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Abstract

We present a novel pyramidal output representation to
ensure parsimony with our “specialize and fuse” process
for semantic segmentation. A pyramidal “output” represen-
tation consists of coarse-to-fine levels, where each level is

“specialize” in a different class distribution (e.g., more stuff
than things classes at coarser levels). Two types of pyramidal
outputs (i.e., unity and semantic pyramid) are “fused” into
the final semantic output, where the unity pyramid indicates
unity-cells (i.e., all pixels in such cell share the same seman-
tic label). The process ensures parsimony by predicting a
relatively small number of labels for unity-cells (e.g., a large
cell of grass) to build the final semantic output. In addition
to the “output” representation, we design a coarse-to-fine
contextual module to aggregate the “features” representa-
tion from different levels. We validate the effectiveness of
each key module in our method through comprehensive abla-
tion studies. Finally, our approach achieves state-of-the-art
performance on three widely-used semantic segmentation
datasets—ADE20K, COCO-Stuff, and Pascal-Context.

1. Introduction
Given an RGB image, semantic segmentation defines se-

mantic labels for all pixels as “output”. Recent methods on
semantic segmentation widely exploit deep neural networks.
One major research direction is designing new contextual
modules [4, 5, 6, 13, 27, 28, 29, 34] exploring better “feature”
representation in the networks. We argue that leveraging the
structure in the “output” representation could open up op-
portunities orthogonal to the current endeavors. We observe
that a large portion of pixels in most images share the same
label at a coarse spatial level (e.g., stuff classes like sky and
grass, or central region of objects). This observation induces
a parsimonious strategy to dynamically predict semantic la-
bels at a coarser level according to the spatial distribution of
classes in each input image.

∗The authors contribute equally to this paper.

We proposed a novel pyramidal output representation to
ensure parsimony with our “specialize and fuse” process
(Fig. 1). Firstly, rather than a single-level output, a pyra-
midal output starting from the coarsest level to the finest
level is designed so that each level is learned to “specialize”
in a different class distribution (e.g., more stuff than things
classes at coarser levels). Specifically, two types of pyra-
midal output (unity and semantic pyramid) are predicted.
Unity pyramid identifies whether a patch of pixels (referred
to as a cell) shares the same label (referred to as a unity-cell)
(Fig. 1-first row), and semantic pyramid consists of semantic
labels at multiple levels (Fig. 1-second row). Finally, the
semantic pyramid are “fused” into one single semantic out-
put according to the unity-cells across levels (Fig. 1-bottom
panel). Note that our “specialize and fuse” process ensures
parsimony by predicting a relatively small number of labels
for unity-cells (e.g., a large cell of grass) to build the final se-
mantic output. In addition to the “output” representation, we
design a coarse-to-fine contextual module to aggregate the
“features” representation from different levels for improving
semantic pyramid prediction.

Our main contributions are as follows: i) we introduce a
pyramidal “output” representation and a “specialize and fuse”
process to allow each level to specialize in different class
distribution and ensure parsimony; ii) we design a contextual
module to aggregate the “features” representation from dif-
ferent levels for further improvements; iii) we showcase the
effectiveness of our method on ADE20K, COCO-Stuff, and
Pascal-Context. Our method with both HRNet and ResNet
as the backbone can achieve results on par with or better
than the recent state-of-the-art methods.

2. Related work

Contextual modules. Context is important to the task of
semantic segmentation, with more and more improvements
coming from the newly designed context spreading strat-
egy. PSPNet [32] proposes to pool deep features into sev-
eral small and fixed spatial resolutions to generate global

7137



fuse

    mix-cell     unity-cell

Final output

Unity pyramid

Semantic pyramid

predict

Coarse Fine

unity-cell
mix-cell

Input image

person
grass

sand

done by coarser (don’t care)

person
grass
sand
mix-cell (not yet decided)

unity-cell
mix-cell
done by coarser (don’t care)

consider “done by coarser”

pole
wall

cabinet

Coarse Fine

(see Eq. 2)

