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Abstract

While deep learning succeeds in a wide range of tasks, it
highly depends on the massive collection of annotated data
which is expensive and time-consuming. To lower the cost
of data annotation, active learning has been proposed to in-
teractively query an oracle to annotate a small proportion
of informative samples in an unlabeled dataset. Inspired
by the fact that the samples with higher loss are usually
more informative to the model than the samples with lower
loss, in this paper we present a novel deep active learn-
ing approach that queries the oracle for data annotation
when the unlabeled sample is believed to incorporate high
loss. The core of our approach is a measurement Temporal
Output Discrepancy (TOD) that estimates the sample loss
by evaluating the discrepancy of outputs given by models
at different optimization steps. Our theoretical investiga-
tion shows that TOD lower-bounds the accumulated sample
loss thus it can be used to select informative unlabeled sam-
ples. On basis of TOD, we further develop an effective un-
labeled data sampling strategy as well as an unsupervised
learning criterion that enhances model performance by in-
corporating the unlabeled data. Due to the simplicity of
TOD, our active learning approach is efficient, flexible, and
task-agnostic. Extensive experimental results demonstrate
that our approach achieves superior performances than the
state-of-the-art active learning methods on image classifi-
cation and semantic segmentation tasks.

1. Introduction

Large-scale annotated datasets are indispensable and
critical to the success of modern deep learning models.
Since the annotated data is often highly expensive to ob-
tain, learning techniques including unsupervised learning
[6], semi-supervised learning [59], and weakly supervised
learning [44] have been widely explored to alleviate the
dilemma. In this paper1 we focus on active learning [4]
which aims to selectively annotate unlabeled data with lim-

1Code is available at https://github.com/siyuhuang/TOD

ited budgets while resulting in high performance models.
In existing literature of active learning, two main-

stream approaches have been studied, namely the diversity-
aware approach and the uncertainty-aware approach. The
diversity-aware approach [15] aims to pick out diverse sam-
ples to represent the distribution of a dataset. It works well
on low-dimensional data and classifier with a small num-
ber of classes [40]. The uncertainty-aware approach [52]
aims to pick out the most uncertain samples based on the
current model. However, the uncertainty heuristics, such
as distance to decision boundary [2] and entropy of poste-
rior probabilities [41], are often task-specific and need to
be specifically designed for individual tasks such as image
classification [19], object detection [50], and semantic seg-
mentation [8].

In this paper, we consider that the samples with higher
loss would be more informative than the ones with lower
loss. Specifically in supervised learning settings, when
samples are correctly labeled, the averaged loss function
over all samples should be gradually minimized during the
learning procedure. Moreover, in every iteration the train-
ing model would backward propagated error according to
the loss of every sample [28], while the sample with high
loss usually brings informative updates to the parameters of
the training model [16]. In this work, we generalize these
evidences to active learning problems and propose a sim-
ple yet effective loss estimator Temporal Output Discrep-
ancy (TOD), which could measure the potential loss of a
sample only relied on the training model, when the ground-
truth label of the sample is not available. Specifically, TOD
computes the discrepancy of outputs given by models at dif-
ferent optimization steps, and a higher discrepancy corre-
sponds to a higher sample loss. Our theoretical investiga-
tion shows that TOD well measures the sample loss.

On basis of TOD, we propose a deep active learning
framework that leverages a novel unlabeled data sampling
strategy for data annotation in conjunction with a semi-
supervised training scheme to boost the task model perfor-
mance with unlabeled data. Specifically, the active learning
procedure can be split into a sequence of training cycles
starting with a small number of labeled samples. By the
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end of every training cycle, our data sampling strategy esti-
mates Cyclic Output Discrepancy (COD), which is a variant
of TOD, for every sample in the unlabeled pool and selects
the unlabeled samples with the largest COD for data annota-
tion. The newly-annotated samples are added to the labeled
pool for model training in the next cycles. Furthermore,
with the aid of the unlabeled samples, we augment the task
learning objective with a regularization term derived from
TOD, so as to improve the performance of active learning
in a semi-supervised manner.

