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Abstract

In recent years, the growing utilization of medical imag-
ing is placing an increasing burden on radiologists. Deep
learning provides a promising solution for automatic medi-
cal image analysis and clinical decision support. However,
large-scale manually labeled datasets required for training
deep neural networks are difficult and expensive to obtain
for medical images. The purpose of this work is to develop
label-efficient multimodal medical imaging representations
by leveraging radiology reports. We propose an attention-
based framework for learning global and local represen-
tations by contrasting image sub-regions and words in the
paired report. In addition, we propose methods to lever-
age the learned representations for various downstream
medical image recognition tasks with limited labels. Our
results demonstrate high-performance and label-efficiency
forimage-text retrieval, classification (finetuning and zeros-
shot settings), and segmentation on different datasets.

1. Introduction

Advancements in medical imaging technologies have
revolutionized healthcare practices and improved patient
outcome. However, the growing number of imaging studies
in recent years places an ever-increasing burden on radiol-
ogists, impacting the quality and speed of clinical decision
making. While deep learning and computer vision provide
a promising solution for automating medical image anal-
ysis, annotating medical imaging datasets requires domain
expertise and is cost-prohibitive at scale. Therefore, the task
of building effective medical imaging models is hindered by
the lack of large-scale manually labeled datasets.

To address this problem, a natural solution is to lever-
age the corresponding medical reports that contain detailed
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Figure 1: Our multimodal global-local representation learning
framework (GLoRIA) extracts features through the image and text
encoders, and learns global and localized representations by con-
trasting attention-weighted image sub-regions and words in the re-
ports. The learned global-local representations are utilized to ob-
tain label-efficient models for various downstream tasks including
image-text retrieval, classification (fine-tuning and zero-shot set-
tings) and segmentation.

descriptions of the medical conditions observed by radi-
ologists. Several recent works utilize these medical re-
ports to provide supervision signals and learn multimodal
representations by maximising mutual information between
the global representations of the paired image and report
[13, 3, 41, 40]. However, pathology usually occupies only
small proportions of the medical image, making it diffi-
cult to effectively represent these subtle yet crucial visual
cues using global representations alone. This motivates a
need for learning localized features to capture fine-grained
semantics in the image in addition to global representa-
tions. While the idea of learning local representations has
been explored in several other contexts for natural images
[7, 27, 25, 4], including image-text retrieval and text-to-
image generation, these works typically require pre-trained
object detection models to extract localized image features,
which are not readily available for medical images.

In this work, we focus on jointly learning global and
local representations for medical images using the cor-
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responding radiology reports.  Specifically, we intro-
duce GLoRIA: a framework for learning Global-Local
Representations for Images using Attenion mechanism by
contrasting image sub-regions and words in the paired re-
port. Instead of relying on pretrained object detectors, we
learn attention weights that emphasize significant image
sub-regions for a particular word to create context-aware
local image representations (Fig. 1). Due to the lengthy na-
ture of medical reports, we introduce a self-attention-based
image-text joint representation learning model, which is ca-
pable of multi-sentence reasoning. Furthermore, we pro-
pose a token aggregation strategy to handle abbreviations
and typos common in medical reports.

We demonstrate the generalizability of our learned repre-
sentations for data-efficient image-text retrieval, classifica-
tion and segmentation. We conduct experiments and evalu-
ate our methods on three different datasets: CheXpert [16],
RSNA Pneumonia [32] and SIIM Pneumothorax. Utiliz-
ing both global and local representations for image-text re-
trieval is non-trivial due to the difficulty in incorporating
multiple representations for each image-text pair. There-
fore, we introduce a similarity aggregation strategy to lever-
age signals from both global and local representations for
retrieval. Furthermore, our localized image representations
are generated using attention weights that rely on words to
provide context. Thus, to leverage localized representations
for classification, we generate possible textual descriptions
of the severity, sub-type and location for each medical con-
dition category. This allows us to frame the image classifi-
cation task by measuring the image-text similarity and en-
ables zero-shot classification using the learned global-local
representations. Finally, experimental results on various
tasks and datasets show that our GLoRIA achieves good
performance with limited labels and consistently outper-
forms other methods in previous works.