Figure 1: An overview of the “specialize and fuse” approach. We train a neural network to predict two pyramidal outputs:
Unity pyramid classifies cells into “unity-cell” (i.e., all covered pixels share the same class) or “mix-cell” (i.e., covered
pixels contain multiple classes); Semantic pyramid predicts the semantic labels at multiple levels. The orange bottom panel
illustrates how we fuse the two predicted pyramids into one final semantic output (the bottom-left-most image). Intuitively, a
unity-cell at a coarser level indicates that all cells covered by it at finer levels are “done by coarser” and thus can be ignored
(colored in grey). Therefore, we acquire the final semantic labels from unity-cells in a coarse-to-fine manner. In other words,
mix-cells or “done by coarser” cells are ignored during training (Sec. 3.2) and inference (Sec. 3.3). Our approach achieves
parsimony by training the network to predict a relatively small number of semantic labels for unity-cells (i.e., most cells at
finer levels are “done by coarser”) and enables each pyramid level to specialize in different class distribution.

contextual information. Deeplab [2] employs dilated CNN
layers with several dilation rates, which helps the model
capture different ranges of context. Recently, self-attention
methods [22, 24] achieve great success in natural language
processing and computer vision, with many variants being
proposed for semantic segmentation. DANet [6] applies
self-attention in spatial dimension and channel dimension.
CCNet [13] proposes criss-cross attention in which a pixel
attends only to pixels of the same column or row. ANL [34]
pools features to a fixed spatial size, which acts as the key
and value of attention. OCR [27] pools the context accord-
ing to a coarse prediction and computes attention between
deep features and class centers. CCNet [13], ANL [34], and
OCR [27] are able to reduce the computation via specially
designed attending strategies while still retain or even im-
prove the performance. Inspired by ANL [34], we design
a new coarse-to-fine contextual module in this work, and
furthermore, the contextual module is managed to integrate
seamlessly with the proposed pyramidal output format.

Hierarchical semantic segmentation prediction. Layer
Cascade (LC) [17] predicts three semantic maps of the same
resolution using three cascaded sub-networks: Each sub-
network passes uncertain pixels to the next sub-network for
further prediction, and all of the LC predictions are of the
same level. In contrast, our method provides a new output
representation that is independent of sub-networks in the
backbone, and predicts multi-level semantic maps trained

under the principle of parsimony. Besides, unlike LC which
simply combines the semantic maps based on the semantic
prediction itself, we train a unity pyramid with a carefully
defined physical meaning to infer with the semantic pyramid.

PointRend [14] and QGN [3] are two recent approaches
that explore the direction of hierarchical prediction where the
final semantic segmentation map is reconstructed in a coarse-
to-fine manner instead of a dense prediction from the deep
model directly. Both approaches start from the coarsest pre-
diction. PointRend [14] gradually increases the resolution by
sampling only uncertain points for the finer prediction, while
QGN [3] predicts C+1 classes where the extra “composite”
class indicates whether a point would be propagated to a
finer level in their SparseConv [8] decoder. Both approaches
yield high-resolution prediction (the same as input resolu-
tion) with their efficient sparseness design. PointRend [14]
achieves slightly better mIoU by refining the prediction to a
high spatial resolution; while, QGN [3] focuses on compu-
tational efficiency but results in inferior performance. The
hierarchical output in previous works [3, 14, 17] entwine
with their model’s data flow, while our pyramidal output
format is more flexible to the model architecture as long as
it yields the two pyramids. Besides, rather than results refin-
ing and computation saving, the proposed pyramidal output
representation with tailored training and fusing procedures
(i.e., the proposed Specialize and Fuse strategy) is able to
achieve state-of-the-art performance.
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3. Pyramidal output representation

The overview of our “specialize and fuse” process given
two types of pyramidal outputs are shown in Fig. 1. In the
following, we first define the semantic and unity pyramids
in Sec. 3.1. Then, the “training to specialize” and “fuse in
inference” phases are introduced in Sec. 3.2 and Sec. 3.3,
respectively.

3.1. Semantic pyramid and unity pyramid

Pyramid structure. We adopt the coarse-to-fine pyramid
structure to build our pyramidal output format, where a finer
level has double resolution than its adjacent coarser level,
and all cells (i.e., a patch of pixels) except those in the finest
level have exactly four children. Besides, the width and
height of an input image should be divisible by those of the
coarsest level; otherwise, we resize the input RGB to the
nearest divisible.