Compared with the existing deep active learning algo-
rithms, our approach is more efficient, more flexible, and
easier to implement, since it does not introduce extra learn-
able models such as the loss prediction module [54] or the
adversarial network [43, 57] for uncertainty estimation. In
the experiments, our active learning approach shows supe-
rior performances in comparison with the state-of-the-art
baselines on various image classification and semantic seg-
mentation datasets. Further ablation studies demonstrate
that our proposed TOD can well estimate the sample loss
and benefit both the active data sampling and the task model
learning.

The contributions of this paper are summarized as fol-
lows.

1. This paper proposes a simple yet effective loss mea-
sure TOD. Both theoretical and empirical studies vali-
date the efficacy of TOD.

2. This paper presents a novel deep active learning frame-
work by incorporating TOD into an active sampling
strategy and a semi-supervised learning scheme.

3. Extensive active learning experiments on image classi-
fication and semantic segmentation tasks evaluate the
effectiveness of the proposed methods.

2. Related Work

Active Learning. Active learning aims to incrementally an-
notate samples that result in high model performance and
low annotation cost [4]. Active learning has been studied
for decades of years and the existing methods can be gen-
erally grouped into two categories: the query-synthesizing
approach and the query-acquiring approach. The query-
synthesizing approach [60, 32] employs generative models
to synthesize new informative samples. For instance, ASAL
[33] uses generative adversarial networks (GANs) [14] to
generate high-entropy samples. In this paper, we focus on
the query-acquiring active learning which develops effec-
tive data sampling strategies to pick out the most informa-
tive samples from the unlabeled data pool.

The query-acquiring methods can be categorized as
diversity-aware and uncertainty-aware methods. The

diversity-aware methods [36, 15] select a set of diverse sam-
ples that best represents the dataset distribution. A typical
diversity-aware method is the core-set selection [40] based
on the core-set distance of intermediate features. It is theo-
retically and empirically proven to work well with a small
scale of classes and data dimensions.

The uncertainty-aware methods [21, 52, 12, 13, 9] ac-
tively select the most uncertain samples in the context of the
training model. A wide variety of related methods has been
proposed, such as Monte Carlo estimation of expected error
reduction [39], distance to the decision boundary [47, 2],
margin between posterior probabilities [38], and entropy of
posterior probabilities [41, 19, 31].

The diversity-aware and uncertainty-aware approaches
are complementary to each other thus many hybrid meth-
ods [29, 51, 53, 58, 30, 26] have been proposed for specific
tasks. In more recent literature, adversarial active learning
[7, 43, 57] is introduced to learn an adversarial discrimina-
tor to distinguish the labeled and unlabeled data.

Compared to the existing works in active learning, our
method falls into the category of uncertainty-aware active
learning by directly utilizing the task model for uncertainty
estimation. The relevant works include the ones which uti-
lize the expected gradient length [42] or output changes on
input perturbation [11, 20] for uncertainty estimation. In
the realm of loss estimation, Yoo et al. [54] propose to learn
a loss prediction module to estimate the loss of unlabeled
samples. Different from existing methods which require
extra deep models such as loss prediction network [54] or
adversarial network [43, 57] for uncertainty estimation, we
propose a learning-free principle for efficient active learn-
ing by evaluating the discrepancy of model outputs at dif-
ferent active learning cycles. Except its efficiency and task-
agnostic property, we demonstrate that it is a lower bound of
the accumulated sample loss, ensuring that the data samples
of loss of higher lower bound can be picked out.
Semi-Supervised Learning. This work is also related to
semi-supervised learning which seeks to learn from both la-
beled and unlabeled data, since we also develop the pro-
posed loss estimation method to improve the learning of
task model using unlabeled data. There has been a wide va-
riety of semi-supervised learning approaches such as trans-
ductive model [18], graph-based method [56], and genera-
tive model [23]. We refer to [48] for an up-to-date overview.