Our contribution can be summarized as follows: (1) We
propose GLoRIA: a framework for jointly learning mul-
timodal global and local representations of medical im-
ages by contrasting attention weighted image regions with
words in the paired reports and (2) we demonstrate the
label-efficiency of our framework by evaluating the learned
multimodal global-local representations on image-text re-
trieval, classification (finetune and zero-shot) and segmen-
tation tasks with limited labels.

2. Related Work
2.1. Utilizing radiology reports for medical images

To leverage information from radiology reports, a num-
ber of previous work explore methods for extracting labels
from reports via natural language processing (NLP) as a
surrogate for manual annotations [16, 35, 18]. Although
these approaches can be scaled to generate labels for large

datasets, the extracted labels are noisy and often limit the
model’s performance. Furthermore, these efforts disregard
the rich and detailed descriptions originally contained in the
reports during the process of label extraction.

Deep learning models that utilize both text and image
data as inputs have drawn more attention in recent years.
These methods extract knowledge from both the image
and corresponding report by leveraging attention mecha-
nisms or image-text transformers [28]. However, some of
these approaches require radiology reports as inputs for in-
ference, making them less applicable in contemporaneous
model deployment in practice. Other studies have devel-
oped methods that avoid the need of text reports during in-
ference [41, 3], but they still require large-scale manual an-
notations during training. In addition, very few prior works
investigates methods for learning localized features for mul-
timodal data which is crucial for medical images.

In contrast, image-text joint representation learning
strategies typically do not require manual annotations dur-
ing training and can be used to fine-tune for downstream
tasks using only one of the modalities. For instance,
[13] uses an unsupervised adversarial training and showed
promising results for image-text retrieval. [40] maximizes
mutual information across modalities through contrastive
learning and evaluate on retrieval and classification tasks.
However, these studies considered only global representa-
tions, which can be limiting since medical conditions often
occupy a small proportion of the entire medical image. Our
work builds on top of these prior works by jointly learning
both global and local multimodal representations for medi-
cal images by leveraging medical reports.

2.2. Localized image-text representation learning

Image-text joint representation learning has been studied
extensively for tasks such as VisualQA [2, 11, 14, 39], im-
age captioning [22, 36, 21, 20], and image-text retrieval [5,
38, 8,9, 15, 38, 34]. Recent studies have achieved progress
by utilizing localized representations through stacked atten-
tion [25], semantic ordering [15] and graph convolutional
neural networks [27, 7]. Most of these works rely on ob-
ject detection models that are pretrained using natural im-
age datasets to extract image region features. While object
detectors are effective for natural images, direct transfer to
medical image datasets is limited by the domain gap be-
tween medical and natural images. Furthermore, few previ-
ous works have applied the learned representations to tasks
beyond image-text retrieval.

Other works explore learning localized representation
without relying on pretrained object detection model, but
only demonstrated effectiveness for specific natural image
tasks. [38] proposed to use a ranking loss function to
learn both global and localized representations for image-
text retrieval. [37] learned attention weights to unify image
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regions and word representations for fine-grained text-to-
image generation. However, medical reports often contain
typographical errors, as well as long-range context depen-
dencies, which introduce unique challenges not common
in natural image-caption datasets. We address these chal-
lenges by utilizing a self-attention based model that are ef-
fective for multi-sentence reasoning and propose a token ag-
gregation strategy.

2.3. Zero-shot classification

Since zero-shot learning was introduced [24], many
studies have investigated methods to classify images with-
out training labels [23, 33, 10, 26, 6, 31, 29]. One possi-
ble solution is to leverage information from other modali-
ties [23, 33, 10, 26]. Recent efforts introduce strategies for
learning visual representations using text data as supervi-
sion [6, 31, 29]. However, these methods only learn global
representations of images, which can be limiting when ap-
plied to medical image recognition tasks due to the high
inter-class similarities among the medical images that are
distinguishable only by very subtle visual cues. In con-
trast, our work jointly learns global and local representa-
tions, which can provide complementary information from
both the full image and the critical local region of interest.