Notation. We denote the index of the pyramid level by
ℓ, where ℓ=1 is the coarsest level and ℓ=L is the finest
level (L levels in total). Let sℓ denote the spatial stride at
the pyramid level ℓ, D the latent dimension of backbone
features, and C the number of output classes. As shown
in Fig. 2b and Fig. 2c, our model takes a feature tensor
X ∈ RD× H

sL
× W

sL from the backbone, and predicts a se-
mantic pyramid

{
Ŷ (ℓ) ∈ RC× H

sℓ
×W

sℓ

}
ℓ=1,...,L

and a unity

pyramid
{
Û (ℓ) ∈ R

H
sℓ

×W
sℓ

}
ℓ=1,...,L−1

. The channel dimen-

sion of Û is 1 (binary classification) and is discarded. Note
that the output stride of the finest level sL is the same as
the output stride of the backbone feature X in this work
for simplicity. The final semantic output fused from two
pyramids is denoted as Ŷ ∈ RC× H

sL
× W

sL . The pyramidal
ground truths Y (ℓ), U (ℓ) for training are derived from the
ground truth per-pixel semantic labeling Y .

Pyramidal ground truth. At pyramid level ℓ, each cell is
responsible for a patch of sℓ×sℓ pixels in the original image.
A cell can be either an unity cell with the same label for all
pixels within the cell, or a mix-cell with more than one labels.
In the ground truth unity pyramid U (ℓ), positive and negative
values indicate unity-cells and mix-cells, respectively. In
the ground truth semantic pyramid Y (ℓ), for a unity-cell, its
ground truth semantic label is defined as the shared label
by all covered pixels in the original per-pixel ground truth
Y , whereas, for a mix-cell, its ground truth semantic label
is ill-defined and ignored in computing training loss. Note
that a unity-cell at level ℓ implies its child cells are also
unity-cells at level ℓ+ 1. To avoid redundancy, the children
unity-cells (referred to as “done by coarser”) are ignored
both in computing training loss (Sec. 3.2) and in the fuse-
phase (Sec. 3.3).

3.2. Specialize—the training phase

Our experiments show that naively training the predicted
Ŷ (ℓ), Û (ℓ) with their ground-truth counterparts Y (ℓ), U (ℓ)

is unable to provide any improvement. This setting does
not utilize the fact that a large number of pixels belonging
to unity-cells are already predicted at a coarser level, and
hence the finer level had better not be redundantly trained
on those predicted regions. Based on the motivation to en-
courage parsimony and to train specialized pyramid levels,
for those cells whose predecessors in the pyramid structure
are already correctly classified as unity-cells (true positives),
our training procedure re-labels them as “don’t care” on the
fly (we refer to such labels as “done by coarser”). With the
relabeled ground truths in each mini-batch, the training loss
is computed as follows:

L =
1

L

L∑
ℓ=1

CE(Ŷ (ℓ), Y
(ℓ)
relabeled)

+
1

L− 1

L−1∑
ℓ=1

BCE(Û (ℓ), U
(ℓ)
relabeled) ,

(1)

where CE is cross entropy and BCE is binary cross entropy.
Note that only L−1 levels are predicted in the unity pyramid
Û (ℓ) as all cells in the finest level L are assumed to be unity-
cells (there is no subsequent finer-level semantic prediction
to be considered). We show in the experiments that each level
of the semantic pyramid has indeed learned to specialize in
characterizing the assigned pixels.

3.3. Fuse—the inference phase

During inference, we fuse the two predicted pyramids
into one final semantic map Ŷ . Given the predicted semantic
pyramid Ŷ (ℓ) and unity pyramid Û (ℓ), the inference pro-
cedure refers each pixel to the semantic prediction at the
“coarsest” unity-cell as follows.

Ŷ =

L∑
ℓ=1

{
1

[
Up(Û (ℓ)) ≥ τ

]
⊙Up(Ŷ (ℓ))

⊙
⊙∏

1≤k<ℓ

1

[
Up(Û (k)) < τ

]}
,

(2)

where Up(·) upsamples the prediction at level ℓ to the finest
level L, τ is a threshold to decide unity-cell (i.e., ≥ τ ) or
mix-cell (i.e., < τ ), ⊙ and 1[·] denote the element-wise
multiplication and indicator function, respectively. The 1st

line in Eq. 2 selects the semantic labels at unity-cells in level
ℓ. To ensure that the “coarsest” unity-cell is selected, the
2nd line in Eq. 2 checks whether all of its preceding cells in
levels 1 ∼ (ℓ− 1) are mix-cells.
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Figure 2: An illustration of the neural network architecture. (a) Two additional heads are added to a backbone network for
predicting the proposed unity pyramid and semantic pyramid. (b) The unity head. (c) For the semantic head, we design a
coarse-to-fine contextual module, which comprises two operations—(d) CA: context aggregation and (e) CU: context update.
Note that the Û (ℓ) in (b) and Ŷ (ℓ) in (c) are raw outputs and will be fused into one to serve as the final prediction (Sec. 3.3).

