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Abstract

Semi-supervised few-shot learning is developed to train
a classifier that can adapt to new tasks with limited la-
beled data and a fixed quantity of unlabeled data. Most
semi-supervised few-shot learning methods select pseudo-
labeled data of unlabeled set by task-specific confidence
estimation. This work presents a task-unified confidence
estimation approach for semi-supervised few-shot learn-
ing, named pseudo-loss confidence metric (PLCM). It mea-
sures the data credibility by the loss distribution of pseudo-
labels, which is synthetical considered multi-tasks. Specifi-
cally, pseudo-labeled data of different tasks are mapped to
a unified metric space by mean of the pseudo-loss model,
making it possible to learn the prior pseudo-loss distribu-
tion. Then, confidence of pseudo-labeled data is estimated
according to the distribution component confidence of its
pseudo-loss. Thus highly reliable pseudo-labeled data are
selected to strengthen the classifier. Moreover, to overcome
the pseudo-loss distribution shift and improve the effective-
ness of classifier, we advance the multi-step training strat-
egy coordinated with the class balance measures of class-
apart selection and class weight. Experimental results on
Sfour popular benchmark datasets demonstrate that the pro-
posed approach can effectively select pseudo-labeled data
and achieve the state-of-the-art performance.

1. Introduction

Deep learning has made great strides in many visual
recognition tasks, and its outstanding performances even
exceed human being in some scenarios [7]. However, it
always relies on numerous labeled data which may be a
heavy burden of data collection and maintenance in reality
[35]. How to get rid of the limitation of labeled samples and
learn a novel category only with one or few labeled samples
is the core of few-shot learning. Since few-shot learning
has great significance for its extensive applications on arti-
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ficial intelligence, it aroused a growing academic interest in
recent years.

As a typical transfer learning method, fine-tuning [5]
is the preliminary exploration for transferring accumulated
experience to new tasks. However, it is hard to perform
the domain adaptation with only few training data, in which
limited samples cannot represent the distribution of its class
[26]. Episodes-based training strategy [0][39] clarifies the
few-shot learning problem and has been the foundation
of majority few-shot learning methods. Particularly, each
episode learns a specific classification task, in which only
a few samples per class are available for training. Perfor-
mances are calculated on a series of episodes data for test-
ing the ability of rapidly adapting to new tasks. Meta-based
learning methods [60] [3 1] adopt the meta-learner to improve
the capability of acclimatizing themselves to different tasks.
Metric learning methods [ 1][12] attempt to find more ef-
fective distance metrics from numerous episodic tasks. Uti-
lizing the unified metrics formula, the class distribution is
more distinctive in metrics space.

More recently, there has been extensive research on
semi-supervised few-shot learning (SSFSL), aiming to im-
prove the model by utilizing a certain amount of unlabeled
data. Predicting pseudo-labels of unlabeled samples and se-
lecting high-confidence data for iterative training is a di-
rect and valid way for SSFSL [20][40]. However, the task-
specific confidence inference of pseudo-label suffers from
lacking of adequate instances support in single task. To ad-
dress this problem, we propose a task-free credibility esti-
mation approach to select the credible pseudo-labeled data,
by means of building a unitive confidence metric space.

In this paper, we focus on constructing the reliabil-
ity estimation of pseudo-labeled samples and proposing a
novel semi-supervised few-shot learning approach called
pseudo-loss confidence metric (PLCM). The full procedure
is showed in Algorithm 1 and illustrated in Figure 1. We
first map pseudo-labeled data to pseudo-loss space by uti-
lizing the pseudo-loss model, which can reflect the accep-
tance of current classifier to the unlabeled data with its
pseudo-label. In general, classifier tends to give decep-
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Figure 1. The overview of our proposed framework. On training process, we construct the pseudo-loss space according to the pseudo-loss
model for multi-tasks. Then, a selector and a filter are developed to perform confidence metric for unselected and selected pseudo-labeled
data respectively. Finally, the self-training strategy is adopted to fit the mixed set on evaluating process.

tive prediction results if the sample is hard to understand.
With the undependable prediction, it is extremely possible
to generate noisy pseudo-labels which cause heavier loss
than correct pseudo-labels do. Based on this, we set up the
semi-supervised Gaussian mixture model (ss-GMM) to fit
the pseudo-loss distribution and allocate the credibility of
pseudo-label according to learned distribution. Different
from other samples selection-based SSFSL methods, our
pseudo-loss confidence metric is based on the statistics of
multi-episodes tasks, concentrating on generality and unity.
Once the fitting is finished on training process, we estimate
the credibility of pseudo-labels on evaluation process only
through swift reasoning without any extra training.