More recently, several semi-supervised methods includ-
ing Π-model [27] and Virtual Adversarial Training [34] ap-
ply consistency regularization to the posterior distributions
of perturbed inputs. Further improvements including Mean
Teacher [46] and Temporal Ensembling [27] apply the con-
sistency regularization on models at different time steps.
However, the consistency regularization has been seldom
exploited for active learning.

Compared to the existing efforts in semi-supervised
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learning for neural networks, our proposed loss measure
TOD could be considered as an alternative solution of con-
sistency regularization. TOD can be well adapted to ac-
tive learning by developing a novel active sampling method
COD. COD only relies on the models learned after every
active learning cycle. In contrast, the existing temporal
consistency-based uncertainty measurements often require
access to a number of previous model states. For instance,
the computing of Mean Teacher [46] and Temporal Ensem-
bling [27] require the historical model parameters and the
historical model outputs, respectively.

On the other hand, there have not been sufficient theoret-
ical interpretations for the success of consistency regular-
ization. Athiwaratkun et al. [1] reveals that the consistency
regularization on perturbed inputs is an unbiased estimator
for the norm of the Jacobian of the network. However, there
is still a lack of interpretations on the temporal consistency
regularization. In this paper, we show that the temporal con-
sistency regularization can be connected to the lower bound
of the accumulated sample loss. Thus, the temporal consis-
tency regularization is an theoretically effective solution to
loss estimation as well as semi-supervised learning.

3. Temporal Output Discrepancy
Measuring the sample loss on a given neural network f ,

when the label of the sample is unavailable, is a key chal-
lenge for many learning problems, including active learn-
ing [38, 31, 13], continual learning [9], and self-supervised
learning [46, 27]. In this work, we present Temporal Output
Discrepancy (TOD), which estimates the sample loss based
on the discrepancy of outputs of a neural network at differ-
ent learning iterations. Given a sample x ∈ Rd, we have
TOD D

{T}
t : Rd → R

D
{T}
t (x)

def
= ‖f(x;wt+T )− f(x;wt)‖. (1)

D
{T}
t (x) characterizes the distance2 between outputs of

model f with parameters wt+T and wt obtained in the
(t + T )-th and t-th gradient descend step during learning
(e.g., T > 0), respectively.

In the following, we show that a larger D{T}t (x) indi-
cates a larger sample loss3 Lt(x) = 1

2 (y − f(x;wt))
2,

where y ∈ R is the label corresponding to sample x. We
first give the upper bound of one-step output discrepancy
D
{1}
t (x).

Theorem 1 With an appropriate setting of learning rate η,

D
{1}
t (x) ≤ η

√
2Lt(x)‖∇wf(x;wt)‖2. (2)

2For brevity, ‖ · ‖ denotes the L2 norm ‖ · ‖2 in this paper.
3Here we take Euclidean loss as an example. The cross-entropy loss

has similar results.
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Figure 1. ‖∇wf‖2, vs., the active learning cycle. The dark lines
denote ‖∇wf‖2 averaged over the training (i.e., labeled and un-
labeled) pool. The blue lines denote average ‖∇wf‖2 after every
active learning cycle.

The proofs of Theorem 1 and the following corollaries
can be found in the supplementary material. From Theorem
1, the upper bound of T -step output discrepancy D{T}t (x)
can be easily deduced.

Corollary 1 With an appropriate setting of learning rate η,

D
{T}
t (x) ≤

√
2η

t+T−1∑
τ=t

(√
Lτ (x)‖∇wf(x;wτ )‖2

)
. (3)

Corollary 1 preliminarily connects T -step output dis-
crepancy D

{T}
t (x) to sample loss L(x). However, it is

almost infeasible to compute ‖∇wf(x;wτ )‖ on all the τ .
Fortunately, ‖∇wf‖ is approximately a constant under the
context of neural networks, as discussed in [45, 49].

Remark 1 For a linear layer φ(x;W ) with ReLU activa-
tion, the Lipschitz constant L(W ) ≤ ‖x‖.

