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Abstract

To date, various 3D scene understanding tasks still lack
practical and generalizable pre-trained models, primar-
ily due to the intricate nature of 3D scene understanding
tasks and their immense variations introduced by camera
views, lighting, occlusions, etc. In this paper, we tackle this
challenge by introducing a spatio-temporal representation
learning (STRL) framework, capable of learning from unla-
beled 3D point clouds in a self-supervised fashion. Inspired
by how infants learn from visual data in the wild, we explore
the rich spatio-temporal cues derived from the 3D data.
Specifically, STRL takes two temporally-correlated frames
from a 3D point cloud sequence as the input, transforms it
with the spatial data augmentation, and learns the invariant
representation self-supervisedly. To corroborate the efficacy
of STRL, we conduct extensive experiments on three types
(synthetic, indoor, and outdoor) of datasets. Experimental
results demonstrate that, compared with supervised learn-
ing methods, the learned self-supervised representation fa-
cilitates various models to attain comparable or even bet-
ter performances while capable of generalizing pre-trained
models to downstream tasks, including 3D shape classifica-
tion, 3D object detection, and 3D semantic segmentation.
Moreover, the spatio-temporal contextual cues embedded in
3D point clouds significantly improve the learned represen-
tations.

1. Introduction
Point cloud is a quintessential 3D representation for vi-

sual analysis and scene understanding. It differs from alter-
native 3D representations (e.g., voxel, mesh) as it is ubiq-
uitous: Entry-level depth sensors (even on cellphones) di-
rectly produce point clouds before triangulating into meshes
or converting to voxels, making it mostly applicable to 3D
scene understanding tasks such as 3D shape analysis [5],
3D object detection and segmentation [58, 10]. Despite its
omnipresence in 3D representation, however, annotating 3D
point cloud data is proven to be much more difficult com-
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Figure 1: Overview of our method. By learning the spatio-
temporal data invariance from a point cloud sequence, our
method self-supevisedly learns an effective representation.

pared with labeling conventional 2D image data; this ob-
stacle precludes its potentials in 3D visual tasks. As such,
properly leveraging the colossal amount of unlabeled 3D
point cloud data is a sine qua non for the success of large-
scale 3D visual analysis and scene understanding.

Meanwhile, self-supervised learning from unlabeled im-
ages [11, 45, 24, 22, 6, 19, 7] and videos [54, 80, 34, 51]
becomes a nascent direction in representation learning with
great potential in downstream tasks.

In this paper, we fill in the absence by exploiting self-
supervised representation learning for 3D point clouds to
address a long-standing problem in our community—the
supervised training struggles at producing practical and
generalizable pre-trained models due to the supervision-
starved nature of the 3D data. Specifically, we consider the
following three principles in model design and learning:

Simplicity Although self-supervised learning ap-
proaches for 3D point clouds exist, they rely exclusively
on spatial analysis by reconstructing the 3D point
clouds [1, 75, 53, 20]. This static perspective of self-
supervised learning is designed explicitly with complex
operations, architectures, or losses, making it difficult to
train and generalize to diversified downstream tasks. We
believe such intricate designs are artificially introduced
and unnecessary, and could be diminished or eliminated by
complementing the missing temporal contextual cues, akin
to how infants may understand this world [18, 57].
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Invariance Learning data invariance via data augmen-
tation and contrasting has shown promising results on im-
ages and videos [22, 6, 19]. A natural question arises: How
could we introduce and leverage the invariance in 3D point
clouds for self-supervised learning?

Generalizability Prior literature [1, 75, 53, 20] has
only verified the self-supervisedly learned representations
in shape classification on synthetic datasets [5], which pos-
sesses dramatically different characteristics compared with
the 3D data of natural indoor [58, 10] or outdoor [16] en-
vironments, thus failed to demonstrate sufficient generaliz-
ability to higher-level tasks (e.g., 3D object detection).

To adhere to the above principles and tackle the chal-
lenges introduced thereby, we devise a spatio-temporal
representation learning (STRL) framework to learn from
unlabeled 3D point clouds. Of note, STRL is remarkably
simple by learning only from the positive pairs, inspired
by the BYOL [19]. Specifically, STRL uses two neural net-
works, referred to as online and target networks, that inter-
act and learn from each other. By augmenting one input, we
train the online network to predict the target network rep-
resentation of another temporally correlated input, obtained
by a separate augmentation process.

