate the white-

box attack with OP-ABA and OS-ABA against SiamRPN++
[30] with ResNet50 [23] and MobileNetv2 in Sec. 4.2 where
the motion-blurred frames are guided by the targted tracker’s
model itself. We choose SiamRPN++ [30] since it is a classic
tracker for Siamese network-based methods [44, 31, 10, 2,
19] which achieves excellent tracking accuracy and real-time
tracking speed. We also conduct transferability experiments
by using the motion blur crafted from SiamRPN++ with
ResNet50 to attack other trackers.

Metrics. In terms of the OTB100, UAV123 and LaSOT
datasets, we follow their common setups and use one pass
evaluation (OPE) that contains two metrics success rate and
precision. The former one is based on the intersection over
union (IoU) between the ground truth bounding box and
predicted one for all frames while the latter is based on
the center location error (CLE) between the ground truth
and prediction. Please refer to [50] for details. To evaluate
the capability of attacking, we use the drop of success rate
and precision for different attacks, which are denoted as
Succ. Drop and Prec. Drop. The higher drops mean more
effective attacking. In terms of VOT2018, it restarts trackers
when the object is lost. Expected average overlap (EAO) [29]
is the main criterion, evaluating both accuracy and robust-
ness. Similar to Succ. Drop, we use the drop of EAO (i.e.,
EAO Drop) for evaluating attacks. When comparing with
other additive noise-based attacks, we use the BRISQUE
[34] as the image quality assessment. An attack is desired to
produce adversarial examples that are not only natural but
also able to fool trackers. BRISQUE is a common metric to
evaluate the naturalness of images and a smaller BRISQUE
means a more natural image.

Baselines. There are several tracking attacks including
cooling-shrinking attack (CSA) [52], SPARK [22], One-
shot-based attack [7], and PAT [48]. Among them, CSA
and SPARK have released their code. We select CSA and
SPARK as the baselines.
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Table 3: Speed and time cost of three attacks and SiamRPN++ with the
ResNet50 and MobileNetv2.

SiamRPN++ Attackers Org. FPS Attack time (ms)
per frame ↓ Attack FPS ↑

ResNet50 OP-ABA 70.25 661.90 6.79
OS-ABA 70.25 42.97 17.62

MobNetv2 OP-ABA 107.62 508.30 8.79
OS-ABA 107.62 40.88 19.96

4.2. Validation Results

Attacking results. We attack two SiamRPN++ trackers
that uses ResNet50 and MobileNetv2 as the backbone, re-
spectively. The attacks results on the four public datasets
are presented in Table 1 and 2, respectively. We observe
that: ❶ Both OP-ABA and OS-ABA reduce the success rate
and precision of the two targeted trackers significantly on all
benchmarks. Specifically, on the OTB100 dataset, OP-ABA
makes the precision and success rate of SiamRPN++ with
ResNet50 reduce 41.7 and 31.2, respectively, almost fifty per-
cent of the original scores. These results demonstrate that the
proposed attacks are able to fool the state-of-the-art trackers
effectively. ❷ Compared with OS-ABA, OP-ABA achieves
higher precision drop since it targeted attack to a certain
position during each optimization while OS-ABA generates
a general blurred image to make objects invisible for track-
ers. In general, all the results indicate the effectiveness of
OP-ABA and OS-ABA in misleading the tracking models by
adversarial blur attack. ❸ Comparing the performance drop
of SiamRPN++(ResNet50) with SiamRPN++(MobileNetv2),
we observe that the former usually has relatively smaller pre-
cision or success rate drop under the same attack, hinting
that the lighter model is fooled more easily. ❹ According
to the visualization results shown in Fig. 4, we see that both
methods are able to generate visually nature blurred frames
that mislead the SiamRPN++. In general, OP-ABA contains
some artifacts but is able to mislead the tracker more effec-
tively than OS-ABA. In contrast, OS-ABA always generates
more realistic motion blur than OP-ABA in all three cases.

Speed analysis. We test the time cost of OP-ABA
and OS-ABA on the OTB100 and report the FPS of the
SiamRPN++ trackers before and after attacking. As pre-
sented in Table 3 , we observe that OP-ABA would slow
down the tracking speed significantly. For example, OP-
ABA reduces the speed of SiamRPN++ with ResNet-50 from
63 FPS to 6.79 PFS due to the online optimization. Thanks
to the one-step optimization via JAMANet in Sec. 3.3 , OS-
ABA is almost ten times faster than OP-ABA according to
the average attack time per frame. In consequence, OS-ABA
achieved near real-time speed, e.g., 17.62 FPS and 20.00
FPS, in attacking SiamRPN++ (ResNet50) and SiamRPN++
(MobileNetv2). In terms of the FPS after attacking, OS-ABA
also about 3 times faster than OP-ABA.

Table 4: Effects of Wt and At to OP-ABA and OS-ABA by attacking
SiamRPN++(ResNet50) on OTB100. The best results are highlighted by
red color.