The main contributions of this work are summarized as:
1) We present a novel pseudo-labeled data reliability es-
timation approach for semi-supervised few-shot learning,
dubbed as pseudo-loss confidence metric (PLCM). Differ-
ent from the previous work, we assess the confidence of
pseudo-labeled data in a unified pseudo-loss metric space
instead of apart between different tasks. 2) We devise
the multi-step training strategy that learns a more flexi-
ble pseudo-loss distribution to follow the training of clas-
sifier, which offers stabler confidence metric. 3) Experi-
mental results on four widely popular benchmark datasets
for few-shot learning demonstrate that the proposed method
achieves higher performance compared with other state-of-
the-art methods.

1.1. Related Work

Few-shot Learning. The existing few-shot learning meth-
ods can summarize as three aspects: (1) Metric learning
methods pay more attention to model the distance metrics
to better discriminate classes. Matching Networks [39] train
a fixed liner classifier with the distance of support set and

query set in the embedding space. Prototypical Networks
[32] search the prototype of different classes with a learned
mapping function. (2) Meta learning methods aim to obtain
a universal model which can rapidly adapt to new tasks.
MAML [6] optimizes model parameters according to the
gradients of multi-tasks, making it possible to fit new tasks
with a few steps. MetaOptNet [17] learns the feature em-
bedding by a linear classifier which is maintained as a con-
vex learning problem. (3) Graph network methods explore
the label structure or embedding structure between the sam-
ples of support set and query set. TPN [22] achieves la-
bel propagation from labeled instances to unlabeled test in-
stances with a graph construction model. DPGN [43] com-
bine the distribution-level relations and instance-level rela-
tions with a dual complete graph network.

Semi-supervised Learning. Semi-supervised learning
(SSL) is developed on the condition that few labeled data
and abundant unlabeled data are available, hoping to obtain
the similar or even same performance as supervised learn-
ing. The existing SSL methods can be roughly summarized
into three categories: (1) Self-training is the most widely
used semi-supervised method because of its simplicity and
effectiveness. Pseudo-labeling [16] provided by the most
confident class of base classifier is a typical self-training
approach. Furthermore, co-training [4 1] tries to understand
data with multiple views for solving the accumulative error
problem that occurs in self-training. (2) Consistency reg-
ularization methods focus on improving the robustness of
model and keeping the label distribution even if images are
noisy. 7m-model [15] introduces image augmentation as in-
put noise and regularizes itself with the extra consistency
loss. Mean Teacher [38] regularizes the model by adopt-
ing the exponential moving average of parameters. (3) Mix
methods try to combine the current dominant approaches
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such as self-training and consistency regularization so as to
obtain a unified framework of SSL. MixMatch method [3]
mixes labeled and unlabeled data with MixUp and proposes
a unified loss combined consistency regularization and en-
tropy minimization. FixMatch method [33] demonstrates
a simple but powerful model with the help of consistency
regularization and pseudo-labeling.

2. Methodology
2.1. Problem Formulation

Definition. The goal of semi-supervised few-shot learning
is to adapt to the task with only a few labeled data and a
certain number of unlabeled data acquired. Specifically, for
a S-shot W-way Q-query U-unlabeled task, S labeled sam-
ples from each of W classes comprise the support set S,
O x W samples as unseen datapoints for evaluation make up
the query set Q, and U unlabeled samples from each of W
classes constitute the unlabeled set /. The model needs to
classify the query set Q with only a few labeled samples of
the support set S available, assist with a fixed number of
unlabeled samples of the unlabeled set /.

Training Process. Given a dataset Dy,qi, With a set of
classes Cirain, Dirain consists of a labeled sub-set D; =
{(I,y),y € Cirain} and an unlabeled sub-set D, =
{Iyni} with the same classes set. We can sample many SS-
FSL tasks with episodes [37] to train the model. In each
episode, W classes are confirmed by randomly selecting
from Cypgin. (S + Q) labeled samples of each class are
sampled from sub-set D; to form support set and query set.
U unlabeled samples per class from sub-set D,,,,; construct
unlabeled set. Training is conducted by incessantly feed-
ing support set, unlabeled set and query set with different
episodes to the model.