3. Method

The goal of this work is to jointly learn global and lo-
cal multimodal representations of medical images by lever-
aging medical reports for various downstream tasks where
manual annotations are limited. Specifically, we observe
that pathologies present in medical imaging examinations
often occupy a small proportion of the image and only cor-
respond to certain key words in medical reports. Motivated
by this, we propose an attention-based framework for mul-
timodal representation learning by contrasting image sub-
regions to words in the corresponding report. Our method
generates context-aware local representations of images by
learning attention weights that emphasize significant image
sub-regions for a particular word. Here we first describe in
Sec 3.1 the image and text encoders we use to extract fea-
tures from each modality. In Sec. 3.2, we formalize our
multimodal global-local representation learning objective.
Finally, in Sec. 3.3, we present strategies for utilizing both
global and local representations for label-efficient and zero-
shot learning in various downs-stream tasks.

3.1. Image and text encoding

Given a paired input [z, z¢], where z, denotes an im-
age and x is the corresponding report, we use an image en-
coder F, and a text encoder E; to extract global and local
features from each modality. The global features contain the
semantic information that summarizes the image and report.
The local image features capture the semantics in the image

sub-regions, while the local text features are word-level em-
beddings. These global and local features are used to learn
multimodal representations using our framework, and the
encoders are trained jointly with our representation learn-
ing objective. We then apply the learned representations to
downstream image recognition tasks, such as retrieval, clas-
sification and segmentation.

3.1.1 Image encoding

To construct the image encoder E,, we use the ResNet-50
architecture [12] as the backbone to extract features from
the image. The global image features f;, € RY are ex-
tracted from the final adaptive average pooling layer of the
ResNet-50 model, where C' denotes the feature dimension.
We extract the local image features from an intermediate
convolution layer and vectorize to get the C-dimentional
features for each of M image sub-regions: f; € REXM .

3.1.2 Text encoding

Medical reports typically consist of long paragraphs and re-
quire reasoning across multiple sentences. Therefore, we
utilize a self-attention based language model for learning
long-range semantic dependencies in medical reports. In
particular, we use the BioClinicalBERT [1] model, pre-
trained with medical texts from the MIMIC III dataset [19]
as our text encoder F; to obtain clinical-aware text embed-
dings. We further employ word-piece tokenization to min-
imize the out-of-vocabulary embeddings for abbreviations
and typographical errors which are common in medical re-
ports. For a medical report with W words, each word is
tokenized to n; sub-words. The tokenizer would generate a
total of N = Z}ZO n; word piece embeddings as the input
to the text encoder. The text encoder extracts features for
each word piece, respectively. Thus, the local text features
output from the text encoder can be denoted as g; € RE*N
where K is the dimension of each word-piece feature. The
global text feature is defined as the aggregation of all the
word-piece features g, = Zilio qli-

3.2. Global and local representation learning

An overview of our representation learning framework
is shown in Figure 2. In addition to training image en-
coder F, and text encoder E; for feature extraction, we also
learn global representation functions (denoted as R, , R4
for image and text features respectively) and local represen-
tation functions (denoted as R,;, Ry; for image and text fea-
tures) to project the image and text features to a multimodal
semantic space, where representations from true pairs of
image and text are in close proximity. The overall represen-
tation learning objectives contain: 1) global contrastive loss
that learns to relate the entire image to the paired report, and
2) local contrastive loss that learns fine-grained alignments
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Figure 2: Overview of the proposed multimodal global-local representation learning framework (GLoRIA). Given a pair of medical
image and report, we first use the image encoder and text encoder to extract image and text features respectively. The global image-text
representations are learned through the global constrastive loss. For learning local representations, we compute the similarity matrix based
on the image sub-region features and word-level features to generate attention-weighted image representations. The local contrastive
objective is based on the attention-weighted image representations and the corresponding word representations. The overall representation
learning framework is trained end-to-end by jointly optimizing both local and global contrastive losses.

between image sub-regions and word pieces. Through si-
multaneously training with both global and local losses, the
model is able to learn better global and local representations
using complementary mutual information.

