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Abstract

Cognitive grammar suggests that the acquisition of lan-
guage grammar is grounded within visual structures. While
grammar is an essential representation of natural language,
it also exists ubiquitously in vision to represent the hi-
erarchical part-whole structure. In this work, we study
grounded grammar induction of vision and language in a
joint learning framework. Specifically, we present VLGram-
mar, a method that uses compound probabilistic context-
free grammars (compound PCFGs) to induce the language
grammar and the image grammar simultaneously. We pro-
pose a novel contrastive learning framework to guide the
joint learning of both modules. To provide a benchmark for
the grounded grammar induction task, we collect a large-
scale dataset, PARTIT, which contains human-written sen-
tences that describe part-level semantics for 3D objects.
Experiments on the PARTIT dataset show that VLGram-
mar outperforms all baselines in image grammar induction
and language grammar induction. The learned VLGram-
mar naturally benefits related downstream tasks. Specif-
ically, it improves the image unsupervised clustering ac-
curacy by 30%, and performs well in image retrieval and
text retrieval. Notably, the induced grammar shows superior
generalizability by easily generalizing to unseen categories.
Code and pre-trained models are released at https://
github.com/evelinehong/VLGrammar.

1. Introduction
Natural and man-made dynamical systems tend to have

a nested multi-scale organization, which might be a general
property of all physical and biological systems. According
to [37], building complex stable systems requires the re-
use of stable sub-systems that can be assembled to build
larger systems. Therefore, exploring the low-dimensional
structures in sensory data is critical for understanding the
world and helping the design, interpretation, and general-
ization of artificial intelligent systems. Similarly, inducing
the underlying structures and grammars from raw sensory
inputs, e.g., vision and language [11, 51, 39, 23, 38, 5, 40,
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Figure 1: An example of a sentence parse tree aligned with an
image parse tree. The arrow lines represent production rules of
the image grammar and the language grammar. The dashed lines
represent alignment between the constituents of two modalities.

54, 48, 32, 14, 26, 15], has been a long-standing challenge
in the field of artificial intelligence (AI).

With the development of unsupervised learning tech-
niques, the unsupervised grammar induction for natural
language [33, 34, 21, 20] has recently made satisfying
progress. These works formulate the grammar induction of
language as a self-contained system that relies solely on tex-
tual corpora. Following this trend, [35, 53] propose the vi-
sually grounded grammar induction. They empirically show
that if the constituents in a sentence’s parse tree are well
aligned with the image that the sentence describes, the in-
duced grammar will be more accurate.

Visually grounded grammar induction takes one step fur-
ther towards cognitive grammar [24, 25], a concept from
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linguistic theory. Cognitive grammar argues that it is point-
less to analyze grammatical units without reference to their
semantics, which is grounded and structured by patterns of
perception, such as vision. However, previous works ground
all the constituents of a sentence with the embedding of a
single image [35, 53]. They focus on aligning the image
feature to language grammar but miss the hierarchical struc-
tures in the image. This is inconsistent with cognitive gram-
mar’s notion that a constituent’s semantic value does not
reside in one individual image base, but rather in the rela-
tionship between the substructure and the base.

Part-whole relationships are crucial in semantic struc-
tures [16]. For example, the constituent “two arms” in Fig. 1
does not simply refer to a chair, but instead refers to the
chair’s arms. Thus, it is necessary to align the language
grammar with the hierarchical structures in physical ob-
jects. As shown in Fig. 1, a visual object can be parsed into
parts with hierarchical structures, and constituents that de-
scribe parts of an object can be naturally grounded with the
parts at different hierarchies.

While the study of the hierarchical structure of images
has a long history [11, 51, 32, 14, 13, 45, 54], the structure
is mainly pre-defined by human and static across images.
Therefore, challenges remain as: (1) how to represent flex-
ible part-whole hierarchies that vary with images using an
identical network [14], and (2) how to learn structure auto-
matically without pre-defined templates. One possible way
is to learn the image grammar that parses an object into
parts. Instead of allocating neurons to represent nodes in
the parse graph, we can use neurons to represent grammar
rules. The grammar rules are general for all the images and
can be recursively re-used to handle arbitrarily complicated
objects (e.g., a chair can have an arbitrary number of legs).

Inspired by the above ideas, we present VLGrammar, a
framework that jointly learns image and language gram-
mar. Specifically, we use compound probabilistic context-
free grammars (compound PCFGs), which parameterize a
PCFG’s rule probabilities with neural networks and relax
the context-free constraints with a latent compound vari-
able. To achieve grounded learning, we calculate an align-
ment score between the image parse tree and the language
parse tree, and use a contrastive loss to learn the compound
PCFGs for both image and language jointly.