Evaluation Process. Given another dataset D;.,; with a set
of novel classes Cics¢. Just like the training process, we
evaluate the model with episodic tasks. Once an under-
evaluated task is sampled from Dy, the model should
quickly adapt to it with the help of support set and unlabeled
set, and then is tested on query set. The final classification
performance is reported by averaging the results on query
set with a series of episodic tasks.

2.2. Pseudo-loss Model for SSFSL

Loss model is usually applicable to the learning of data
with noisy labels [2][18]. Noisy samples always have
higher loss during the early training, making it possible
to apply the mixture models to distinguish between clean
samples and noisy samples from the loss distribution. In-
spired by it, we extend the loss model to semi-supervised
few-shot learning, which aims to identify reliable pseudo-
labeled samples of unlabeled set so as to augment sup-
port set by learning its pseudo-loss distribution. Formally,

consider § = {(Is,ys),¥s € Cirain} as support set and
U = {(I,)} represents unlabeled set. At first support set is
used to help classifier to adapt to this specific task. Let 60,
represents the parameter of classifier warmed up by support
set, Thus we obtain the pseudo-labels of unlabeled set with
the classifier:

y;; = arg maX(PC(Im 95)) ) (1)

when P, is the softmax output of classifier. The pseudo-
loss of unlabeled set between the predictions of classifier
with parameter 65 and pseudo-label is formulated as:

LU6s) = {—yy log(Pe(Lu;05)), Lu €U}, (2)

Similarly, the sample I,, with noisy pseudo-label often
has higher pseudo-loss than that with clean pseudo-label.
Therefore, it is possible to distinguish the unlabeled data
with clean pseudo-labels by conducting confidence metric
for pseudo-loss.

2.3. Pseudo-loss Confidence Metric

Pseudo-loss Space. Specifically, noisy pseudo-labeled
data and clean pseudo-labeled data tend to have differ-
ent pseudo-loss distributions. To a certain extent, each
pseudo-loss component approximately follows normal dis-
tribution. Given that learned data normally have lower loss
than unseen data, we divide pseudo-labeled samples into
two branches: unselected set and selected set. Inevitably,
both sets have noisy pseudo-labeled data and clean pseudo-
labeled data. Therefore, the pseudo-loss space made up of
unlabeled set consists of four pseudo-losses:

PU) = {6 e LU|0s, FL, F1)}, (©)

where Fp indicates whether its pseudo-label is clean or
noisy, and F7 indicates whether this sample has been se-
lected or not. On training process, we introduce labeled
pseudo-loss instances by combining the pseudo-labels and
the ground truth of query set, helping to learn the pseudo-
loss distributions as supervised information.
Selector and Filter. Selector is designed to learn the
pseudo-loss distributions of unselected set and recognize
clean labeled data. Filter serves to screen noisy pseudo-
labeled data from selected set which is mistakenly chosen
by the selector. Thus, four-component ss-GMM is built to
fit pseudo-loss distribution. Two components are for the se-
lector and the other two are for the filter. The probability
density function of the pseudo-loss ¢; with K components
Gaussian mixture model is:
K
p(l;) = Zﬂkgk(fl; P> 2 4)
k=1

where 7 indicates the weight of kth Gaussian component
subject to 7, > 0 and Z,{;l 7, = 1. For a given pseudo-
loss instance ¢; of sample I, g, means the confidence
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of ¢; classified into kth Gaussian component. Suppose
pseudo-loss instances are collected by N episodes, labeled
pseudo-loss instances coming from query set of [V episodes
is Dy, unlabeled pseudo-loss of unlabeled set indicates as
Dy. We then maximize the log-likelihood of both the la-
beled and unlabeled pseudo-loss instances to seek maxi-
mum likelihood estimate (MLE) of ss-GMM model:

B = arg/l;lax logp ({DPr, Dy} | B)], (5)

where (8 indicates {(7;, 1i,%;) | 1 < i < K}, the log like-
lihood is further expressed as:
DL | ‘ , )
logp (Dr, DulB) = A Y logp (v | 8) p (¢4 | k. 8)
=1
(6)

Dyl

+=2 3 10 p(418),

where ) is a weight coefficient introduced in [42] to balance
the labeled and unlabeled information for parameters esti-
mation, and can be calculated with |Dy|/ (|D| + |Dul)-
Since it is hard to solve the MLE analytically, EM algo-
rithm is used to find a locally optimal solution with iterative
procedures. In the E-step, the posterior probability of £¢; be-
longs to kth Gaussian component p (g;, | £i;) obtained with
the current ss-GMM, and the estimated parameters of the
ss-GMM are updated in M-step.