3.2.1 Multimodal embedding framework

For each input image, we use the image encoder F,, detailed
in Sec. 3.1 to extract both global and local features. Next,
we train the global and local image representation learning
functions R, 4 and R,; to transform the global and local im-
age features to representations in multimodal feature space:
vy = Ryg(Ey(zy)) and v; = Ry (Ey(x,)). The global
image representation v, € R” is a single D-dimensional
vector while local image representation v; € RP*M con-
sists of D-dimensional vectors for all M image regions.

As aforementioned, we overcome challenges from ab-
breviations and typographical errors common in medical
reports by using tokenization to represent words as word-
piece embeddings. However, we want to learn the corre-
spondence of visual semantics to specific words instead of
word-pieces for precise multi-modal representations, partic-
ularly for medical terms. For instance, instead of finding vi-
sual signals for each word-pieces [”Car”, "dio”, "mega”,
”ly”], it is important to understand the direct correspon-
dence of the term ”Cardiomegaly” to the image sub-regions
that contain an enlarged heart. Therefore, we aggregate by
averaging the word-piece features encoded by the text en-
coder to obtain word-level features. The aggregated word-
level features are then projected to representations in D di-
mensional multimodal feature space using global and local
representation learning functions denoted as R;; and Ry

respectively: t; = Ryg(Ey(x:)) and t; = Ry (Ey(xy)).

3.2.2 Global contrastive loss

Since medical reports contain detailed descriptions of the
observations for the corresponding medical images, the
paired image and report are expected to have similar se-
mantic information in the multimodal feature space. Thus,
the first learning objective is to maximize the alignment be-
tween the true pairs of image and text versus random pairs
by using the global representations. To achieve this, we
follow [40, 29] to use contrastive loss functions for maxi-
mizing the posterior probability of the global image repre-
sentation vg; given its corresponding text representation ;.
Therefore, the global objective is formulated as minimizing
the negative log posterior probability:

L(”‘t):i—log( OPgintoi)/T)__y -y
T T S (v ter) /1)

where 77 € R is a scaling temperature parameter, and
(vgi,tgi) represents the cosine similarity between the
global image representation v, and global text features ¢ ;.

Similarly, due to the mutual correlation between the im-
age and text pairs, we also maximize the posterior probabil-
ity of the text given its corresponding image. In this way, it
is ensured that the image-text correlation is asymmetric to
either modality.

LGl) — i\/: — log( exp((vgi, tgi)/T1) ) ©
! i=1 chvzl exp((vgk, tgi)/T1)
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3.2.3 Attention weighted image representation

While the global contrastive loss constrains alignment be-
tween the entire image and text, relying only on global rep-
resentations can be limiting for medical image recognition.
In contrast to natural images, the regions of interest for med-
ical images are indicated by very subtle visual cues, and can
easily be underrepresented using global feature alone. To
bypass the reliance of pretrained object detection models for
extracting image features for sub-regions, we instead learn
attentions that weigh different image sub-regions based on
their significance for a given word. By contrasting the at-
tention weighted image representations to the correspond-
ing word embedding, the attention weights are learned as
part of our local representation objective.

To generate the word-based attention weighted image
representation, we first compute the dot-product similarity
between all combinations of local text and image features:

s = vthl (3)

s € RM*W indicates the similarity matrix between W
words and M image sub-regions. Thus, s; ; corresponds to
the similarity between the word 7 in the text and sub-region
7 in the image. We normalize the similarities for each sub-
region to ensure comparable similarities across the image
regions.