To obtain data that contains multi-modal part-whole in-
formation for learning grounded grammars, we collect a
large-scale dataset, PARTIT, which contains 10,613 manu-
ally annotated descriptive sentences paired with the images
of objects and parts. The sentences collected via Amazon
Mechanic Turk (AMT) describe the detailed object and part
semantics for 3D objects.

Experiments on the proposed PARTIT dataset show that
our proposed VLGrammar outperforms all baselines in both
image grammar induction and language grammar induction.

Moreover, it naturally benefits related downstream tasks, for
example, improving the accuracy of unsupervised part clus-
tering from „40% to „70%, and achieving better perfor-
mance in the image-text retrieval tasks. Our image gram-
mar trained on chair and table can be easily general-
ized to unseen categories such as bed and bag. Qualitative
studies also show that our method is capable of predicting
part-whole hierarchies and recursive structures of objects,
as well as constituency parsing of sentences.

Our contributions can be summarized as follows:
• To benchmark the grounded grammar induction prob-

lem, we collect a large-scale dataset, PARTIT, which
contains human-written sentences describing both
object-level and part-level semantics for 3D objects.

• We propose VLGrammar, which utilizes compound
PCFGs to induce grounded grammars for both vision
and language by enforcing the cross-modal alignment.

• We conduct extensive experiments on the PARTIT
dataset. The results demonstrate the superiority of the
proposed VLGrammar on the grammar induction and
downstream tasks, such as unsupervised part clustering
and image-text retrieval. VLGrammar also shows great
generalization ability on unseen object categories.

2. Related Work
2.1. Grammar Induction of Language

Grammar induction has a long history in natural lan-
guage processing [39, 23, 38, 5, 40]. Recently, researchers
focus on using neural networks to induce parse trees solely
from sentences [34, 33, 8, 21, 20].

These approaches mostly suggest that language is an au-
tonomous system that does not rely on perceptions and se-
mantics. This notion departs from the cognitive grammar
concept in linguistic theory which emphasizes the role of
semantic structure in grammar induction. To address this
issue, visually-grounded grammar induction is proposed
[35, 53]. However, they use a single image to estimate
the concreteness of language spans (i.e., to define concrete
words as those referring to perception) [46, 19], which is in-
sufficient to represent the full semantic structure. Given that
a language constituent is typically associated with a specific
part of the image, we propose to align a constituent with a
specific part in the vision structure.

2.2. Hierarchical Structure of Images

The study of the hierarchical structure of images has
been the interest of researchers for decades, ranging from
syntactic pattern recognition [11, 51], graph grammars
[10, 13], to and-or graphs [54, 48, 44], capsule networks
[32, 14], and hierarchical shape segmentation [52, 30, 50].
Grammar models are frequently used to model hierarchical
relations and build structured representations.

1666



However, the vision structure and grammar for these
works are mostly pre-defined or learned with supervision.
Previous works attempt to induce image grammar in an un-
supervised manner [44, 36], but also use dense pre-defined
operations on the nodes. In this paper, we propose joint
grammar induction of image and language via compound
PCFGs [20] in a self-supervised manner, which eliminates
most pre-defined structures.

2.3. Grounded Vision and Language Learning

In recent years, there have been lots of efforts and ad-
vances on exploiting the cross-modality alignment between
vision and language for various tasks, such as image-text
retrieval [22, 18], image captioning [17, 29, 49], and visual
question answering [28, 1]. These works align the objects in
images and the words in sentences either explicitly by build-
ing the visual-word mapping [22, 18, 17], or implicitly by
modeling the cross-modality attention [49, 28, 1]. Most re-
cently, there has been a surge of interest in multi-modal pre-
training for representation learning in vision-and-language
tasks [42, 41, 27, 43, 4]. These works extend BERT [6], a
popular pre-training framework for natural language under-
standing, to multi-modalities by pre-training on large-scale
image/video and text pairs, then fine-tuning on downstream
tasks. These multimodal BERT’s success greatly relies on
encoding the alignment between words and image regions
into attention flows in the Transformer architecture [47].

In this work, we share a similar spirit of structurally
aligning visual and textual elements to facilitate grammar
induction in both vision and language. The intuition behind
this practice is that forcing the multimodal alignment can
reduce the inherent ambiguity of grammar induction for in-
dividual modalities, and the induced grammar can be more
effective for downstream tasks with its structured represen-
tation.