Confidence Metric. After confirming the pseudo-loss dis-
tributions with the ss-GMM, we perform the confidence
metric of pseudo-labeled data according to the posterior
probability p (gc | £i;), where g, is the Gaussian compo-
nent with clean pseudo-label. The pseudo-labeled data with
high posterior probability is more likely to own the clean
pseudo-label and can be selected as authentic data for ex-
panding support set. The classifier is then re-trained with
the mixed data set:

Soiw = {506} 2y U { U )1 @)

where U, denotes the selected samples of unlabeled set and
y}, is the pseudo-label of sample I}, .
Self-training. Furthermore, in order to dig out the available
information of unlabeled set as thoroughly as possible, we
update the pseudo-labels of unlabeled set and re-calculate
its pseudo-loss distribution through re-training the classi-
fier. In general, augmented training set is support to help
classifier offers more reliable pseudo-labels. More samples
of unlabeled set that meet the requirement are selected to
enlarge the mixed set. The re-training and re-selecting are
iterated until the number of selected instances and the pre-
dicted pseudo-labels keep stable.

2.4. Multi-step Strategy for Instance Selection

During self-training, the pseudo-loss distribution of un-
labeled set changes along with the times of re-selecting and

(a) one time re-select and re-train
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Figure 2. Comparison of pseudo-loss distribution with different
times re-selecting and re-training. (a) shows re-selecting with un-
labeled set and re-training with mix data only one time; (b) shows
re-selecting and re-training for five times each episode task. For
convenience, the figure shows only the pseudo-losses belonging to
the Gaussian component g3 and g4.

re-training. Conflict may arise if only the primary ss-GMM
is used without any treatment. Figure 2 gives an example
with the normalized loss instance ¢ = (0.53. Classifier with
only one time of re-selecting and re-training decides this in-
stance as incredible data (see Figure 2a), while it actually
more likely to be a reliable data for the classifier with five
times re-selecting and re-training (see Figure 2b). Confi-
dence metric turns dubious when the learned pseudo-loss
distribution cannot follow the training of classifier.

To address this issue, we adjust the ss-GMM’s parame-
ters with the multi-step training strategy to catch the alter-
ation of pseudo-loss distribution. We fit a ss-GMM group
with each item corresponding to the classifier trained with
different number of iterations. More specifically, the train-
ing process is divided into 7" number of steps, which cor-
responds to 7" times of re-selecting and re-training for each
episode task. Each step is in charge of one ss-GMM, G rep-
resents the ss-GMM’s parameters learned in tth step. The
pseudo-loss instances for fitting G are calculated by the
classifier re-selected and re-trained for ¢ times. The reliable
pseudo-labeled samples of kth (K < t) time is re-selected
according to G, which is generated in kth step.

2.5. Class Balance

Generally, the supplementary data selected from unla-
beled set are imbalanced between different classes, which
causes volatile performance of classifier [19]. The situation
gets worse if exiguous training data available, making the
decision boundary unstable and tending to misclassify the
samples of minority classes into majority classes. In par-
ticular, two serviceable class balance approaches are em-
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ployed in our method to solve this problem.

Class-apart Selection. The imbalance of selected pseudo-
labeled data is the cause leading to class imbalance. For this
reason, we propose keeping the selected samples roughly
equal per class with the class-apart selection. Specifically,
the unlabeled samples are selected instead of the whole un-
labeled set, considering that the confidence of pseudo-labels
is separated from different classes.

Class Weight. We also adopt class weight [13] to the loss
of classifier to balance the imbalanced data when the class-
apart selection effect fades as alternative samples decreased.
The major classes will get fewer weights and the samples of
minor classes gain more attention in loss backward by ap-
plying the class weight.