For every word in the report, we compute an attention
weighted image representation c¢; based on its similarities
to all the image sub-regions. The attention weight a;; is the
normalized similarity for a word across all image-regions:

exp(si j / T 2)
M
> k1 €xp(Sik/T2)
where 7o € R is a temperature parameter.
The context-aware image representation c; is an
attention-weighted sum of all the image sub-region features
based on the sub-region’s similarity to the given word:

M
Ci = Z aijVj (5)
j=0

“)

aij =

3.2.4 Local contrastive loss

In order to learn the attention weights introduced in pre-
vious section, we need a localized objective for training.
Here, we set up a contrastive objective for learning localized
multimodal representations. Specifically, we use a localized
feature matching function Z to aggregate the similarities be-
tween all W word features ¢; and their corresponding atten-
tion weighted image features c;.

w
Z(wi, ) =log(d_ exp((ci, ti) /75))™ (6)

=1

where 73 € R is another scaling factor while x,, and x; are
local features for an image and report.

Since the matching function captures the similarity be-
tween the attention-weighted image features and word-level
text features, the local contrastive loss can be defined as
the posterior probability based on the matching function
Z (x4, x,). This way, the local contrastive loss aims to max-
imize the posterior probability of the attention-weighted im-
age region representations given the word representations:

N
Ll(v‘t) _ Z_log( eXp(Z(Ivivxti)/TQ)

N
i=1 > k=1 €XD(Z (T vi, Tk) [ T2)
Similarly, to ensure that the multi-modal representations

are asymmetric to either of the input modalities, we also
minimize:

)

N
Ll(t\u) _ Z—log( exp(Z (Twi, ¥1i)/T2) )

i=1 Zicvzl exp(Z(Zok, T4i)/T2)

®)

3.2.5 Total loss

The final training objective for our representation learning
framework contains both global L{"”) + L{'™™ and local
Lgt‘”) + Ll(vlt) contrastive losses. By jointly optimizing
global and local objectives, both losses can mutually com-
plement each other for learning better global and local rep-
resentations simultaneously.

L = Lgtlv) + L;”lt) + Ll(tlv) + Ll(vlt) (9)
3.3. Utilizing global and local representations

After the multimodal representation learning stage, the
learned representations can be used for different down-
stream tasks, including retrieval, classification and segmen-
tation. Existing studies typically fine-tune task-specific
models based on the learned global representations for dif-
ferent downstream tasks. However, these approaches do
not take advantage of the local features learned through our
framework. Jointly utilizing global and local representa-
tions for downstream tasks such as image-text retrieval is
non-trivial because it requires incorporating multiple repre-
sentations for each image and text pair. We therefore pro-
pose an aggregation strategy to consider both global and
local image-text similarities as shown in Fig. 3

Furthermore, our localized image representations are
generated using attention weights, which rely on the words
to provide context. Since image classification datasets typ-
ically do not provide context words, we generate possible
textual descriptions of the severity, sub-type and location
for the medical condition we are predicting to represent
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Figure 3: Hybrid global and local image-text similarity. After the
feature extraction through image and text representation project,
the global similarity is calculated based on global image and text
representations. The local similarities are computed using on the
word-based attention-weighted image representations and the cor-
responding word representations. The final image-text similarity
is obtained by averaging the global and local similarities.

each class. This allows us to frame the image classifica-
tion as an image-text similarity task, and enables zero-shot
classification using the learned global-local representations.