3. The PARTIT Dataset

We present PARTIT, a large-scale dataset of manually
annotated sentences that describe both the object-level and
the part-level features of an object. To the best of our
knowledge, it is the first dataset with annotated natural lan-
guage sentences that describe both object semantics and
fine-grained part semantics paired with images.

We use AMT to collect such sentences. Given an image
of an object together with the images of highlighted parts
of the object, a worker is asked to use one sentence to de-
scribe all parts of the object. The workers can describe the
shape, size, and amount of the parts as well as the type of
the object (e.g., a chair can be a folding chair, office chair,
sofa, etc.). The annotating interface, detailed instructions,
and examples that we provide for workers can be found in
the supplementary material.

We obtain „10,000 3D CAD models and their part an-
notations from the PartNet dataset [31]. We choose four cat-
egories of objects: chair, table, bed, and bag. These
categories are picked because they are geometrically com-
plex, highly diverse, and have rich grammar hierarchies.
While the PartNet dataset provides part annotations at mul-
tiple levels (coarse, middle, and fine-grained) based on and-
or grammar, we propose to learn the grammar in an unsu-
pervised manner without annotation. We only take the fine-
grained parts from the PartNet dataset, following their orig-
inal order of decomposition. We combine certain minuscule
parts (e.g., knob and connector) with their parents for sim-
plicity. Based on the and-or templates provided by PartNet,
we generate ground-truth grammar rules of each object cat-
egory for evaluation only, which are listed in the supple-
mentary material.

Table 1 shows the statistics of our dataset. We observe
that the median number of grammar rules used per object is
8, which suggests that the part grammar is complex enough
to be learned. For language, the median length of the sen-
tences is 16, which is much longer comparing to existing
image captioning datasets (e.g., previous visually-grounded
grammar induction models [35, 53] use MSCOCO, which
only has an average length of 10 words per sentence). Apart
from grammar induction, the dataset can be used in related
downstream tasks, e.g., image captioning, language-guided
part segmentation, 3D reconstruction and so on. Examples
of the PARTIT dataset are shown in Fig. 2.

Table 1: The statistics of the PARTIT dataset. #PS is the number
of part semantics, and #G is the number of grammar rules. Pmed
and Pmax denote the median and maximum numbers of part in-
stances per object, respectively. Gmed and Gmax denote the me-
dian and maximum number of grammar rules used per object, re-
spectively. LGmed and LGmax denote the median and maximum
length of sentences, respectively, and V ocab denote the size of the
language vocabulary.

All Chair Table Bed Bag
#I 10613 5031 5290 185 109

#PS 120110 13 10 8 3
#G 75 23 34 18 4
Pmed 7 8 6 9 3
Pmax 136 38 136 28 6
Gmed 8 8 8 7 3
Gmax 18 12 18 15 4
LGmed 16 19 13 19 15
LGmax 98 98 68 42 21
V ocab 2007 1634 903 176 61

4. Grounded Grammar Induction
In this section, we introduce the proposed VLGrammar

for grounded grammar induction in both vision and lan-
guage. Our model starts from the compound PCFG for in-
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This is a high backed executive chair with comfortable 
cushioning for the back,  head and seat,  arm rests,  and 
a pedestal to allow turning 360 degrees.

This is an angled table held up by two legs that are 
connected by a leg bar,  and curve into two horizontal 
leg bars that are in contact with the ground.

Elevated bed resting upon four interconnected legs 
with included headboard.

Figure 2: Examples from our PARTIT dataset. The annotator is
asked to use one sentence to describe all the parts of an object.

ducing the language grammar [20] and generalizes this idea
to vision, which are jointly optimized by a contrastive loss.

4.1. Compound PCFG for Language

A context-free grammar (CFG) can be defined as a 5-
tuple G “ pS,N ,P,Σ,Rq, where S is the start symbol,
N is a finite set of nonterminal nodes, P is a finite set of
preterminal nodes, Σ is a finite set of terminal nodes, and R
is a set of production rules in the Chomsky normal form:

S Ñ A, A P N
AÑ BC, A P N , B,C P N Y P
T Ñ w, T P P, w P Σ

(1)

In natural language, nonterminals N are constituent la-
bels and preterminals P are part-of-speech tags. A terminal
node w is a word from a sentence, and Σ is the vocabulary.
During implementation, we do not have the ground truth
constituent labels and part-of-speech tags. Therefore, non-
terminals and preterminals are sets of nodes (or clusters)
which implicitly represent their functions.