3. Experiments
3.1. Datasets and Setups
3.1.1 Dataset

mini-ImageNet consists of 100 classes with 600 samples
of size 84 x 84 per class, which are selected from ILSVRC-
2012 [30]. Following [39], these classes are randomly di-
vided into 64 classes for training, 16 classes for validation
and 20 classes for evaluation.

tiered-ImageNet is a larger subset of ILSVRC-2012 [30]
which contains 608 classes grouped into 34 higher-level cat-
egory nodes with the hierarchical structure made by human
beings. Following [28], we split these category notes into 20
(351 classes), 6 (97 classes), and 8 (160 classes) for train-
ing, validation and evaluation respectively. All images have
the size 84 x 84.

CIFAR-FS is a variant of CIFAR-100 [14] with low-
resolution. It has 100 object classes and each of them con-
tains 600 samples of 32 x 32 color images. Following [4],
dataset is partitioned into 64, 16 and 20 classes for training,
validation and evaluation respectively.

FC100 is also based on the dataset CIFAR-100 [14] which
provide more challenging scenario with low-resolution and
super-classes. Following [25], the 100 classes are split into
20 super-classes, 12 super-classes (60 classes) for train-
ing, 4 super-classes (20 classes) for validation and 4 super-
classes (20 classes) for evaluation.

3.1.2 Experimental setup

Network Architectures. For fair comparison, we adopt the
ResNet-12 [8] as the feature extractor which consist of four
residual blocks, each block has three 3 x 3 convolutional
layers followed by a BatchNorm layer and a LeakyReLu ac-
tivation. In addition, a 2 X 2 max-pooling layer is applied to
reduce the size of output at the end of each block. Following
[17], we utilize the Dropout [34] to prevent the overfitting.
10% output is dropped randomly in the first two blocks. At

Algorithm 1: PLCM Training Process

Input: dataset Dyyqin, step 1, iteration N
Output: ss-GMM group G
fort=1t0T do
Initialize: ' = {m, u, ©}" with Bayes estimation
forn =1t N do
Sample an episodic task from Dy,.qin
iterative train the classifier P, with S,z
Yu, Uq < arg max(Pe(u,q;0s))
o eq = —Yu,g IOg(Pc(u7 q; 98))
ya}é—‘L(ﬂq,quFi,fG)
end
while 3! is not converged do
7 TGk (Luilk 2k

Yuk =P (gk | Eu) < ijl ch(gk (Z’u.;ﬂ'kw)zk)
Yab =P (g | £g)  1ifyz, == kelse 0
A it A=N) 3 v,

Alg[+1=2)[ul o
A Yol t (=X 3, 7.8

AT 1= 2, 7,
A5 25 T (B =ik ) 2+ =0 55 o] B (B =iy )
AT Vit 1=0 T,

T <

Ui <

Zk‘_

end
Gt « ¢

end

the end of final block, a mean-pooling layer is applied to re-
fine the feature embedding of input images. The base clas-
sifier is Logistic Regression with L2 regularization.
Hyperparameters. For the training of feature extraction
network, the base learning rate is set to 0.1 initially and de-
cay 10 times every 30 epochs with the total 120 epochs. The
number of episodes for collecting pseudo-loss instances for
the ss-GMM fitting is set to 600. We conduct 10 steps re-
selecting and re-training for instances selection on evaluat-
ing process.

Comparing Methods. We compare our algorithm with
other method mainly in the three aspects. (1) In terms of ba-
sic semi-supervised setting, we compare our method with
the recently generalized SSFSL alternatives: TPN [22],
TransMatch [44], LST [20], EPNet [29] and ICI [40]. Since
the number of unlabeled samples is a key factor for the
semi-supervised few-shot learning, we report our compar-
ison results under the same semi-supervised condition. Fol-
lowing [20], the experiments on 5-way 1-shot use 30 un-
labeled data each class and 50 is for 5-way 5-shot. Mean-
while, we conduct the transductive setting experiments for
validating the effectiveness of our framework. The compar-
ison includes the SSFSL methods applied in the transduc-
tive setting [22] [40] and other current TFSL approaches
[OT[10][27] . (2) In terms of distraction semi-supervised
setting, we compare our method with other SSFL meth-
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Table 1. The 5-way few-shot classification test accuracies with 95% confidence intervals over 600 episodes on mini-ImageNet and tiered-
ImageNet. T indicates that it is implemented by public code. In. means the methods tested in inductive setting, Tran. denotes transductive
setting with 15 query and Semi.(30/50) is semi-supervised setting with 30 unlabel for 5-way 1-shot and 50 unlabel for 5-way 5-shot.