3.3.1 Image-text retrieval

In the image-text retrieval task, a query image is used as
the input to retrieve the closet matching text based on the
similarities between their representations. Formally, given
a query image x, and a collection of candidate texts X,
we extract global image and text representations vy, g by
using their respective encoders and representation learning
function. Then the target sentence is retrieved by finding
the highest similarity score: argmax;, S(vg,t4). Note that
S(vg,tgr) can be any similarity between the query image
v, and candidate sentence k. This formulation, however,
only compares similarities between the global representa-
tions of query and candidates. For medical images, key
words in the entire report often correspond to only a small
proportion of the image, the fine-grained alignment between
word and image regions is needed to improve retrieval per-
formance. Thus, we propose to leverage both the global
and local features for a more accurate retrieval. We use
the attention-driven image-text matching-score Z(t;;, v;;)
defined in Eq. 6 as the similarity metric for the local rep-
resentations. In this way, the localized similarity between
the query image and candidate sentences can be calculated
base on the context-aware local representations. Finally, the
image-text retrieval task is completed based on the aggre-
gated image-text similarity metric by averaging the global
and local similarities as shown in Fig. 3.

3.3.2 Zero-shot image classification

In zero-shot classification, we take an image x, as input
and aim at predicting the corresponding label y = C(z,)
even though the classifier C' is not explicitly trained with
class labels y. Inspired by [29], we convert the classi-
fication classes into textual captions and frame the image
classification task as measuring the image-text similarity.
Specifically, we consult a radiologist to utilize the medical
domain knowledge to generate reasonable texts to describe
the possible sub-types, severities, and locations for each
of the medical conditions in the classification categories.
In this way, we generate such textual prompts to represent
each classification class by randomly combining the possi-
ble words for sub-types, severities and locations. Next, the
generated candidate prompts Y; for all n classes are pro-
jected to multimodal embedding space using our pretrained
representation learning functions: ¢, = R.,(E.(Y;)) and
t; = Ry(E(Y;)). Similarity, we obtain the global and lo-
cal representations for the input image vy = Ryq(Ey(2y)),
vy = Ry (Ey(zy)). Therefore, the input image is clas-
sified by finding the class prompts with the highest aver-
age similarity according to global and local representation:
argmax; (3 (S(tgi, vg) + Z(ti,v1))).

4. Experimental Results

To validate the effectiveness of our representation learn-
ing framework, we conduct experiments using the learned
global and local representations for image-text retrieval, im-
age classification (fine-tune & zero-shot) and segmentation.
We compare our method to several state-of-the-art image-
text joint embedding methods and show that our method
achieves better results consistently on 3 different datasets.

4.1. Datasets

CheXpert [16]. We use the CheXpert dataset to train our
representation learning framework and evaluate for classi-
fication tasks. The CheXpert dataset contains a total of
224,316 chest radiographs from 65,240 patients, where each
radiograph is paired with the corresponding radiology re-
ports. Each radiograph is labeled for the presence of 14
total medical observations. In our experiment, we focus
on investigating the frontal chest radiographs with 191229
image-text pairs. Following the experiments setting in [40],
we hold out the expert-labeled validation set, containing
202 images, as the test set since the official test set is not
publicly available. Therefore, we randomly sample 5,000
images from the training data for validation.

CheXpert 5x200. The chest radiographs in the original
CheXpert dataset are multi-labeled to account for the simul-
taneous presence of multiple medical observations. Since
our zero-shot classification and retrieval is based on finding
the most similar target, having multiple possible label for
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Method Prec@5 Prec@10 Prec@100
DSVE [8] 40.64 32.77 24.74
VSE++ [9] 44.28 36.81 26.89
ConVIRT [40] 66.98 63.06 49.03
GLOoRIA (Ours) - global only | 67.02 64.68 49.55
GLoRIA (Ours) - local only 68.22 64.58 48.17
GLoRIA (Ours) 69.24 67.22 53.78

Table 1: Results of image-text retrieval on the CheXpert 5x200
dataset. The top K Precision metrics are reported for K =
5,10, 100. Ours method achieves the best performance by incor-
porating both global and local representations.

a target can cause confounding results between categories.
Therefore, following the setting in [40], we use the partial
data from CheXpert to create the CheXpert 5x200 dataset,
which includes 200 exclusively positive images for each of
the CheXpert competition tasks: Atelectasis, Cardiomegaly,
Edema, Pleural, Effsion. In this dataset, each image con-
tains positive labels for only one specific condition.