Probabilistic context-free grammars (PCFGs) extend
CFGs by assigning a probability πr to each production rule
r P R such that

ř

r:AÑγ πr “ 1, i.e., the probabilities of
production rules with the same left-hand-side nonterminal
sum to 1. Kim et al. [20] propose a neural parameteriza-
tion where rule probabilities are based on distributed repre-
sentations. To mitigate the strong context-free assumption,
they extend neural PCFGs to compound PCFGs by assum-
ing that rule probabilities follow a compound probability
distribution [3]:

πr “ grpz; θq, z „ ppzq (2)

where ppzq is a prior distribution of the latent variable z,
and rule probability πr is parameterized by θ. πr takes one

of the following forms:

πSÑA “
exp

`

uTAfs prwS ; zsq
˘

ř

A1PN exp
`

uTA1fs prwS ; zsq
˘ (3)

πAÑBC “
exp

`

uTBC rwA; zs
˘

ř

B1,C1PNYP exp
`

uTB1C1 rwA; zs
˘ (4)

πTÑw “
exp

`

uTwft prwT ; zsq
˘

ř

w1PΣ exp
`

uTw1ft prwT ; zsq
˘ (5)

where u is a parameter vector, wN (N P tSu YN Y P) is
a symbol embedding. r¨; ¨s indicates vector concatenation,
and fsp¨q and ftp¨q are feedforward neural networks that en-
code the inputs.

In the compound PCFG, the log marginal likehood
log pθpwq of the observed sentence w “ w1w2 . . . wn can
be obtained by summing out the latent tree structure using
the inside algorithm [2]:

log pθpwq “ log

ż

z

ÿ

tPTGpwq

pθpt | zqppzqdz (6)

where TG consists of all parses of the sentence w under a
grammar G. Since the integral over z makes this likelihood
intractable, Compound PCFGs use amortized variational in-
ference and compute the loss based on the evidence lower
bound (ELBO):

Lgpw;φ, θq “ ´ELBOpw;φ, θq

“ ´Eqφpz|wq rlog pθpw | zqs `KL rqφpz | wq}ppzqs
(7)

where qφpz | wq is a variational posterior modeled by a neu-
ral network parameterized by φ.

4.2. Compound PCFG for Imgae

Compound PCFGs can be naturally extended to image
grammar. In a compound PCFG for image, S denotes an ob-
ject, e.g., a chair. Nonterminals N are types of middle-level
coarse parts. Preterminals P are types of fine-grained leaf-
parts. The middle-level parts can be further decomposed
into sub-parts which are either middle-level parts or leaf-
parts; for example, the base of a chair is decomposed into
the central support and the leg system, and the leg system is
further decomposed into several legs.

Eq. (3) and Eq. (4) can be directly applied to represent
the compound PCFG for image. However, Eq. (5) does not
work for image, since we do not have a fixed vocabulary for
images, and terminal nodes are varied w.r.t pixels. To ad-
dress this problem, we design a bottom-up perception mod-
ule to substitute the top-down generation in Eq. (5).

4.2.1 Bottom-Up Perception

Preterminals T can be viewed as a set of clusters that group
the terminal nodes since we do not have ground-truth la-
bels. Therefore, instead of inducing the top-down grammar,
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 Language Input:
This is a chair with 
an irregular back, a 
square seat, two 
arms with vertical 
bars and horizontal 
bars, and curved 
legs.

Image Compound PCFG

Language Compound PCFG

Image Parse Tree

 an irregular back,
 a square seat, 

This

 a chair
is

with
a chair

an irregular back
a square seat

irregular back

,
,

square seat

 two arms

...

Language Parse Tree

Vision Constituents Embedding

Alignment Score 
Language Constituents Embedding

Vision Input:
    
       :                                                              
 
                                                    
                                                      etc.

         : a chair, an irregular back, 
irregular back, a square seat, square 
seat, two arms, vertical bars, 
horizontal bars, curved legs, etc. 

Figure 3: Our proposed VLGrammar framework. We implement image grammar induction and language grammar induction via com-
pound PCFGs. Parse trees are derived from the grammars. We compute alignment scores between the vision and language constituents in
the parse trees to guide the joint learning procedure.

we use a bottom-up perception module to propose terminal
nodes for T .