Since sample x is drawn from a distribution X , we
assume ‖x‖ is upper-bounded by a constant so that f is
Lipschitz-continuous over w. Thus, we let ‖∇wf‖2 be
upper-bounded by a constant C. Empirical results on image
classification benchmarks including Cifar-10 and Cifar-100
also support this assumption. As shown in Fig. 1, the dark
lines are the averaged ‖∇wf‖2 over the training set. The
blue lines denote the averaged ‖∇wf‖2 after every active
learning cycle. ‖∇wf‖2 has a small variance over samples
and it is nearly constant across every active learning cycle.

With ‖∇wf‖2 ≤ C, we rewrite Corollary 1 to connect
D
{T}
t (x) with the accumulated loss of sample x.

Corollary 2 With appropriate settings of a learning rate η
and a constant C,

D
{T}
t (x) ≤

√
2TηC

√√√√t+T−1∑
τ=t

Lτ (x). (4)

Corollary 2 shows that ‖f(x;wt+T ) − f(x;wt)‖ is a
lower bound of the square root of accumulated loss L dur-
ing T gradient descend steps. Thus, when T is fixed, e.g.,
a certain number of iterations of neural network training,
TOD can effectively estimate the loss of sample x. Note
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Figure 2. The COD-based unlabeled data sampling strategy for active learning. Data samples with the largest COD are collected from the
unlabeled pool. The collected samples are annotated by an oracle and added to the labeled pool.

that the pre-assumptions of Theorem 1 and its corollaries
limit the learning rate η not to be too large to dissatisfy the
Taylor expansion used in our proofs. In empirical study we
find that the commonly used learning rates, e.g., η=0.1 or
smaller, work well.

4. Semi-Supervised Active Learning
4.1. Problem Formulation

We first formulate the standard active learning task as
follows. Let (xS , yS) denote a sample pair drawn from a
set of labeled data (XS , YS), where XS is the data points
and YS is the labels. Let xU denote an unlabeled sample
drawn from a larger unlabeled data pool XU , i.e., the labels
YU corresponding to XU cannot be observed. In an active
learning cycle c, the active learning algorithm selects a fixed
budget of samples from the unlabeled pool XU and the se-
lected samples will be annotated by an oracle. The budget
size b is usually much smaller than |XU |, the size of the
unlabeled pool. The goal of active learning is to select the
most informative unlabeled samples for annotation, so as to
minimize the expected loss of a task model f : X → Y .

We next present the use of TOD in a semi-supervised ac-
tive learning framework. An active learning algorithm gen-
erally consists of two components: (a) an unlabeled data
sampling strategy and (b) the learning of a task model. We
adapt TOD to these two components, respectively. For com-
ponent (a), we propose Cyclic Output Discrepancy (COD),
a new criterion to select unlabeled samples with the largest
estimated loss for annotation. For component (b), we de-
velop a TOD-based unsupervised loss term to improve the
performance of task model. In the following, we formulate
the active learning problem and discuss the details of the
two components.

4.2. Cyclic Output Discrepancy

In Eq. 4, our proposed TOD characterizes a lower
bound of the loss function for supervised learning. Here
we introduce a variant of TOD, i.e., Cyclic Output Dis-
crepancy (COD), for active selection of unlabeled samples.
COD estimates the sample uncertainty by measuring the
difference of model outputs between two consecutive active
learning cycles,

Dcyclic(x|wc, wc−1) = ‖f(x;wc)− f(x;wc−1)‖, (5)
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Figure 3. The consistency of Cyclic Output Discrepancy (COD)
and the real task loss. We show COD and real loss averaged over
the unlabeled samples, vs., percentage of labeled images, under
active learning setting.

where model parameters wc and wc−1 are obtained after the
c-th and (c− 1)-th active learning cycle, respectively.