4. Architectures of pyramid head

The architectures of unity and semantic head are shown
in Fig. 2 and detailed in the following sections.

4.1. Unity head

The unity head takes a feature X from the backbone
as input and outputs a unity pyramid Û (ℓ). The design of
unity head (Fig. 2b) follows the idea that the embedding
of every pixel within a unity-cell has to be close to the
embeddings of the centroid of the cell as they share the
same semantic class. First, we employ a 1× 1 convolution
layer (Conv1x1) to convert X to Xu with reduced channels
Du. Next, we generate centroid embedding of all cells in
a pyramid X

(ℓ)
centroid ∈ RDu× H

sℓ
×W

sℓ by applying average
pooling and a shared Conv1x1 to Xu. To measure the differ-
ence X

(ℓ)
diff between the embedding of all pixels within a cell

and the centroid embedding of the cell, we upsample each
X

(ℓ)
centroid to the finest level using nearest-neighbor interpo-

lation and subtract it from Conv1x1(Xu). Subsequently, a
shared Conv1x1 followed by a sigmoid function converts
X

(ℓ)
diff ∈ RDu× H

sL
× W

sL to X
(ℓ)
unity ∈ R

H
sL

× W
sL , where each

entry yields a probability that it shares the same semantic

class with the cell centroid. Reflecting the definition of a
unity-cell, we use min pooling to query if the most deviated
entry in a cell is similar to the cell centroid, and produce the
final unity pyramid Û (ℓ) ∈ R

H
sℓ

×W
sℓ .

4.2. Semantic head

Predicting semantic in pyramidal format. We first em-
ploy a Conv1x1 layer to project the number of channels
from backbone’s D to Ds, producing feature X(L). The sim-
plest way to predict the semantic pyramid {Ŷ (ℓ)}ℓ=1,...,L is
directly pooling X(L) to the L desired spatial sizes:

X(ℓ) = AvgPool
(
X(L), 2L−ℓ

)
, (3)

where AvgPool(·, k) is average pooling with kernel size
and stride set to k. Each X(ℓ) is then projected from latent
dimension Ds to the number of classes C with convolutional
layers. We show in our experiment that such a simplest
network setting can already achieve promising improvements
with the proposed specialize-and-fuse strategy.

Coarse-to-fine contextual module. Motivated by the re-
cent success of context spreading strategy for semantic seg-
mentation, we further design a coarse-to-fine contextual
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module for our pyramidal output format. Intuitively, we
aggregate the contextual information from coarser pyra-
mid levels to assist the prediction at finer pyramid levels.
Fig. 2c depicts the proposed coarse-to-fine semantic head,
which refines {X(ℓ)}ℓ=1,...,L in Eq. (3) with context feature
{θ(ℓ)}ℓ=0,...,L−1 from coarse to fine level:

X ′(ℓ) = CA(ℓ)
(
X(ℓ), θ(ℓ−1)

)
, (4)

θ(ℓ) = CU(ℓ)
(
X ′(ℓ), θ(ℓ−1)

)
, (5)

where the CA and CU stand for Context Aggregation module
and Context Updating module and will be detailed later.
Inspired by ANL’s strategy [34] to improve efficiency of
contextual module, our initial context feature is

θ(0) = PyramidPool(X(L)), (6)

where PyramidPool flatten the 1×1, 3×3, 6×6, and 8×8
features generated by spatial pyramid pooling [15].

Iterating ℓ from coarse to fine (from 1 to L), the Context
Aggregation module refines X(ℓ) using θ(ℓ−1) (while X(1)

is refined by the initial context feature θ(0)); the Context Up-
dating module then updates the context feature θ(ℓ−1) with
the refined X ′(ℓ), forming the new context feature θ(ℓ) which
facilitates finer-level semantic prediction by encapsulating
the information from the coarsest to the current level.

Once the coarse-to-fine contextual module generates the
refined feature pyramid {X ′(ℓ)}ℓ=1,...,L, the semantic pyra-
mid {Ŷ (ℓ)}ℓ=1,...,L are predicted by

Ŷ (ℓ) = ConvBlock(ℓ)
(
X ′(ℓ)

)
, (7)

where ConvBlock(ℓ) consists of Conv1x1, BN, ReLU, and
a final Conv1x1 projecting Ds to the number of classes C.
In below, we detail the Context Aggregation module (CA)
and Context Updating module (CU).