To learn the invariant representation [12, 68], we ex-
plore the inextricably spatio-temporal contextual cues em-
bedded in 3D point clouds. In our approach, the online net-
work’s and target network’s inputs are temporally corre-
lated, sampled from a point cloud sequence. Specifically, for
natural images/videos, we sample two frames with a natural
viewpoint change in depth sequences as the input pair. For
synthetic data like 3D shape, we augment the original input
by rotation, translation, and scaling to emulate the view-
point change. The temporal difference between the inputs
avails models of capturing the randomness and invariance
across different viewpoints. Additional spatial augmenta-
tions further facilitate the model to learn 3D spatial struc-
tures of point clouds; see examples in Fig. 1 and Sect. 3.

To generalize the learned representation, we adopt sev-
eral practical networks as backbone models. By pre-training
on large datasets, we verify that the learned representa-
tions can be readily adapted to downstream tasks directly
or with additional feature fine-tuning. We also demonstrate
that the learned representation can be generalized to distant
domains, different from the pre-trained domains; e.g., the
representation learned from ScanNet [10] can be general-
ized to shape classification tasks on ShapeNet [5] and 3D
object detection task on SUN RGB-D [58].

We conduct extensive experiments on various domains
and test the performance by applying the pre-trained repre-
sentation to downstream tasks, including 3D shape classifi-
cation, 3D object detection, and 3D semantic segmentation.
Next, we summarize our main findings.

Our method outperforms prior arts. By pre-training
with STRL and applying the learned models to downstream
tasks, it (i) outperforms the state-of-the-art unsupervised

methods on ModelNet40 [71] and reaches 90.9% 3D shape
classification accuracy with linear evaluation, (ii) shows
significant improvements in semi-supervised learning with
limited data, and (iii) boosts the downstream tasks by trans-
ferring the pre-trained models, e.g., it improves 3D object
detection on SUN RGB-D [58] and KITTI dataset [16], and
3D semantic segmentation on S3DIS [2] via fine-tuning.

Simple learning strategy leads to the satisfying per-
formance of learned 3D representation. Through the
ablative study in Tables 7 and 8, we observe that STRL can
learn the self-supervised representations with simple aug-
mentations; it robustly achieves a satisfying accuracy (about
85%) on ModelNet40 linear classification, which echoes re-
cent findings [46] that simply predicting the 3D orientation
helps learn good representation for 3D point clouds.

The spatio-temporal cues boost the performance of
learned representation. Relying on spatial or temporal
augmentation alone only yield relatively low performance
as shown in Tables 7 and 8. In contrast, we achieve an im-
provement of 3% accuracy by learning the invariant repre-
sentations combining both spatial and temporal cues.

Pre-training on synthetic 3D shapes is indeed help-
ful for real-world applications. Recent study [73] shows
the representation learned from ShapeNet is not well-
generalized to the downstream tasks. Instead, we report an
opposite observation in Table 6, showing the representation
pre-trained on ShapeNet can achieve comparable and even
better performance while applying to downstream tasks that
tackle complex data obtained in the physical world.

2. Related Work

Representation Learning on Point Clouds Unlike
conventional representations of structured data (e.g., im-
ages), point clouds are unordered sets of vectors. This
unique nature poses extra challenges to the learning of rep-
resentations. Although deep learning methods on unordered
sets [66, 77, 42] could be applied to point clouds [52, 77],
these approaches do not leverage spatial structures.

Taking spatial structures into consideration, modern ap-
proaches like PointNet [48] directly feed raw point clouds
into neural networks; these networks ought to be permuta-
tion invariant as point clouds are unordered sets. PointNet
achieves this goal by using the max-pooling operation to
form a single feature vector representing the global con-
text from a set of points. Since then, researches have pro-
posed alternative representation learning methods with hi-
erarchy [49, 33, 13], convolution-based structure [25, 74,
39, 59, 78, 70, 61], or graph-based information aggrega-
tion [13, 64, 55, 67]. Operating directly on raw point clouds,
these neural networks naturally provide per-point embed-
ding, particularly effective for point-based tasks. Since the
proposed STRL is flexible and compatible with various neu-
ral models serving as the backbone, our design of STRL
leverages the efficacy introduced by per-point embedding.
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Figure 2: Illustration of our self-supervised learning
framework. Given two spatio-temporal correlated 3D point
clouds, the online network predicts the target network’s rep-
resentation via a predictor. Parameters of the target network
are updated by the online network’s moving average.