We consider the terminal nodes to be a sequence of leaf-
parts of an object v “ v1v2...vn. We want to assign a tag T
to each leaf part vi.

spT, viq “ uTT ft pψpviqq (8)

where ψ is a perception module, i.e., ResNet-18 in our
model. ft is a clustering model, which is a single-layer feed-
forward neural network that gives the score of clustering
leaf-part vi to the tag T and uT is a parameter vector for the
tag T . The rule probability of a preterminal to a leaf-part is
thus:

πTÑvi “
exppspT, viqq

ř

v1PΣ exppspT, v
1qq

(9)

All leaf parts in a training batch constitute Σ.
We maximize the log-likelihood of the part sequence

with ELBO:

Lgpv;φ, θq “ ´Eqφpz|vq rlog pθpv | zqs ´KL rqφpz | vq}ppzqs

(10)
where qφpz | vq is a variational posterior.

Note that the image sequence v is independent of z given
the tags T “ T1T2...Tn of v. Therefore,

pθpv | zq “
ÿ

T

pθψ pv|T qpθG pT |zq

9
ÿ

T

pθψ pT |vqpθG pT |zq
(11)

where we sum over all possible tags for the part. θψ denotes
the parameters of the clustering module, and θG denotes the
parameters of Eq. (3) and Eq. (4) in the image grammar.

We notice that if T has higher probability given by the
grammar module, pθG pT |zq has a larger value, thus gives
larger weight for pθψ pT |vq. This means T is more likely to

be the accurate clusters over the images if it conforms to the
current grammar. Therefore, the grammar module can boost
the training of the clustering module, and vice versa. This
is demonstrated in Section 5.2.2. In practice, a pre-trained
clustering module can speed up the training.

4.3. Joint Learning by Alignment

We propose to jointly learn the grammars for image and
language by aligning the paired image and sentence. Similar
to [35] and [53], we use an end-to-end contrastive learning
framework. While they align each language constituent with
a single image, we compute an alignment score between
each language constituent and each visual constituent.

Given a sentence w “ w1 . . . wm where m is the total
number of words, a language constituent is defined as a span
over this sentence, denoted as wj “ wa . . . wb P rws where
0 ă a ă b ď m and rws denotes the set of all possible
spans over w. We use a Bi-LSTM to obtain the embedding
of a language constituent:

wj “ fw

˜

1

b´ a` 1

b
ÿ

l“a

hl

¸

(12)

where hl is the hidden state of the Bi-LSTM, and fw is an
affine transformation. We average the label-specific repre-
sentations like in [53].

Given an object v “ v1 . . . vn where n is the total num-
ber of parts, a visual constituent is defined as a span over
this part sequence, denoted as vk “ vc . . . vd P rvs where
0 ă c ă d ď n and rvs denotes the set of all possible
sub-parts over v. We define the embedding of a visual con-
stituent as:

vk “ fv

˜

1

d´ c` 1

d
ÿ

l“c

ψpvlq

¸

(13)

1669



where ψ is the perception module from Eq. (8) and fv is an
affine transformation.

The alignment score between a language constituent and
a visual constituent is defined as their cosine similarity:

spwj ,vkq fi cospwj ,vkq (14)

The alignment score between a sentence and an image is:

Spw,vq “
ÿ

twPTGw pwq
tvPTGv pvq

pptw|wqpptv|vq
ÿ

wjPtw
vkPtv

spwj ,vkq

“
ÿ

wjPrws

vkPrvs

ÿ

twPTGw pwq
tvPTGv pvq

1twjPtwu1tvkPtvupptw|wqpptv|vqspwj ,vkq

“
ÿ

wjPrws

vkPrvs

ppwj |w;Gwqppvk|v;Gvqspwj ,vkq

(15)
where ppwj |w;Gwq “

ř

twPTGw pwq
1twjPtwupptw|wq

and ppvk|v;Gvq “
ř

tvPTGv pvq
1tvkPtvupptv|vq are the

conditional probabilities of a constituent given the sen-
tence/object, marginalized over all possible parse trees un-
der the current grammars. They can be efficiently computed
with the inside algorithm and automatic differentiation [9].

Given a training batch D “ tW,Vu “ tpwpiq,vpiqqu,
the contrastive loss is defined as:

LCpW,Vq “
ÿ

i,m‰i

rSpwpmq,vpiqq ´ Spwpiq,vpiqq ` δs+

`
ÿ

i,m‰i

rSpwpiq,vpmqq ´ Spwpiq,vpiqq ` δs+
(16)

where δ is a constant margin, and r¨s+ denotes maxp0, ¨q.
The overall training loss function is then:

L “ λwLGpW;φw, θwq ` λvLGpV;φv, θvq ` λCLCpW,Vq
(17)

where λw, λv, λC are hyperparameters, and φt, θt, φv, θv
denote the parameters of the language and visual compound
PCFGs, respectively.