CA—Context Aggregation module. The context aggre-
gation module is illustrated in Fig. 2d. To refine X(ℓ), we
use attention operation to aggregate coarser-level context
encoded in θ(ℓ−1). Specifically, we transform X(ℓ) to X

(ℓ)
query,

θ(ℓ−1) to θ
(ℓ−1)
key , θ

(ℓ−1)
value by Conv1x1 layers; then we apply

X
(ℓ)
att = Attention

(
X(ℓ)

query, θ
(ℓ−1)
key , θ

(ℓ−1)
value

)
, (8)

X ′(ℓ) = Conv1x1(ℓ)agg.

(
concat

(
X

(ℓ)
att, X

(ℓ)
))

, (9)

where the Attention is the attention operation [22],
Conv1x1(ℓ)agg. consisting of Conv1x1,BN,ReLU projects
the concatenated 2Ds channels back to Ds.

CU—Context Updating module. The context updating
module is illustrated in Fig. 2e. To update the context feature
θ(ℓ−1) on the refined feature X ′(ℓ) at level ℓ, we apply

θ
(ℓ)
init = PyramidPool

(
X ′(ℓ)

)
, (10)

θ(ℓ) = Conv1x1
(ℓ)
upd.

(
concat

(
θ
(ℓ)
init , θ

(ℓ−1)
))

, (11)

where the Conv1x1
(ℓ)
upd. consisting of Conv1x1,BN,ReLU

projects the concatenated 2Ds channels back to Ds. Note
that the new context feature θ(ℓ) remains at the same low
spatial resolution as θ(ℓ−1), so the overall coarse-to-fine
contextual module runs efficiently.

5. Experiments
We first introduce our implementation details in Sec. 5.1.

Then, we report our comparison with state-of-the-art meth-
ods on three datasets in Sec. 5.2 and the comparison on
computation efficiency in Sec. 5.3. Finally, thorough abla-
tion study and performance analysis are conducted to support
the contribution of our designed components in Sec. 5.4 and
Sec. 5.5, respectively.

5.1. Implementation detail

5.1.1 Training setting

We mainly follow the training protocol of the public imple-
mentation of HRNet-OCR. The SGD optimizer with momen-
tum 0.9 is employed. Data augmentation includes random
brightness, random left-right flip, random scaling with factor
uniformly sampled from [0.5, 2.0], and finally random crop
to a fixed size. The crop size, weight decay, and batch-size
are set to (512 × 512, 1e−4, 16) for all datasets. The base
learning rate and the number of epochs are set to (0.02, 120),
(0.001, 110), and (0.001, 200) for ADE20K, COCO-Stuff,
and Pascal-Context, respectively. The learning rate follows
the poly schedule with the power factor set to 0.9.

5.1.2 Backbone setting

We experiment with two backbone networks—HRNet48 [23]
and ResNet101 [10]. For simplicity, we ensure both back-
bones generate features at the same spatial level as the finest
pyramid level, i.e., output stride 4 in our experiments.

HRNet48. HRNet [23] provides high-resolution features
of output stride 4, so we directly attach our Unity head and
Semantic head to the end of HRNet.

ResNet101. ResNet [10] produces coarse features of out-
put stride 32. To obtain better results, some recent meth-
ods [18, 27, 20, 12, 16] employ the dilated version of ResNet
with output stride 8. However, we find such modification
leads to lower speed and more memory footprint, so we adopt
the standard ResNet with a lightweight decoder. We simply
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Method Venue Backbone mIoU (%)
CFNet [30] CVPR2019 ResNet101 44.89
APCNet [9] CVPR2019 ResNet101 45.38
CCNet [13] ICCV2019 ResNet101 45.22
ANL [34] ICCV2019 ResNet101 45.24
ACNet [7] ICCV2019 ResNet101 45.90
CPNet [26] CVPR2020 ResNet101 46.27
SPNet [11] CVPR2020 ResNet101 45.60
QGN [3] WACV2020 ResNet101 43.91
GFFNet [18] AAAI2020 ResNet101 45.33
OCR [27] ECCV2020 ResNet101 45.28
DNL [25] ECCV2020 ResNet101 45.97
CaCNet [20] ECCV2020 ResNet101 46.12
ours - ResNet101 47.00
HRNet [23] TPAMI2019 HRNet48 44.20
CCNet [13]† - HRNet48 45.65
ANL [34]† - HRNet48 45.23
OCR [27] ECCV2020 HRNet48 45.50
DNL [25] ECCV2020 HRNet48 45.82
ours - HRNet48 47.16
†Our reproduction by replacing the backbone with HRNet48

Table 1: Comparisons on ADE20K [33] validation set.