Fig. 2 illustrates the procedure of COD-based unlabeled
data sampling. Given COD for every sample in unla-
beled pool XU , our strategy selects b samples with the
largest COD from XU . Then, the strategy queries human
oracles for annotating the selected samples. The newly-
annotated data is added to labeled pool for the next ac-
tive learning cycle. In the first cycle (i.e., c = 1), the
model f is trained with a random subset of labeled data,
and COD is computed based on the initial model and the
model learned after the first cycle. For c ≥ 2, we com-
pute COD Dcyclic(x|wc, wc−1) for active sample selection
systematically.
Minimax optimization of COD. As discussed in Corollary
2, COD-based data sampling strategy can find samples of
large loss in unlabeled pool, so as to minimize the expected
loss of model f through further training the task model in
the next cycle. Fig. 3 preliminarily verifies the consistency
between COD and the real loss, where COD shows a sim-
ilar trend with the real loss and they are both decreasing
along with the active learning progress. Instead of minimiz-
ing the TOD directly (i.e., min-min optimization which may
not be good), COD develops TOD as the criterion of sample
selection in active learning, where samples with the maxi-
mal TOD are picked up (e.g., max-min strategies). When
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Figure 4. Semi-supervised task learning scheme. For labeled data,
the task model is trained with the task loss. For unlabeled data, the
task model is trained to minimize the distance between outputs of
the task model and the baseline model.

considering labels of samples with potential losses as infor-
mation gain, our strategy actually maximizes the minimum
gain in active learning.

4.3. Semi-Supervised Task Learning

Unsupervised loss. As suggested by Corollary 2, TOD
measures the accumulated sample loss, and thus it is natu-
ral to employ TOD as an unsupervised criterion to improve
the learning of model f using the unlabeled data. How-
ever, directly applying TOD to unsupervised training with
the baseline model obtained at the last cycle c− 1 may lead
to an unstable training, due to the following aspects: 1) The
iteration interval between current model and baseline model
(i.e., T in Corollary 2) is no longer fixed during model train-
ing, thus the loss measurement would be inaccurate; 2) The
baseline model only depends on a single historical model
state so that it may suffer from a large variance in loss mea-
surement. To address the above issues, we are inspired by
Mean Teacher [46] to construct a baseline model by apply-
ing an exponential moving average (EMA) to the historical
parameters, as

w̃ ← α · w̃ + (1− α) · w. (6)

where w̃ and w are parameters of baseline model and cur-
rent model, respectively, and α is the EMA decay rate.

Our unsupervised loss minimizes the distance between
the current model and the baseline model. In the c-th cycle,
with the unlabeled pool Xc

U , the unsupervised loss is

LcU (w) =
1

|Xc
U |

∑
xU∈Xc

U

‖f(xU ;w)− f(xU ; w̃)‖2. (7)

Task loss. For the labeled data, we optimize a supervised
task objective. Here we take the cross-entropy (CE) loss for
image classification as an example. In the c-th cycle, given
the labeled set (Xc

S , Y
c
S ) in the cycle, the supervised loss is

LcS(w) =
1

|Xc
S |

∑
(xS ,yS)∈(Xc

S ,Y
c
S )

CE [f(xS ;w), yS ] . (8)
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Figure 5. The average real losses of unlabeled samples in a de-
scending order of COD values. For instance, “0-5%” denotes the
5% unlabeled samples which have the largest COD values, and so
on.
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Figure 6. The performance of loss estimation using a learned loss
prediction model (LL4AL) [54] and the proposed COD method.
We show the proportion of sampled images which have the highest
real losses, vs., the proportion of sampling images.

Note that the labeled pool (Xc
S , Y

c
S ) will be enlarged per

active learning cycle. Within an active learning cycle, the
labeled pool remains unchanged.
Overall objective. Our semi-supervised task learning
scheme is illustrated in Fig. 4. By integrating the task and
unsupervised losses, we minimize an overall learning ob-
jective that evolves with the cycle c, as

Lcoverall(w) = LcS(w) + λ · LcU (w), (9)

where λ is a trade-off weight to balance the task and unsu-
pervised loss terms. In our experiments, λ is set to 0.05 and
the EMA decay rate α is set to 0.999. See supplementary
material for more details.