RSNA Pneumonia [32]. To evaluate the generalizability of
our pretrained representation framework for classification
on external datasets, we use the RSNA Pneumonia dataset
containing 30k frontal view chest radiographs labeled either
as ’healthy” or “peumothorax positive”. The train/valid/test
split each constitutes 70%/30%/30% of the dataset.

SIIM Pneumothorax. We use the SIIM Pneumothorax
dataset to evaluate the learned representations’ capability
for segmentation. This dataset contains a total of 12047
chest radiographs, each paired with manually annotated
segmentation masks for pneumothorax. The train/valid/test
split respectively constitutes 70%/30%/30% of the dataset.

4.2. Baselines

We compare our method with other state-of-the-art
multi-modal representation learning method. Within the
same medical image domain, we compare our work to Con-
VIRT [40] which has shown state-of-the-art performance
for image-text retrieval and classification by contrasting
only global representations of image and report pairs. Since
the codebase for ConVIRT is not publicly released, we im-
plement the method according to the description in [40].
In addition, we also compare our method with other multi-
modal representation learning methods proposed for natu-
ral image tasks. Most state-art-the art methods require pre-
trained object detection model for local feature extraction,
which is not applicable for medical images. Thus, we focus
on comparing ours method with DSVE [8], which shows
localization capabilities without using object detectors. We
also compare our method to VSE++ [9] which achieves
the best performance for image-text retrieval by using only
global representations.

CheXpert RSNA
1% 10% 100% | 1% 10% 100%
Random 56.1 62.6 65.7 589 694 741
ImageNet 744 791 814 | 749 745 763
DSVE [8] 50.1 51.0 515 |49.7 521 578
VSE++ [9] 503 512 524 494 572 679
ConVIRT [40] 859 86.8 873 774 80.1 813
GLoRIA (Ours) | 86.6 87.8 88.1 86.1 88.0 88.6

Table 2: Results of fine-tuned image classification (AUROC
score) on CheXpert and RSNA test sets based on different portion
of training data: 1%, 10%, 100%.

4.3. Image-text retrieval

First, we use CheXpert 5x200 dataset to evaluate the
effectiveness of our representation learning framework for
image-text retrieval. Given an image as input query, we re-
trieve the target reports by computing the similarity between
the query image and all candidate reports using the learned
representations. We use the Precision@ K metric to calcu-
late the precision in the top K retrieved reports by checking
if the selected report belongs to the same category as the
query image.

Based on the results presented in Table 1, our model
achieves comparable performance with ConVIRT when
only global representations are used. This is expected since
we use the same global contrastive loss as ConVIRT to train
our global representations. While we find our approach to
achieve slightly better results using localized representation
alone, our best retrieval results are based on leveraging both
the local and global representations, outperforming all the
baselines by a large extent. This indicates that the global-
local representations learned in our method efficiently pro-
vide complementary semantic information.

4.4. Classification

We further evaluate the learned representations on an im-
age classification task in two different settings. For super-
vised classification, we train a linear classifier on top of the
pretrained image encoder using different amounts of train-
ing data (1%, 10% or 100%) to evaluate the data-efficiency
of the global image representations. For zero-shot classifi-
cation, we employ the approach described in Sec. 3.3.2 to
evaluate the effectiveness of our learned representations for
classification without additional labels for fine-tuning.

In Table 2, we show the classification results for CheX-
pert and RSNA datasets across different percentage of train-
ing data. To account for the variance in results from ran-
domly sampling training data, we averaged results from five
independent runs. We use the area under the ROC curve
(AUROC) as our evaluation metric. Our method outper-
forms the other representation learning methods on both
datasets. It is also worth noting that our method trained
with only 1% of the data consistently outperform imagenet
initilized models with 100% data for training. This indi-
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CheXpert Acc. Sens. Spec. PPV NPV Fl

100% 057 083 080 051 095 0.63
10% 055 076 082 051 092 0.61
1% 047 068 085 053 091 0.59