Method Venue Backbone Score
PSPNet [32] CVPR2017 ResNet269 55.38
EncNet [29] CVPR2018 ResNet101 55.67
ACNet [7] ICCV2019 ResNet101 55.84
DNL [25] ECCV2020 ResNet101 56.23
ours - ResNet101 56.67
DNL [25] ECCV2020 HRNet48 55.98
ours - HRNet48 58.04

Table 2: ADE20K [33] official evaluation.

reduce the number of channels of each stage from ResNet to
save computation and apply the fusion module [23] as the
decoder to form feature of output stride 4. Comparing to the
dilated ResNet, our adaptation requires only 0.75× process-
ing time and 0.88× memory footprint (see the supplementary
material for details about implementation and computational
efficiency). Besides, some recent methods [12, 16] also
adopt ASPP [2], which we do not employ, for the ResNet
backbone.

5.1.3 Specialize and Fuse setting

The backbone features have D = 720 channels for both our
HRNet48 and ResNet101 experiments, and we set Du in the
unity head to 64 and Ds in the semantic pyramid head to
512. We use the instantiation of L = 4 with output strides
{4, 8, 16, 32} for the semantic pyramid. We set a high thresh-
old τ = 0.9 for the binary classifier in the unity pyramid
to suppress false positives for the unity-cell prediction as,
intuitively, a false positive always introduces error while a
false negative could have the chance to be “remedied” by
finer level semantic.

Method Venue Backbone mIoU (%)
SVCNet [5] CVPR2019 ResNet101 39.6
DANet [6] CVPR2019 ResNet101 39.7
EMANet [19] ICCV2019 ResNet101 39.9
ACNet [7] ICCV2019 ResNet101 40.1
GFFNet [18] AAAI2020 ResNet101 39.2
OCR [27] ECCV2020 ResNet101 39.5
CDGCNet [12] ECCV2020 ResNet101 40.7
ours - ResNet101 40.7
HRNet [23] TPAMI2019 HRNet48 37.9
CCNet [13]† - HRNet48 39.8
ANL [34]† - HRNet48 40.6
OCR [27] ECCV2020 HRNet48 40.6
ours - HRNet48 41.0
†Our reproduction by replacing the backbone with HRNet48

Table 3: Comparisons on COCO-Stuff [1] test set.

Method Venue Backbone mIoU (%)
CFNet [30] CVPR2019 ResNet101 54.0
APCNet [9] CVPR2019 ResNet101 54.7
SVCNet [5] CVPR2019 ResNet101 53.2
DANet [6] CVPR2019 ResNet101 52.6
BFP [4] ICCV2019 ResNet101 53.6
ANL [34] ICCV2019 ResNet101 52.8
EMANet [19] ICCV2019 ResNet101 53.1
ACNet [7] ICCV2019 ResNet101 54.1
DGCNet [31] BMVC2019 ResNet101 53.7
CPNet [26] CVPR2020 ResNet101 53.9
SPNet [11] CVPR2020 ResNet101 54.5
GFFNet [18] AAAI2020 ResNet101 54.2
OCR [27] ECCV2020 ResNet101 54.8
DNL [25] ECCV2020 ResNet101 54.8
CaCNet [20] ECCV2020 ResNet101 55.4
ours - ResNet101 55.6
HRNet [23] TPAMI2019 HRNet48 54.0
OCR [27] ECCV2020 HRNet48 56.2
DNL [25] ECCV2020 HRNet48 55.3
ours - HRNet48 57.0
Table 4: Comparisons on Pascal-Context [21] test set.

5.2. Comparison with state-of-the-arts

Following the literature, we apply multi-scale and left-
right flip testing augmentation to report our results.

ADE20K [33]. ADE20k is a dataset with diverse scenes
containing 35 stuff and 115 thing classes. The training,
validation, and test split contains 20K/2K/3K images, respec-
tively. The results on validation set of ADE20K is shown in
Table 1. Our method establishes new state-of-the-art results
with both ResNet101 and HRNet48 backbone. In addition,
we submit our prediction on hold-out test set to ADE20k’s
server for official evaluation. The results reported in Table 2
also show our advantage over previous methods.
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COCO-Stuff [1]. COCO-Stuff is a challenging dataset
with 91 stuff and 80 thing classes. The training and the test
sets contain 9K and 1K images, respectively. In Table 3, our
approach shows comparable performance to recent state-of-
the-art results with ResNet101 backbone and outperforms
previous methods with HRNet48 backbone.