Unsupervised Representation Learning Unsuper-
vised representation learning could be roughly categorized
as either generative or discriminative approaches. Genera-
tive approaches typically attempt to reconstruct the input
data in terms of pixel or point by modeling the distributions
of data or the latent embedding. This process could be re-
alized by energy-based modeling [36, 44, 72, 14, 35], auto-
encoding [65, 32, 4], or adversarial learning [17]. However,
this unsupervised mechanism is computationally expensive,
and the learning of generalizable representation unnecessar-
ily relies on recovering such high-level details.

Discriminative approaches, including self-supervised
learning, unsupervisedly generate discriminative labels to
facilitate representation learning, recently achieved by vari-
ous contrastive mechanisms [22, 45, 24, 23, 3, 62, 63]. Dif-
ferent from generative approaches that maximize the data
likelihood, recent contrastive approaches maximally pre-
serve the mutual information between the input data and its
encoded representation. Following BYOL [19], we exclude
negative pairs in contrastive learning and devise STRL to
construct a stable and invariant representation through a
moving average target network.

Self-supervised Learning of Point Clouds Although
various approaches [69, 1, 13, 75, 37, 79, 60, 46] have
been proposed for unsupervised learning and generation of
point clouds, these approaches have merely demonstrated
efficacy in shape classification tasks on synthetic datasets
while ignoring higher-level tasks of pre-trained models on
natural 3D scenes. More recent work starts to demonstrate
the potentials for high-level tasks such as 3D object detec-
tion and 3D semantic segmentation. For instance, Sauder et
al. [53] train the neural network to reconstruct point clouds
with self-supervised labels generated by randomly arrang-
ing object parts, and Xie et al. [73] learn from dense corre-
spondences between different views with a contrastive loss.
In comparison, the proposed STRL is much simpler with-
out computing the dense correspondences or reconstruction
loss; it relies solely on spatio-temporal contexts and struc-
tures of point clouds, yielding more robust and improved
performances on various high-level downstream tasks.

3. Spatio-temporal Representation Learning
We devise the proposed spatio-temporal representation

learning (STRL) based on BYOL [19] and extend its sim-
plicity to the learning of 3D point cloud representation.
Fig. 2 illustrates the proposed method.

3.1. Building Temporal Sequence of Point Clouds

To learn a simple, invariant, and generalizable represen-
tation for 3D point clouds, we formulate the representation
learning as training with sequences of potentially partial
and cluttered 3D point clouds of objects or scenes. Given a
sequence of potentially non-uniformly sampled time steps,
we denote the corresponding point cloud sequence as P “

tptu
T
t“1. We devise two approaches to generating the train-

ing point cloud sequences to handle various data sources.
Natural Sequence Natural sequences refer to the data

sequences captured by RGB-D sensors, wherein each depth
image It is a projected view of the scene. Given the camera
pose (extrinsic parameters) at each time step cext , we back-
project depth images with intrinsic parameters cin and ob-
tain a sequence of point clouds tptu in world coordinate:

pt “ BackprojpIt, c
ex
t , cinq, t “ 1, ¨ ¨ ¨ , T. (1)

Synthetic Sequence Static point clouds are intrinsi-
cally spatial, missing the crucial temporal dimension com-
pared to natural sequences. Given a point cloud p0, we solve
this problem by generating a synthetic sequence. Specifi-
cally, we consecutively rotate, translate, and scale the origi-
nal point cloud to construct a sequence of point clouds tptu:

pt “ Rtppt´1q, t “ 1, ¨ ¨ ¨ , T, (2)

where t is the index of transformations, and Rt the sampled
transformation, emulating temporal view changes.

3.2. Representation Learning

We design STRL to unsupervisedly learn the represen-
tations through the interactions of two networks: the on-
line network and target network. Here, the essence of self-
supervised learning is to train the online network to accu-
rately predict the target network’s representation.