5. Experiments and Results

5.1. Experimental Setup

5.1.1 Dataset

We evaluate our model and the baseline models on the PAR-
TIT dataset that we collected. We obtain 2D images of the
3D objects via Blender1. If a part is occluded by other parts,
the corresponding part image shows only the visible por-
tion of the part. The final dataset is randomly divided into
a training set of size 8,459 and a test set of size 2,154 (i.e.,
approximately 80%/20% split).

1https://www.blender.org/

5.1.2 Evaluation Tasks

Grammar Induction We evaluate the learned grammar of
both image and language. For image, we manually parse the
parts into parse trees based on production rules as ground-
truth. For language, we apply Benepar 2 to obtain con-
stituency parse trees as ground-truth. We report both the
averaged corpus-level F1 score and the averaged instance-
level3 F1 score against these ground-truth parse trees.
Part Clustering We report the accuracy of the unsupervised
part clustering module to examine whether the learned im-
age grammar can improve the part clustering results.
Image-Text Retrieval We evaluate text-to-image retrieval
and image-to-text retrieval. When presented a sentence and
eight candidate images, a model chooses the image that has
the highest alignment score with the given sentence, as de-
fined by Eq. (15). The image-to-text retrieval is performed
likewise.

5.1.3 Baselines

We compare the proposed VLGrammar with the following
baselines:
Simple tree structures We use two simple baselines: left-
branching binary trees and right-branching binary trees.
Ordered neurons (ON-LSTM) Shen et al. [34] use ON-
LSTM cells to predict the syntactic distance between adja-
cent words to induce tree structures.
Compound PCFGs We use a language compound PCFG
(L-PCFG) and a vision compound PCFG (V-PCFG) to in-
duce language grammar and image grammar separately.
Grounded compound PCFGs Zhao et al. [53] propose to
learn language compound PCFGs grounded in pretrained
image features, denoted as L-PCFG-VG here. For a fair
comparison, we take the average of all part embeddings as
the feature of an image in our setting. Similarly, we train
a language-grounded compound PCFG for vision which
learns image grammar grounded in pretrained language fea-
tures, denoted as V-PCFG-LG.

5.1.4 Implementation Details

For all models that induce image grammar, we use ResNet-
18 to extract the features of part images. We pretrain the
ResNet-18 over unlabeled part images using an unsuper-
vised clustering method SCAN [12]. The part features are
also used in L-PCFG-VG to ground the language grammar.
For V-PCFG-LG, we use BERT [7] for pretrained language
embedding to ground the image grammar.

2https://pypi.org/project/benepar
3Corpus-level F1 calculates precision/recall at the corpus level to ob-

tain F1, while instance-level F1 calculates F1 for each visual or language
instance and averages across the corpus.
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Table 2: The performance of grammar induction. “C” and “I” denote corpus-level and instance-level F1 scores, respectively. “VLG w/o
SCAN” denotes that we do not use SCAN to pretrain the unsupervised clustering module of VLGrammar.

Model Vision Grammar Language Grammar
All Chair Table Bed Bag All Chair Table Bed Bag

C I C I C I C I C I C I C I C I C I C I
Left-Branch 16.4 20.2 9.9 11.5 21.1 26.3 38.8 59.4 54.2 60.0 16.2 17.6 19.2 19.8 13.7 15.8 10.5 12.0 8.4 8.9

Right-Branch 40.8 49.1 42.8 48.0 39.1 50.2 12.8 20.8 81.0 97.5 49.2 53.5 43.7 48.6 54.2 58.1 43.7 46.2 68.3 69.3
ON-LSTM / / / / / / / / / / 30.7 33.4 32.5 34.4 28.9 32.4 27.3 29.0 39.4 38.5
L-PCFG-P / / / / / / / / / / 47.8 49.4 41.4 44.9 53.6 53.5 44.9 44.3 63.7 63.5
L-PCFG / / / / / / / / / / 48.4 50.3 42.2 46.2 53.6 53.5 55.3 55.1 71.2 71.4
V-PCFG 47.5 59.3 51.6 59.0 43.3 59.2 36.2 48.2 82.4 91.3 / / / / / / / / / /