Pascal-Context [21]. Pascal-Context is a widely-used
dataset for semantic segmentation. It contains 59 classes and
one background class, consisting of 4,998 training and 5,105
test images. Results on Pascal-Context test set is presented
in Table 4. With both ResNet101 and HRNet48 backbone,
our method achieves state-of-the-art results comparing to
previous methods with the same backbone.

5.3. Computational efficiency

We compare the testing FPS, training iterations per sec-
ond, and GPU memory consumption by our in-house im-
plementation in Table 5. Our full approach shows similar
computational efficiency to the recent efficient variant of self-
attention modules [13, 34, 27] for semantic segmentation,
meanwhile showing better accuracy (Table 1 and Table 3).

Method Testing Training
FPS↑ it./sec.↑ Mem.↓

HRNet48 [23] 28 2.6 8.2G
HRNet48 + CCNet [13] 21 1.7 9.9G
HRNet48 + ANL [34] 26 2.2 8.6G
HRNet48 + OCR [27] 24 2.1 9.6G
HRNet48 + ours 24 2.0 8.9G

Table 5: Comparing the model efficiency measured on a
GeForce RTX 2080 Ti with image size 512× 512. Testing
FPS is averaged for processing 50 images. Model training is
monitored with a batch size of 4.

5.4. Ablation study

We conduct comprehensive ablation experiments to verify
the effectiveness of our proposals. In our ablation experi-
ments, the HRNet32 backbone is employed, and we sub-
sample ADE20K’s original training split into 16K/4K for
training and validation. We put detailed description and ar-
chitecture diagram for each experiment in the supplementary
material and focus on the comparisons and discussion here.

The effectiveness of the pyramidal output representa-
tion. As demonstrated in Table 6, our pyramidal “output”
representation (the second row) consistently brings improve-
ment over the standard single-level output (the first row)
under various model settings. It gains +1.65, +1.05 and
+2.31 mIoU improvement without any contextual module,
with ANL module [34] and with the proposed coarse-to-fine
contextual module, respectively.

The effectiveness of the contextual module. Our con-
textual module is designed to accord with the multi-level

essence of the proposed pyramidal output. As shown in
Table 6, when predicting the standard output (of a sin-
gle finest level), our coarse-to-fine contextual module and
the ANL [34] gain similar improvement over the baseline:
+1.58 (40.42 → 42.00) and +1.60 (40.42 → 42.02). How-
ever, when predicting the proposed pyramidal output, our
coarse-to-fine contextual module achieves a more signifi-
cant +2.24 improvement (42.07 → 44.31) than appending
a single ANL to the backbone +1.00 (42.07 → 43.07). Fur-
thermore, our module also gains more improvement than
applying ANL modules at all pyramid level (denoted as
ANL-multi) +1.38 (42.07 → 43.45), indicating the effec-
tiveness of our design to aggregate contextual information
from coarser pyramid levels.

Contextual module
Output format - ANL ANL-multi ours

Single (standard) 40.42 42.02 - 42.00
Pyramidal (ours) 42.07 43.07 43.45 44.31

Table 6: Ablation study for the main proposals in two
aspects—i) the pyramidal output representation (the rows)
and ii) the contextual module (the columns). Mean IoU (%)
of each setting is reported for comparison. Here “ANL” is
appending a single ANL to the backbone, and “ANL-multi”
is applying ANL to each level of our pyramidal “output”.

Supervision for specialization of different pyramid out-
put levels. To enforce specialization in training phase, it
is important to relabel cells which are “done by coarser” as
“don’t care”. In Table 7, we show the results comparing to
other relabeling policies. We can see that naively training all
semantic pyramid levels to predict full semantic segmenta-
tion map do not achieve any improvement. This is reasonable
as it ignores the fact that only a small portion of the cells in
finer pyramid level would be activated in testing. A simple
fix is explicitly relabeling all descendants of a ground-truth
unity-cell as “don’t care” during training. By doing so, differ-
ent semantic pyramid levels now can specialize in the pixels
assigned by the oracle. A clear +1.12 mIoU improvement
is now shown. However, the simple fix still ignores the fact
that the unity-cell prediction may produce false negatives
where a ground-truth unity-cell is falsely classified as a mix-
cell and thus a finer-level semantic prediction is referred in
inference phase. As a result, the false negatives might make
the train-test distributions inconsistent. Finally, our design
of re-labeling the descendants of a true positive unity-cell as
“don’t care” gains an extra +0.53 mIoU improvement.