Specifically, the online network parameterized by θ con-
sists of two components: a backbone encoder eθ and a fea-
ture projector fθ. Similarly, the target network parameter-
ized by ϕ has a backbone encoder eϕ and feature projector
fϕ. In addition, a predictor r with parameters regresses the
target presentation: The target network serves as regression
targets to train the online network, and its parameters ϕ are
an exponential moving average of the online parameters θ,

ϕ Ð τϕ ` p1 ´ τqθ, (3)

where τ P r0, 1s is the decay rate of the moving average.
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Given a sequence of point clouds P , we sample two
frames of point clouds pu, pv P P by a temporal sampler
T . With a set of spatial augmentations A (see details in
Sect. 4), STRL generates two inputs xu “ auppuq and xv “

avppvq, where au, av P A. For each input, the online net-
work and target network generate zθ “ fθpeθpxuqq, zϕ “

fϕpeϕpxvqq, respectively. With the additional predictor r,
the goal of STRL is to minimize the mean squared error
between the normalized predictions and target projections:

LuÑv “

›

›

›

›

rpzθq

}rpzθq}2
´

zϕ
}zϕ}2

›

›

›

›

2

2

“ 2 ´ 2 ¨
xrpzθq, zϕy

}rpzθq}2 ¨ }zϕ}2
(4)

Finally, we symmetrize the loss in Eq. (4) to compute
LvÑu by separately feeding xv to the online network and
xu to the target network. The total loss is defined as:

Ltotal “ LuÑv ` LvÑu. (5)

Within each training step, only the parameters of the
online network and predictor are updated. The target net-
work’s parameters are updated after each training step by
Eq. (3). Similar to [22, 19], we only keep the backbone en-
coder of the online network eθ at the end of the training as
the learned model. Algorithm 1 details the proposed STRL.

4. Implementation Details
Synthetic Sequence Generation We sample the com-

bination of following transformations to construct the func-
tion Rpq in Eq. (2); see an illustration in Fig. 3b:
• Random rotation. For each axis, we draw random angles

within 15˝ and rotate around it.
• Random translation. We translate the point cloud globally

within 10% of the point cloud dimension.
• Random scaling. We scale the point cloud with a factor
s P r0.8, 1.25s.
To further increase the randomness, each transformation

is sampled and applied with a probability of 0.5.
Spatial Augmentation The spatial augmentation

transforms the input by changing the point cloud’s local
geometry, which helps STRL to learn a better spatial
structure representation of point clouds. Specifically, we
apply the following transformations, similar to the image
data augmentation; see an illustration in Fig. 3a.
• Random cropping. A random 3D cuboid patch is cropped

with a volume uniformly sampled between 60% and
100% of the original point cloud. The aspect ratio is con-
trolled within r0.75, 1.33s.

• Random cutout. A random 3D cuboid is cut out. Each di-
mension of the 3D cuboid is within r0.1, 0.4s of the orig-
inal dimension.

• Random jittering. Each point’s 3D locations are shifted
by a uniformly random offset within r0, 0.05s.

• Random drop-out. We randomly drop out 3D points by a
drop-out ratio within r0, 0.7s.

Algorithm 1: STRL of 3D point clouds
Input:

1 tPu: a set of 3D point cloud sequences;
2 T ,A: temporal sampler and spatial augmentations;
3 eθ, fθ: online encoder and projector with parameter θ;
4 eϕ, fϕ: target encoder and projector with parameter ϕ;
5 r: predictor;
6 K: number of optimization steps;
7 N : batch size.

Output: online encoder eθ .
8 for k “ 1 to K do

/* sample batches of temporal-correlated

point clouds */

9 B Ð tpui , p
v
i P T ptPuqu

N
i“1

10 for i “ 1 to N do
/* sample spatial augmentations */

11 au, av
P A

/* generate inputs */

12 xu
“ au

ppuq, xt
“ av

ppvq

/* project */

13 zθ “ fθpgθpxu
qq, zϕ “ fϕpgϕpxv

qq

/* compute loss */

14 LuÑv “ ´2 ¨
xrpzθq,zϕy

}rpzθq}2¨}zϕ}
2

/* compute total & symmetric loss */

15 Ltotal “ LuÑv ` LvÑu

16 end
/* update online network & predictor */

17 θ, r “ optimizepθ, r,Ltotalq

/* update target network */

18 ϕ Ð τϕ ` p1 ´ τqθ

19 end

• Down-sampling. We down-sample point clouds based on
the encoder’s input dimension by randomly picking the
necessary amount of 3D points.