Attackers Succ. Rate Succ. Drop ↑ Prec. Prec. Drop ↑

Original 66.5 0.0 87.8 0.0
Norm-Blur 65.3 1.2 86.2 1.6

OP-ABA w/o At 51.5 15.0 67.6 20.2
OP-ABA w/o Wt 40.9 25.6 53.4 34.4
OP-ABA 35,3 31.2 46.1 41.7

OS-ABA w/o At 61.0 5.5 80.8 7.0
OS-ABA w/o Wt 41.6 24.9 58.3 29.5
OS-ABA 38.4 28.1 55.3 32.5

4.3. Ablation Study

In this section, we discuss the influence of Wt and At

to OP-ABA and OS-ABA by constructing two variants of
them to attack SiamRPN++ (ResNet50) tracker on OTB100
dataset. Specifically, for both attacks, we only tune At and
fix Wt as Wnorm, thus we get two variants OP-ABA w/o Wt

and OS-ABA w/o Wt. Similarly, we replace At with Anorm
and adversarially tune Wt, thus we get OP-ABA w/o At and
OS-ABA w/o At, respectively. Moreover, to demonstrate
that it is the adversarial blur that reduces the performance,
we build the ‘Norm-Blur’ attack. It synthesizes the motion
blur with Anorm and Wnorm, representing the norm blur that
may appear in the real world.

We summarize the results in Table 4 and Fig. 4 and have
the following observes: ❶ When we fix the Wt or At for
OP-ABA and OS-ABA, the success rate and precision drops
decrease significantly, demonstrating that tuning both motion
pattern (i.e., Wt ) and accumulation strategy (At) can benefit
the adversarial blur attack. ❷ According to the variance of
the performance drop, we see that tuning the accumulation
strategy (At) contributes more for effective attacks. For ex-
ample, without tuning At, the success rate drop reduces from
28.1 and 31.2 to 5.5 and 15.0 for OS-ABA and OP-ABA,
respectively. ❸ SiamRPN++ are robust to the Norm-Blur
with slight success rate and precision drops. In contrast,
the adversarial blur causes a significant performance drop,
demonstrating the adversarial blur does pose threat to visual
object tracking. ❹ According to the visualization results
in Fig. 4, we have similar conclusions with the quantitative
results in Table 4: OP-ABA w/o At can generate motion-
blurred frames but have little influence on the prediction
accuracy. Once we tune At, the tracker can be fooled effec-
tively but some artifacts are also introduced.

4.4. Comparison with Other Attacks

In this section, we study the transferability of proposed
attacks by comparing them with baseline attacks, i.e., CSA
[52] and SPARK [22]. Specifically, for all compared attacks,
we use SiamRPN++(ResNet50) as the guidance to perfor-
mance optimization or training. For example, we set ϕθt in
the objective function of OP-ABA (i.e., Eq. (4)) as the model
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Figure 4: Three visualization results of OP-ABA w/o At, OP-ABA w/o Wt, OP-ABA, and OS-ABA against SiamRPN++ (ResNet50). The corresponding
tracking results are showed with red bounding boxes.

Table 5: Comparison results on transferability. Specifically, we use the ad-
versarial examples crafted from SiamRPN++(ResNet50) to attack four state-
of-the-art trackers including SiamRPN++(MobileNetv2) [30], DiMP50
[3], DiMP18 [3], and KYS [4] on OTB100. We also calulate the average
BRISQUE values of all adversarial examples.

Trackers SiamRPN++
(MobNetv2) DiMP50 DiMP18 KYS BRISQUE ↓

Org. Prec. 86.4 89.2 87.1 89.5 20.15

CSA 0.2 3.4 2.7 0.8 33.63
SPARK 0.9 2.0 1.0 0.9 24.78

OP-ABA 2.5 6.6 10.3 7.9 21.39
OS-ABA 0.2 10.7 11.2 12.3 22.94

of SiamRPN++(ResNet50). We report the precision drop
after attacking in Table 5 and the BRISQUE as the image
quality assessment for generated adversarial frames.

As shown in Table 5, we observe: ❶ Our methods, i.e.,
OP-ABA and OS-ABA, achieve the best and second-best
transferability (i.e., higher precision drop) against DiMP50,
DiMP18 [3], and KYS [4], hinting that our methods are more
practical for black-box attacking. ❷ According to BRISQUE
results, the adversarially blurred frames have smaller values
than other adversarial examples, hinting that our methods
are able to generate more natural frames since motion blur
is a common degradation in the real world.

5. Conclusion
In this work, we proposed a novel adversarial attack

against visual object tracking, i.e., adversarial blur attack
(ABA), considering the effects of motion blur instead of the
noise against the state-of-the-art trackers. We first identi-

fied the motion blur synthesizing process during tracking
based on which we proposed the optimization-based ABA
(OP-ABA). This method fools the trackers by iteratively op-
timizing a tracking-aware objective but causes heavy time
cost. We further proposed the one-step ABA by training a
novel designed network to predict blur parameters in a one-
step way. The attacking results on four public datasets, the
visualization results, and comparison results demonstrated
the effectiveness and advantages of our methods. This work
not only reveals the potential threat of motion blur against
trackers but also could work as a new way to evaluate the
motion-blur robustness of trackers in the future.
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