single output naive simple fix our final
40.42 40.41 41.54 42.07

Table 7: Comparing the relabeling policy in the training pro-
cedures for our pyramidal output (the right-most 3 columns).
No contextual module is deployed for all experiments.
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Does the improvement stem from auxiliary supervision?
One may argue that the improvement from our pyramidal
output representation stems from the rich supervision at the
multi-level rather than our “specialize and fuse” process. To
clarify the contribution, we skip the “fuse” phase at inference
and use the semantic output at the finest-level as the final
output. In this case, the supervision at multi-level are con-
sidered as auxiliary supervision. In Table 8, we can see that
the auxiliary supervision indeed improves the performance
(+0.63). However, the improvement is not comparable to
our specialized and fuse process (+2.31), which suggests
that the main contributor to our superior performance is not
multi-level supervision but the specialized and fuse strategy.

single output aux. supervision specialize & fuse
42.00 42.63 (+0.63) 44.31 (+2.31)

Table 8: How to use coarser-level outputs. The proposed
contextual module is deployed for all results.

Number of pyramid levels in our output representation.
This work focuses on the setting of L=4 pyramid levels of
output strides {4, 8, 16, 32} for our pyramidal output repre-
sentation in all experiments. We also experiment with L=2
levels of output strides {4, 32} which yields a slightly worse
results (44.31 vs. 44.20 mIoU). Therefore, we stick to the
L=4 setting.

5.5. Performance analysis

Does each pyramid level specializes in the selected pix-
els by unity pyramid? In Table 9, we divide pixels into
four groups (the four columns, ℓ ∈ {1, 2, 3, 4}) according to
the assignment from our predicted unity pyramid (Sec. 3.3).
For each group, we show the performance of the seman-
tic predictions of the four pyramid levels (the four rows,
ℓ′ ∈ {1, 2, 3, 4}). We can see that the mIoU is degraded if a
pixel refers to a pyramid level that does not agree with the
assignment by the trained unity pyramid (ℓ′ ̸= ℓ in each col-
umn of Table. 9), indicating that different semantic pyramid
levels learn to specialize in predicting the pixels assigned by
our predicted unity pyramid.

ℓ′ \ ℓ 4 3 2 1
4 33.48 39.52 42.13 38.61
3 31.63 41.17 45.98 44.57
2 27.31 38.13 46.34 47.52
1 21.94 28.94 40.05 48.05

Table 9: mIoU over a pair of pyramid levels, where ℓ indi-
cates the level of the unity-cell prediction and ℓ

′
indicates

the level of the semantic prediction. When ℓ
′
= ℓ, the mIoU

is higher than other ℓ
′ ̸= ℓ for every ℓ.

Do different pyramid levels specialize in different
classes? To demonstrate our intuition that different pyra-
mid levels have their specializations in different classes, in
each row of Fig. 3, we show the per-class IoUs predicted by

each semantic level. The results suggest that each Ŷ (ℓ) learns
better for different classes in practice. For instance, Ŷ (4) per-
forms better at trafficlight, while Ŷ (2) is good at mountain.
See supplementary material for more visualizations.
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person sky
radiator

glass clock flag

1
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3
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-20
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-12
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Figure 3: Semantic segmentation performance at each level
{Ŷ (ℓ)}ℓ=1,...,4 on different classes. We show the IoU degra-
dation due to using a level Ŷ (ℓ) versus using the fused Ŷ .

Qualitative results. We show some qualitative results
comparing to the strong baseline, HRNet48-ANL, in Fig. 4.
See the supplementary material for more examples.

input ground truth HRNet48-ANL HRNet48-ours

Figure 4: Qualitative results. In the examples, our approach
yields better results in the stuff (the 1st row), the large thing
(the 2nd row), and the thin part of the object (the 3rd row).

6. Conclusion
We present a novel “output” representation for the task

of semantic segmentation. The proposed pyramidal output
format and the fusing procedure follow the motivation to
assign each pixel to an appropriate pyramid level for better
specialization and the parsimony principle. We also present
a contextual module, which is efficient and fits the essence of
the proposed pyramidal output, improving our performance
further. Improvements are shown through extensive experi-
ments. Finally, our performance is on par with or better than
the recent state-of-the-art on three widely-used semantic
segmentation datasets.
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