5. Experiments
We conduct extensive experimental studies to evaluate

the proposed active learning approach on two computer vi-
sion tasks, image classification and semantic segmentation,
with five benchmark datasets. The results are reported over
3 runs with different initial network weights and labeled
pools. We implement the methods using PyTorch frame-
work [37]. See supplementary material for more details.

5.1. Efficacy of TOD as Loss Measure

This work proposes TOD to estimate the loss of an un-
labeled sample. Fig. 3 has evaluated the relations between
TOD and sample loss as discussed in Theorem 1 and Corol-
lary 2, suggesting that the average COD and average loss
have a consistent trend along with active learning cycles. To
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Figure 7. Active learning results of image classification on four benchmark datasets.

further verify the effectiveness of TOD for loss estimation,
we study the average loss of unlabeled samples by sorting
their COD values. Fig. 5 shows that the larger COD val-
ues of samples indicate the higher losses of samples, and,
this observation is consistent across all the active learning
cycles.

In Fig. 6, we compare the loss estimation performance
of a learned loss prediction model (LL4AL) [54] and COD.
We investigate how many samples of the highest losses can
be picked out by using different methods. Fig. 6 shows that
COD performs significantly better than LL4AL, as COD is
able to pick out more high-loss samples under all the sam-
pling settings. Figs. 3, 5 and 6 demonstrate that COD is
an effective loss measure as well as a feasible criterion for
active data sampling.

5.2. Active Learning for Image Classification

Experimental setup. We evaluate active learning methods
on four benchmark image classification datasets including
Cifar-10 [25], Cifar-100 [25], SVHN [35], and Caltech-101
[10]. Following the conventional practices in deep active
learning [54, 43], we employ ResNet-18 [17] as the im-
age classification model. We compare our active learn-
ing approach against the state-of-the-art methods includ-
ing CoreGCN [3], UncertainGCN [3], SRAAL [57], TA-
VAAL [22], VAAL [43], LL4AL [54], Core-set [40], and
MC-Dropout [12]. In addition, the random selection of un-
labeled data (“Random”) and the model trained on the full

training set (“Full Training”) are also included as baselines.
“Ours-Semi” indicates our approach trained with the semi-
supervised loss and “Ours-Task” is our approach trained
with only the task loss.
Results. Fig. 7 shows image classification performances of
different active learning methods. Our method outperforms
all the other methods on the benchmark datasets. Addition-
ally, we have the following observations. (i) Our method
consistently performs better than the other methods with re-
spect to the cycles. This is a desired property for a success-
ful active learning method, since the labeling budget may
vary for different tasks in real-world applications. For in-
stance, one may only be able to annotate 20% instead of
40% of all the data. (ii) Our method shows robust perfor-
mances on difficult datasets such as Cifar-100 and Caltech-
101. Both datasets include much more classes than Cifar-
10, and, Caltech-101 includes images of much higher reso-
lution (i.e., 300×200). These difficult datasets bring more
challenges to active learning, and the superior performances
on these datasets demonstrate the robustness of our method.
(iii) The performance curves of our method are relatively
smooth compared with the other methods. A smooth curve
means there are consistent performance improvements from
cycle to cycle, indicating that our sampling strategy can
take informative data from the unlabeled pool. (iv) Ours-
Semi performs better than Ours-Task, demonstrating that
our semi-supervised training successfully utilizes the unla-
beled data. (v) Our method uses 40% training samples to
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Table 1. The active learning performances on 40% labeled data. ‘Base’: standard task model training without active data selection. ‘Semi’:
the proposed semi-supervised task learning. ‘Active’: the proposed active data selection strategy.