mini-ImageNet

tiered-ImageNet

Setting Method Backbone

5-way l-shot  5-way 5-shot ~ 5-way l-shot  5-way 5-shot

MatchingNet[39] 4 CONV 43.56£0.84% 55.31£0.73% - -
MAML|[6] 4 CONV 48.70£1.84% 63.11£0.92% 51.67+1.81% 70.30£1.75%
In ProtoNet[32] 4 CONV 49.424+0.78%  68.20+0.66%  53.31+0.89%  72.6940.74%
' LEO[31] WRN-28-10 61.76£0.08%  77.59£0.12%  66.33£0.05%  81.44+0.09%
DeepEMD[45] ResNet-12  65.914+0.82% 82.41+£0.56% 71.16+0.87%  86.03+0.58%
SIB[10] ResNet-12  70.00£0.60%  79.20+0.40%  72.90+£0.65%  82.80+0.37%
Tran CAN+T[9] ResNet-12  67.194+0.55%  80.64+0.35%  73.21+0.58%  84.93+0.38%
' BD-CSPN[21]  WRN-28-10 70.31£0.93%  81.89+0.60% 78.74+£0.95% 86.92+0.63%
E3BM[23] WRN-28-10 71.40+0.50%  81.20+0.40%  75.60+£0.60%  84.30+0.40%
TPN[22] 4 CONV 55.51+0.86% 69.86£0.65% 59.91+0.94%  73.30£0.75%
Semi. — Tran EPNet[29] ResNet-12  66.50+0.89%  81.06+0.60%  76.53+0.87%  87.32+0.64%
’ ’ ICI[40] ResNet-12  66.80£1.10%  79.26+0.68%  80.79£1.11%  87.92£0.69%
PLCM (ours) ResNet-12  70.92+1.03%  82.74+0.55% 82.61+1.08% 89.47+0.56%
TPN[22] 4 CONV 52.78+0.27%  66.42+£0.21%  55.74+0.23%  71.01£0.17%
TransMatch[44] ~ WRN-28-10 60.02£1.02%  79.30+0.59%  72.19£1.27%  82.124+0.92%
Semi.(30/50) LST[20] ResNet-12  70.01£1.90%  78.70+£0.80%  77.70£1.60%  85.20+0.80%
’ EPNet[29] ResNet-12  70.50£1.32%  80.20+0.77%  75.90£1.18%  82.114+0.62%
ICI[40] ResNet-12  69.66+1.13%  80.11+£0.72%  84.01£1.03%  89.00+0.67%
PLCM (ours) ResNet-12  72.06+1.08%  83.71+£0.63%  84.78+0.96% 90.11+0.57%

Table 2. The 5-way few-shot classification test accuracies with
95% confidence intervals on CIFAR-FS. * denotes that it is re-
ported in [4]. the best-performing result is highlighted.

Table 3. The 5-way few-shot classification test accuracies with
95% confidence intervals on FC100. * denotes that it is reported
in [17]. the best-performing result is highlighted.

Method Backbone  5-way 1-shot 5-way 5-shot Method Backbone 5-way 1-shot 5-way 5-shot
ProtoNet*[32] 4 CONV 55.50+£0.70%  72.00+0.60% ProtoNet*[32] 4 CONV 37.50+£0.60%  52.50+0.60%
MAML*[6] 4 CONV 58.90+1.90%  71.5041.00% TADAM[25] 4 CONV 40.10£0.40%  56.10+0.40%
R2D2[4] 4 CONV 65.30£0.20%  79.40+£0.10% MetaOptNet[17] ResNet-12 41.10£0.60%  55.50£0.60%
TEAM[27] ResNet-12 70.43+1.03%  81.254+0.92% MatchNet[39] ResNet-12 43.88+0.75%  57.05+0.71%
MetaOptNet[17]  ResNet-12  72.00+£0.70%  84.20+0.50% SIB[10] WRN-28-10  45.20+0.81%  55.90+0.74%
ICI[40] ResNet-12  76.51+1.22%  84.324+0.70% MTL[36] ResNet-12 45.10£1.80%  57.60+0.90%

i ] E3BM[24] WRN-28-10  46.00£0.60%  57.10£0.40%

PLCM (ours) ResNet-12  77.62+1.15%  86.13+0.67% Centroid[ 1] ResNet-18 45.834048%  59.74.0.56%
PLCM (ours) ResNet-12 48.35+1.00%  62.754+0.82%