Zero-shot 0.61 0.70 091 0.65 092 0.67
RSNA Acc  Sen Spe PPV NPV Fl

100% 079 087 076 052 095 0.65
10% 078 078 079 052 092 0.63
1% 072 082 069 044 093 0.57

Zero-shot 0.70 0.89 0.65 043 095 0.58

Table 3: Results of zero-shot image classification on the CheX-
pert 5x200 and RSNA datasets. Note that representation learning
framework is trained using CheXpert. We compare classification
results with different amounts of training data for comparison.

cates that simultaneously training both global and local con-
trastive objectives can also help to learn better global repre-
sentations for label-efficient classification.

Although DSVE and VSE++ demonstrate effective rep-
resentation learning for image-text retrieval, directly appli-
cation for medical image datasets does not show compara-
ble results. These methods only focus on minimizing the
distance the representations of true image and text pairs,
without contrasting with other samples. Therefore, when
applied to medical images where inter-class visual similar-
ities are high, these methods can easily overfit by learning
irrelevant patient/case specific visual cues.

For zero-shot clasification, we use the CheXpert 5x200
dataset for 5 class classification and RSNA Pneumonia
dataset for binary classification. We present zero-shot clas-
sification results in Table. 3. On the CheXpert dataset, our
zero-shot classifier is able to achieve better F1 score as com-
pared to classification models fine-tuned with training la-
bels. Although we only use the CheXpert dataset to train
the representation learning framework, the performance on
the RSNA datasets is still comparable with supervised mod-
els fine-tuning with 1% of training data.

4.5. Segmentation

We also demonstrate the effectiveness of our representa-
tion learning framework for segmentation. Specifically, we
adopt the UNet [30] architecture for segmentation and ini-
tialize the encoder portion of the model with weights from
our pretrained image encoder E,,. We compare our method
with random, imagenet and ConVIRT initialization. In Ta-
ble 4, we report Dice scores and evaluate the data-efficiency
of each method by using 1%, 10% or 100% data for training.
We show that the learned representations using our frame-
work are effective for segmentation task when limited seg-
mentation masks are available for training.

Pneumothorax Segmentation
Initialization Method 1% 10% 100%
Random 0.090 0.286 0.543
ImageNet 0.102 0.355 0.635
ConVIRT [40] 0.250 0.432 0.599
GLoRIA (Ours) 0.358 0.469 0.634

Table 4: Results of image segmentation (Dice score) on SIIM
dataset with different portion of training data: 1%, 10%, 100%.

Pneumonla Pneumothorax Edema Opamty

Figure 4: Examples of frontal radiographs of the chest (top) with
corresponding attention weights for the given word (below).

4.6. Visualization of attention weights

We visualize the attention weights (See Eq. 4), which are
trained as part of our representation learning framework, to
qualitatively evaluate our method. While attention is not
explanation, well-trained attention weights should correctly
identify significant image regions that correspond to a par-
ticular word [17]. We reshape the attention weights to
match the input image size and overlay the attention map on
the original image for visualization. Fig. 4 demonstrates our
attention model is able correctly identify significant image-
regions for a given word. For instance, the attention based
on the word "Pneumonia” Fig. 4a (bottom) correctly local-
ize regions of the right lower lobe containing heterogenous
consolidative opacities indicative of pneumonia. Similarly,
the attention weights for "Pneumothorax” shown in Fig. 4b
(bottom) correctly highlights luncency in the right lung apex
that suggests penumothorax Fig. 4b (top). We show similar
results for "Edema” and ”Opacity” in Fig. 4c and Fig. 4d.

5. Conclusion

We propose a multimodal global-local representation
learning framework for medical images by leveraging radi-
ology reports. Specifically, the representations are learned
by contrasting attention-weighted image sub-regions and
words in the reports. Experimental results demonstrate
data-efficiency and zero-shot capability of learned represen-
tations for various downstream tasks on different datatsets
including retrieval, classification and segmentation.
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