• Normalization. We normalize the point cloud to fit a unit
sphere while training on synthetic data [5].
Among these augmentations, cropping and cutout intro-

duce more evident changes to the point clouds’ spatial struc-
tures. As such, we apply them with a probability of 0.5.

Training We use the LARS optimizer [76] with a co-
sine decay learning rate schedule [40], with a warm-up pe-
riod of 10 epochs but without restarts. For the target net-
work, the exponential moving average parameter starts with
τstart “ 0.996 and is gradually increased to 1 during
the training. Specifically, we set τ “ 1 ´ p1 ´ τstartq ¨

pcospπk{Kq ` 1q{2 with k being the current training step
and K the maximum number of training steps.

STRL is favorable and generalizable to different back-
bone encoders; see details about the encoder structure for
each specific experiment in Sect. 5. The projector and pre-
dictor are implemented as multi-layer perceptions (MLPs)
with activation [43] and batch normalization [29]; see the
supplementary materials for detailed network structures.
We use a batch size ranging from 64 to 256 split over 8
TITAN RTX GPUs for most of the pre-trained models.
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Figure 3: Spatial data augmentation and temporal sequence generation. Except for the natural sequence generation, each
type of augmentation transforms the input point cloud data stochastically with certain internal parameters.

5. Experiment
We start by introducing how to pre-train STRL on vari-

ous data sources in Sect. 5.1. Next, we evaluate these pre-
trained models on various downstream tasks in Sect. 5.2. At
length, in Sect. 5.3, we analyze the effects of different mod-
ules and parameters in our model, with additional analytic
experiments and discussions of open problems.

5.1. Pre-training
To recap, as detailed in Sect. 3.1, we build the sequences

of point clouds and perform the pre-training of STRL to
learn the spatio-temporal invariance of point cloud data. For
synthetic shapes and natural indoor/outdoor scenes, we gen-
erate temporal sequences of point clouds and sample input
pairs using different strategies detailed below.

5.1.1 Synthetic Shapes

ShapeNet We learn the self-supervised representation
model from the ShapeNet [5] dataset. It consists of 57,448
synthetic objects from 55 categories. We pre-process the
point clouds following Yang et al. [75]. By augmenting each
point cloud into two different views with temporal trans-
formations defined in Eq. (2), we generate two temporal-
corrected point clouds. The spatial augmentations are fur-
ther applied to produce the pair of point clouds as the input.

5.1.2 Natural Indoor and Outdoor Scenes

We also learn the self-supervised representation models
from natural indoor and outdoor scenes, in which sequences
of point clouds are readily available. Using RGB-D sensors,
sequences of depth images can be captured by scanning
over different camera poses. Since most scenes are captured
smoothly, we learn the temporal invariance from the tempo-
ral correlations between the adjacent frames.

ScanNet For indoor scenes, we pre-train on the Scan-
Net dataset [10]. It consists of 1,513 reconstructed meshes
for 707 unique scenes. In experiments, we find that increas-
ing the frame-sampling frequency only makes a limited con-

tribution to the performance. Hence, we sub-sample the raw
depth sequences every 100 frames as the keyframes for each
scene, resulting in 1,513 sequences and roughly 25 thou-
sand frames in total. During pre-training, we generate fixed-
length sliding windows based on the keyframes of each se-
quence and sample two random frames within each window.
By back projecting the two frames with Eq. (1), we generate
point clouds in the world coordinate. We use the camera po-
sition to translate the two point clouds into the same world
coordinate; the camera center of the first frame is the origin.

KITTI For outdoor scenes, we pre-train on the KITTI
dataset [15]. It includes 100+ sequences divided into 6
categories. For each scene, images and point clouds are
recorded at roughly 10 FPS. We only use the sequences
of point clouds captured by the Velodyne lidar sensor. On
average, each frame has about 120,000 points. Similar to
ScanNet, we sub-sample the keyframes and sample frame
pairs within sliding windows as training pairs.

For pre-training on natural scenes, we further enhance
the data diversity by applying synthetic temporal transfor-
mations in Eq. (2) to the two point clouds. At length, the
spatial data augmentation is applied to both point clouds.