Dataset Core-set LL4AL VAAL SRAAL Base Base+Semi Base+Active Base+Semi+Active
Cifar10 91.8 94.1 92.0 92.5 91.8 92.2 (+0.4) 94.2 (+2.4) 94.5 (+2.7)
Cifar100 65.0 65.2 65.4 66.2 62.3 66.1 (+3.8) 67.3 (+5.0) 68.5 (+6.2)
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Figure 8. Active learning results of semantic segmentation on
CityScapes dataset.

outperform the full training on Cifar-10 and SVHN, e.g.,
94.5% vs. 93.1% on Cifar-10. This interesting finding is
in accord with the observations discussed in previous liter-
ature [24] that some data in the original dataset might be
unnecessary or harmful to model training.

Table 1 compares different active learning methods,
i.e., the state-of-the-art algorithms and the proposed meth-
ods, for image classification on 40% training labeled data.
Both semi-supervised task learning and active data selection
strategy contributes to performance improvement, while,
active data selection results in a more significant improve-
ment than semi-supervised task learning. We also note that
the proposed method can outperform existing algorithms
without semi-supervised task learning (see ‘Base+Active’
in Table 1).

5.3. Active Learning for Semantic Segmentation

Experimental setup. To validate the active learning per-
formance on more complex and large-scale scenarios, we
study the semantic segmentation task with the Cityscapes
dataset [5] which is a large-scale driving video dataset col-
lected from urban street scenes. Semantic segmentation ad-
dresses the pixel-level classification task and its annotation
cost is much higher. Following the settings in [43, 57], we
employ the 22-layer dilated residual network (DRN-D-22)
[55] as the semantic segmentation model. We report the
mean Intersection over Union (mIoU) on the validation set
of Cityscapes. We compare our method against SRAAL
[57], VAAL [43], QBC [26], Core-set [40], MC-Dropout
[12], and the random selection.
Results. Fig. 8 shows the semantic segmentation perfor-
mances of different active learning methods on Cityscapes.
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Figure 9. Ablation on active data sampling.
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Figure 10. Ablation on semi-supervised task learning.

Both Ours-Semi and Ours-Task outperform the other base-
lines in terms of mIoU. The results demonstrate the com-
petence of our approach on the challenging semantic seg-
mentation task. Note that in our approach, neither task
model training nor data sampling needs to exploit extra
domain knowledge. Therefore, our approach is indepen-
dent of tasks. Moreover, the image size of Cityscapes (i.e.,
2048×1024) is much larger than that of the classification
benchmarks, indicating that our method is not sensitive to
the data complexity. These advantages make our approach a
competitive candidate for complex real-world applications.

5.4. Ablation Study

Active data sampling strategy. Fig. 9 compares different
active data sampling strategies on Cifar-10 and Cifar-100.
CyclicOD and EMAOD are two variants of TOD, where
CyclicOD employs the model at the end of last cycle as
the baseline model while EMAOD employs an exponen-
tial moving average of the previous models as the baseline
model. LL4AL [54] uses a learned loss prediction mod-
ule to sample the unlabeled data. Fig. 9 shows that the
proposed sampling strategies, i.e., EMAOD and CyclicOD,
outperform random sampling and LL4AL sampling on both
datasets, validating the effectiveness of TOD-based sam-
pling strategy. CyclicOD performs better than EMAOD on
Cifar-100, thus we employ COD as our sampling strategy
in the rest of the experiments.
Semi-supervised task learning. To evaluate the necessity
of semi-supervised task learning in active learning, Fig. 10
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Table 2. The class-wise performances on Cityscapes, where 40% labeled data is used for training. ‘Proportion’ denotes the proportions
of classes at pixel level. ‘T’ is the model trained using only the task loss. ‘T + U’ is the model trained using both the task loss and the
proposed TOD-based unsupervised loss.