ods under more realistic conditions, in which unlabeled set
contains distractive classes that are excluded in support set
[20][28]. Since few researchers pay attention to it, we re-
port part of the results neatened by LST [20], and remaining
results are performed by the public codes [29][40]. Follow-
ing [28], we test our method with both the 5-way 1-shot
5-unlabeled and 5-way 5-shot 20-unlabled, and use 5 dis-
tracting classes with the same samples of unlabeled set. (3)
In terms of variety-unlabeled semi-supervised setting, we
compare our method with the condition that the number of
unlabeled samples in each class are different, which are set
to 15, 30, 50, 80 and 100 respectively. The comparison re-
sults are mainly from LST [20], ICI [40], EPNet [29] and

their public codes.

3.2. Experiment Results

Basic Semi-supervised Few-shot Setting. We compare our
method with several current approaches on mini-ImageNet,
tiered-ImageNet, CIFAR-FS and FC100. From Table 1, 2
and 3, we obtain the following conclusion: (1) The pro-
posed PLCM shows substantial gains compared with other
existing SSFSL methods and achieves the state-of-the-art
performance of all few-shot settings and datasets. (2) Our
method is superior to other existing semi-supervised few-
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Table 4. The 5-way few-shot classification test accuracies with dis-
traction semi-supervised setting. * denotes that it is carried out
with their public codes. The best-performing result is highlighted.

Method mini tiered
1 shot 5-shot 1-shot 5-shot
MS k-Means[22] 49.0% 63.0% 51.4% 69.1%
TPN[28] 504% 649% 53.5% 69.9%
TPN with MTL[20] 61.3% 72.4% 71.5% 82.7%
LST[20] 64.1% 774% T3.5% 83.4%
EPNet*[29] 64.7% 76.8% 122% 82.1%
ICI*[40] 654% 751% 754% 82.5%
PLCM 68.5% 802% 791% 87.8%

Table 5. We report the compared result of our model without or
with the selected filter. For convenience, only 3 to 10 steps are
showed this table. The former results of “-/-” are obtained by
model without selected filter and the latter takes the selected filter.

Step 3 4 5 6
error rate (%) 2.4/3.7 4.7/5.2 5.2/5.8 9.4/9.1
Accuracy (%)  80.5/80.1  82.0/81.2  82.2/81.1 81.7/81.8
Step 7 8 9 10
error rate (%) 13.2/10.7  16.0/12.6  18.1/12.8  20.4/13.2
Accuracy (%) 81.4/82.3  80.3/82.9  79.1/83.3  78.8/83.7
85 AN
5-way 5-shot

80

5-way 1-shot

Test accuracy

—%— EPNet

—A—OUR

65 I I I
15 30 50 80 100

Number of unlabeled samples

Figure 3. The comparison results of semi-supervised few-shot
classification with varied unlabeled samples on mini-ImageNet.

shot learning methods with the same settings, especially for
credibility samples selection based SSFSL methods such as
LST [20] and ICI [40]. The outstanding performances indi-
cate that the confidence estimate of pseudo-labeled data in
our method is more precise and can take advantage of un-
labeled information more effectively. (3) The experimen-
tal results on transductive setting indicate that our method
also achieves competitive performance which further shows
the effectivity and robustness under the condition of lacking
both labeled data and unlabeled data.

Table 6. Several class balance results with base SSFSL setting and
distractive SSFSL setting on mini-ImageNet. ‘CW’ denotes class
weight and ‘CSS’ denotes class-apart selection. Our method uses
both class weight and class-apart selection and both LST and ICI
methods already use class-apart selection.