L-PCFG-VG / / / / / / / / / / 49.0 49.6 42.3 44.0 54.6 54.3 56.0 54.6 73.0 73.0
V-PCFG-LG 44.2 52.7 42.0 47.5 45.6 56.6 38.8 54.3 88.2 95.7 / / / / / / / / / /
VLGrammar 51.4 63.4 56.4 65.9 46.3 60.5 38.1 59.7 94.1 98.0 51.3 51.9 47.8 49.4 54.0 53.8 56.2 54.8 73.6 73.6

VLG w/o SCAN 44.7 55.5 30.5 33.6 57.9 75.4 29.0 56.4 88.2 95.7 49.0 49.8 43.4 45.3 53.7 53.5 55.1 54.0 72.6 72.6

Since the sentences describing different object cate-
gories share similar features in the language, we pretrain
a category-agnostic language compound PCFG on the sen-
tences across all types for 100 epochs, denoted as L-PCFG-
P. Then we fine-tune the language grammar on each object
category with L-PCFG, L-PCFG-VG and VLGrammar. All
the models are trained for 100 epochs. The training hyper-
parameters are specified in the supplementary material.

5.2. Results

5.2.1 Grammar Induction

Table 2 shows the main results of grammar induction of vi-
sion and language. Our method outperforms all baselines by
a large margin with regard to image F1 scores. Notably, for
the image grammar on table, VLGrammar w/o SCAN for
unsupervised clustering outperforms other models signifi-
cantly. It shows that our proposed VLGrammar can learn
unsupervised clustering and image grammar jointly from
scratch. For a category that has simple structure like bag,
VLGrammar can achieve nearly perfect performance.

For language grammar induction, our method is superior
to all neural baselines, but slightly worse than right branch-
ing binary trees with regard to instance-level F1. The rea-
son is that our dataset contains very long sentences, and hu-
mans tend to make right-branching sentences when the sen-
tences are long. Similarly, the right-branching model is also
a strong baseline in previous works on language grammar
induction [33, 20]. The category-agnostic language com-
pound PCFG (L-PCFG-P) obtains decent performance and
fine-tuning it on each object category can further improves
the F1 scores. One possible explanation is that while de-
scribing different objects, humans tend to use different lan-
guage structures.

5.2.2 Part Clustering

Table 3 shows the accuracy of the unsupervised part cluster-
ing in the bottom-up module of the image compound PCFG.
Overall, after training VLGrammar, the accuracy of the part
label prediction boosts from 41.3% to 69.1%. This confirms

the argument derived from Eq. (11), that the induced gram-
mar can benefit the part clustering in a top-down manner.

One surprising observation is that even without the
SCAN pretraining, VLGrammar performs quite well in the
part clustering. For the table category, VLGrammar w/o
SCAN achieves even higher accuracy than VLGrammar.
The overall clustering accuracy of VLGrammar w/o SCAN
is 64.4%, which also outperforms the accuracy of SCAN
(41.3%) significantly. This can be an inspiration for un-
supervised clustering: while we do not have ground truth
labels, modeling the underlying structure might provide a
strong learning signal for boosting the clustering.

Table 3: The accuracy of the unsupervised part clustering.

Model All Chair Table Bed Bag
SCAN 41.3 43.5 37.5 59.3 88.9

V-PCFG 61.6 68.3 58.3 69.9 88.9
V-PCFG-LG 65.4 66.8 63.2 71.8 90.5
VLGrammar 69.1 71.6 66.0 75.1 90.5

VLG w/o SCAN 64.4 62.0 66.2 60.4 90.5

5.2.3 Image-Text Retrieval

Since an alignment score is computed to measure the simi-
larity between an image and a sentence, it’s natural to use it
for image-text retrieval. For text-to-image retrieval, given
one descriptive sentence, the model chooses the answer
among eight images. For image-to-text retrieval, the model
chooses among eight sentences to pair with the given ob-
ject. All models are trained using contrastive loss. The base-
line model is a simple model that uses ResNet-18 as im-
age encoder and BERT as sentence encoder. Table 4 shows
the results. VLGrammar can outperform the baseline by a
large margin and achieve satisfying performance, which is
an extra bonus naturally earned with our grammar induction
framework.

5.2.4 Cross-category Generalization

Different object categories share certain common struc-
tures among their parts, making it possible to generalize
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Table 4: The accuracy of image-text retrieval. “IR” stands for
text-to-image retrieval and “TR” is for image-to-text retrieval.