Class ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Ave
Proportion (%) 37.4 5.4 22.3 0.8 0.8 1.5 0.2 0.7 17.3 0.8 3.3 1.3 0.2 6.5 0.3 0.4 0.1 0.1 0.7 -
T (mIoU) 92 67 82 16 27 53 53 63 87 42 84 71 43 86 19 34 20 31 69 54.7
T + U (mIoU) 95 72 87 24 28 56 59 72 90 49 84 77 52 90 24 42 8 39 73 58.9
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Figure 11. Per-class accuracy on Cifar-10 using the proposed ac-
tive learning method.

compares different loss functions on Cifar-10 and Cifar-
100. CyclicOD loss and EMAOD loss are two TOD-based
unsupervised learning criteria. They are minimized on the
unlabeled data, and, the settings of their baseline models are
identical to those in the study of sampling strategy as dis-
cussed above. LL4AL loss [54] minimizes the distance be-
tween the predicted loss and the real task loss, and it needs
the data labels. All the auxiliary losses are used in a combi-
nation with the task loss. The full pipeline and the training
with only the task loss are also included in comparison. We
observe that either the EMAOD loss or the CyclicOD loss
can help to improve the performance, and either of them
shows a larger performance improvement than the LL4AL
loss. The EMAOD loss demonstrates a more stable per-
formance than the CyclicOD loss, indicating that directly
applying COD to unsupervised training may lead to an un-
stable model training. A moving average of previous model
states enables a more stable unsupervised training. We em-
ploy EMAOD as our unsupervised loss in the rest of the
experiments.

Table 2 shows the per-class performance of standard task
model training on Cityscapes, where 40% labeled data is
observable. The row of ‘Proportion’ in Table 2 shows the
pixel-level proportion of every class, indicating a severe
class imbalance problem of Cityscapes. We compare the
models trained without (i.e., ‘T’) and with (i.e., ‘T + U’)
the unsupervised loss. The semi-supervised learning yields
better results on 18 out of 19 classes. More importantly,
the semi-supervised learning shows more significant per-
formance improvements on the minority classes than the
majority classes, demonstrating that the unsupervised loss
imparts robustness to the task model to handle the class im-
balance issue.
Per-class performance. Fig. 11 shows the per-class accu-

Table 3. Time (seconds) taken for one iteration of active sampling
using an NVIDIA GTX 1080Ti GPU. Number of sampling images
and size of images are shown for each dataset.

Method Cifar-10
2.5K, 322

SVHN
3.6K, 322

Caltech-101
0.4K, 2242

Extra
model?

Coreset [40] 91.4 168.7 48.2 ×
VAAL [43] 13.0 17.2 32.6

√

LL4AL [54] 7.7 10.8 39.6
√

COD (ours) 7.2 10.1 26.9 ×

racy on Cifar-10 with the proposed active learning method.
The accuracies of the classes are improved along with the
increasing of active learning cycles in most cases, such that
the performance improvement is not biased towards certain
classes. The accuracies of class#3 and class#4 decrease
from the 6-th cycle to the 7-th cycle, mainly due to the over-
fitting.

5.5. Time Efficiency

This paper proposes to use COD for active data sam-
pling. Table 3 evaluates the time taken for one active
sampling iteration using different active learning methods.
On all the three image classification datasets with different
number and size of sampling images, COD is faster than
the existing active learning methods. COD is task-agnostic
and more efficient, since it only relies on the task model it-
self and it does not introduce extra learnable models such as
the adversarial network (VAAL) [43] or the loss prediction
module (LL4AL) [54].

6. Conclusion
In this paper we have presented a simple yet effective

deep active learning approach. The core of our approach
is a measurement Temporal Output Discrepancy (TOD)
which estimates the loss of unlabeled samples by evaluat-
ing the discrepancy of outputs given by models at different
gradient descend steps. We have theoretically shown that
TOD lower-bounds the accumulated sample loss. On ba-
sis of TOD, we have developed an unlabeled data sampling
strategy and a semi-supervised training scheme for active
learning. Due to the simplicity of TOD, our active learning
approach is efficient, flexible, and easy to implement. Ex-
tensive experiments have demonstrated the effectiveness of
our approach on image classification and semantic segmen-
tation tasks. In future work, we plan to apply TOD to other
machine learning tasks and scenarios, as it is an effective
loss measure.
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