Setting  Method Base SSFL Distrative SSFL
1 shot 5-shot 1-shot 5-shot
LST[20] 65.58 7043 58.27 70.86

+cw ICI[40] 6442 7381 5729 69.29

PLCM 6828 78.19 6281 7445

LST[20] 70.01 78.70 64.12  77.39

+css ICI[40] 69.66 80.11 65.37 75.11
PLCM 7176 83.03 67.73 79.60

+css  LST[20] 70.55 79.11 64.82  77.95
& ICI[40]  70.07 80.60 6591  75.57
tew PLCM  72.06 83.71 68.50 80.21

Distractive Semi-supervised Few-shot Setting. In reality,
it is hard to get the clean unlabeled set without mixing any
data of other classes. In order to show the adaptability of
our method, we compare the PLCM with several other SS-
FSL methods on distractive semi-supervised few-shot set-
ting. The comparison results are presented in Table 4. It is
clear that our approach is more effective than other existing
SSFSL methods and achieve the highest accuracy in all dis-
tractive semi-supervised few-shot classification settings.
Variety-unlabeled Semi-supervised Few-shot Setting. To
validate the robustness of our framework under variety-
unlabeled semi-supervised few-shot setting, we conduct the
5-way 1-shot and 5-shot experiments on mini-ImageNet
with different number of unlabeled samples. Figure 3 shows
the variation of test accuracy as the number of unlabeled
samples increases. Obviously, our method performs the
best in all variety-unlabeled semi-supervised few-shot set-
tings. Compared to other SSFSL methods which consider
only samples selection on specific tasks, PLCM utilizes the
pseudo-loss distribution of multi-tasks to establish a unitary
selection mechanism in a more sufficient and steady way.

3.3. Ablation Studies

Effectiveness of PLCM. Figure 4 visualizes the samples
selection process for one task. We compare our method’s
selection performance with that of the hard selection ap-
proach adopted by the LST method, which only picks out
the pseudo-labeled samples with high prediction scores. It
is obvious that the samples selected with our method are
more centralized and distinct than the LST method. Figure
4 (a) shows that the selection with the LST method is di-
sheveled, and easier to select the samples away from their
class cluster. Since PLCM selects pseudo-labeled samples
according to the unitary pseudo-loss space, we can pick out
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Figure 4. The t-SNE visualization of samples selection for 5-way 5-shot 50-unlabeled task. The points with different colors indicate
unlabeled samples with different classes and the circled points mean selected samples. For convenience, we only show the samples
selection on third loop (75 unlabeled samples are selected approximately) by hard selection method and our PLCM selection method.
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Figure 5. The results of model with or without multi-step strategy
on mini-ImageNet. ‘MSS’ denotes multi-step strategy.

more credible supplementary data to boost the robustness of
decision boundary.

Impact of Selected Filter. We aim to collect the samples
with high reliable pseudo-labels by selector. However, clas-
sifier may also adapt to wrong pseudo-labeled samples once
the performance of selector is poor. The pseudo-loss of
these pseudo-samples will be more similar to correct label-
ing samples, which puzzle the selector further. Therefore,
the filter works as an important component of PLCM by
picking out the incorrect information from selected data. As
showed in Table 5, it is obvious that the filter can slow down
the increase of the error ratio of selected samples during
multi-step training. Profiting from cleaner supplementary
information, the model with the filter achieve better results.
Impact of Class Balance. We further analyze the effect
of class balance approaches in SSFSL. Table 6 shows that:
(1) the accuracy descends down when we weaken the class

balance measures and our method still achieves competi-
tive performance. (2) Both class-apart selection and class
weight pay a positive role not only in our method but also
other SSFSL methods, proving its importance for SSFSL.
(3) Since class-apart selection roughly keeps class balance
of selected samples and class weight offers more detailed
attention to loss, our model reduces the influence of class
imbalance to a larger degree and gains higher accuracies.
Impact of Multi-step Training Strategy. Figure 5 shows
the influence of the multi-step training strategy in our
method on mini-ImageNet. It is clear that the performance
of the multi-step strategy is superior to the normal loop
strategy with the increase of step or loop. Owing to the
self-adaptive pseudo-loss distribution fitting by the multi-
step training strategy, our confidence metric synchronizes
the classifier and works more effectively and precisely.

4. Conclusions

In this paper, we propose a task-unified pseudo-loss con-
fidence metric for semi-supervised few-shot learning. It can
effectively estimate the quality of pseudo-labeled data and
exploit useful unlabeled data to enhance the training of clas-
sifier. A unified pseudo-loss space by jointing multi-tasks is
constructed for confidence metric, which is proved to select
superior pseudo-labeled data. Further, multi-step training
strategy is able to learn more credible pseudo-loss distribu-
tion to follow the training of classifier, which contributes to
the confidence metric. Extensive experiments on four few-
shot settings, including transductive setting, base, distrac-
tive and variety-unlabeled semi-supervised setting, demon-
strate that our method outperforms other algorithms.
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