Model Chair Table Bed Bag
IR TR IR TR IR TR IR TR

Baseline 24.1 28.5 29.8 31.2 20.1 20.1 19.1 24.5
L-PCFG-VG 34.5 36.9 39.3 42.0 35.5 38.4 23.0 28.7
V-PCFG-LG 25.9 27.8 38.8 41.8 29.6 25.7 23.8 24.9
VLGrammar 33.2 39.0 39.8 42.5 39.6 38.2 24.6 29.3

from learned categories to unseen categories. For exam-
ple, chair, table and bed all have legs. To evaluate the
model’s generalization ability, we train a shared image com-
pound PCFG for certain object categories, and then test on
unseen categories. We merge the parts and production rules
of chair and table, and train a compound PCFG model
on these two categories. We then test the model on all cate-
gories including two unseen categories: bed and bag. The
results shown in Table 5 indicate that the learned grammars
can indeed be transferred to novel object categories.

Table 5: The performance of image grammars on all categories,
while being trained on only chair and table.

Model Seen Unseen
Chair Table Bed Bag

C I C I C I C I
V-PCFG 43.9 52.7 38.1 54.5 20.7 33.1 82.4 91.3

V-PCFG-LG 44.3 54.1 38.5 54.8 25.6 50.4 88.2 95.7
VLGrammar 44.8 53.4 41.1 56.7 29.4 44.2 88.2 95.7

5.2.5 Qualitative Study

Fig. 4 visualizes several examples of parse trees predicted
by VLGrammar. We summarize following observations
from these examples:
Part-Whole Hierarchies Our VLGrammar can capture
precise part-whole hierarchies of the images. The objects
can be parsed into parts of various hierarchies. For instance,
the chair can be parsed into the upper part and supporting
system. The latter can be further divided into seating area
and chair base. The seating area has a chair seat and arms
with vertical bars and horizontal bars, which are grouped
separately. In the table, the base can be divided into legs
and leg bars.
Recursive Structures One interesting question is how VL-
Grammar deals with recursive structures. A chair can have
an arbitrary number of legs, which shall be in the the same
hierarchy. However, since context-free grammar is defined
on binary trees, recursive grammar is used to group the
parts of same functionality. We find that VLGrammar can at
least learn three types of recursive structures: (1) Pair-wise
grouping: VLGrammar first groups the parts into pairs ac-
cording to positional information (e.g., front legs and back
legs, left horizontal arm bars and right horizontal arm bars,
as shown in Fig. 4), and then group the pairs. (2) Right-
branching: the vertical bars of the chair arms are grouped

 (this ((chair has) ((a (short (square (back ,)))) ((square (seat ,)) ((((((2 (short 
front)) and) (((2 short) back) (vertical arm))) bars) ,) ((((4 (horizontal arm)) bars) 
,) (and ((4 straight) legs))))))))

((((the tabletop) (is (held up))) with) ((four legs) (and 
((((three leg) bars) to) (provide stability))))))

(this (is (a ((bag with) 
((((a long) body) ,) 
(((((2 handles) (on (the 
side))) (of it)) ,) (and (a 
(shoulder strap)))))))))

Figure 4: Qualitative examples of parse trees predicted by VL-
Grammar. We visualize the image parse trees and the language
parse trees derived by the VLGrammar. Since the language parse
trees are large, we use a bracket form to represent them.

using right-branching binary trees. (3) Left-branching: e.g.,
the grouping of the legs of the table. Right-branching and
left-branching are effective when dealing with an arbitrary
number of parts at the same level, and when there are no
salient patterns to pair them. One example is the star leg
base, where the legs are in arbitrary order and form a circle.
Language Phrases VLGrammar excels at grouping phrases
that refer to parts in the images. For example, VLGrammar
can capture phrases such as “a short square back”, “four
legs”, “three leg bars”, “2 handles”, “a shoulder strap”, and
so on. This merit comes from the learned alignment be-
tween the phrases and the referred visual parts.

6. Conclusion and Future Work

In this work, we propose VLGrammar, a framework that
utilizes compound PCFGs to jointly induce the grammar of
vision and language. We collect a large-scale dataset, PAR-
TIT, for benchmarking this novel task. Experimental results
show that VLGrammar performs well in grammar induc-
tion of vision and language, greatly benefits downstream
tasks such as unsupervised part clustering and image-text
retrieval, and easily generalizes to unseen categories.

One limitation of our work is that the image grammar is
defined on part sequences. This practice eliminates the rich
2D structures of images. A possible solution is to define
spatial grammars directly on 2D images and we leave it for
future work.
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