5.2. Downstream Tasks
For each downstream task below, we present the model

structures, experimental settings, and results. Please refer to
the supplementary materials for training details.

5.2.1 Shape Understanding

We adopt the protocols presented in prior work [1, 53, 69,
75] to evaluate the shape understanding capability of our
pre-trained model using the ModelNet40 [71] benchmark.
It contains 12,331 objects (9,843 for training and 2,468 for
testing) from 40 categories. We pre-process the data follow-
ing Qi et al. [48], such that each shape is sampled to 10,000
points in unit space.

As detailed in Sect. 5.1, we pre-train the backbone mod-
els on ShapeNet dataset. We measure the learned represen-
tations using the following evaluation metrics.
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Linear Evaluation for Shape Classification To clas-
sify 3D shapes, We append a linear Support Vector Machine
(SVM) on top of the encoded global feature vectors. Fol-
lowing Sauder et al. [53], these global features are con-
structed by extracting the activation after the last pooling
layer. Our STRL is flexible to work with various back-
bones; we select two practical ones—PointNet [48] and
DGCNN [67]. The SVM is trained with the extracted global
features from the training sets of ModelNet40 datasets. We
randomly sample 2,048 points from each shape during both
pre-training and SVM training.

Table 1 tabulates the classification results on test sets.
The proposed STRL outperforms all the state-of-the-art un-
supervised and self-supervised methods on ModelNet40.

Table 1: Comparisons of the linear evaluation for shape
classification on ModelNet40. A linear classifier is trained
on the representations learned by different self-supervised
approaches on the ShapeNet dataset.

Method ModelNet40

3D-GAN [69] 83.3%
Latent-GAN [1] 85.7%
SO-Net [38] 87.3%
FoldingNet [75] 88.4%
MRTNet [21] 86.4%
3D-PointCapsNet [75] 88.9%
MAP-VAE [75] 88.4%
Sauder et al. + PointNet [53] 87.3%
Sauder et al. + DGCNN [53] 90.6%
Poursaeed et al. + PointNet [46] 88.6%
Poursaeed et al. + DGCNN [46] 90.7%

STRL + PointNet (ours) 88.3%
STRL + DGCNN (ours) 90.9%

Supervised Fine-tuning for Shape Classification We
also evaluate the learned representation models by su-
pervised fine-tuning. The pre-trained model serves as the
point cloud encoder’s initial weight, and we fine-tune the
DGCNN network given the labels on the ModelNet40
dataset. Our STRL leads to a marked performance improve-
ment of up to 0.9% on the final classification accuracy; see
Table 2a. This improvement is more significant than previ-
ous methods; it even attains a comparable performance set
by the state-of-the-art supervised learning method [78].

Furthermore, we show that our pre-trained models can
significantly boost the classification performance in semi-
supervised learning where limited labeled training data is
provided. Specifically, we randomly sample the training
data with different proportions and ensure at least one sam-
ple for each category is selected. Next, we fine-tune the pre-
trained model on these limited samples with supervision
and evaluate its performance on full test sets. Table 2b sum-
marizes the results measured by accuracy. It shows that the
proposed model obtains 2.1% and 1.6% performance gain
when 1% and 20% of the training samples are available; our
self-supervised models would better facilitate downstream
tasks when fewer training samples are available.

Table 2: Shape classification fine-tuned on ModelNet40.
The self-supervised pre-trained model serves as the initial
weight for supervised learning methods.

(a) Fine-tuned on Full Training Set

Category Method Accuracy

Supervised

PointNet [48] 89.2%
PointNet++ [49] 90.7%
PointCNN [39] 92.2%
DGCNN [67] 92.2%
ShellNet [78] 93.1%

Self-supervised Sauder et al. + DGCNN [53] 92.4%
STRL + DGCNN (ours) 93.1%

(b) Fine-tuned on Few Training Samples

Method 1% 5% 10% 20%

DGCNN 58.4% 80.7% 85.2% 88.1%
STRL + DGCNN 60.5% 82.7% 86.5% 89.7%

�������� �����

Figure 4: Visualization of learned features. We visualize
the extracted features for each sample in ModelNet10 test
set using t-SNE. Both models are pre-trained on ShapeNet.

Embedding Visualization We visualize the learned
features of PointNet and DGCNN model with our self-
supervised method in Fig. 4; it displays the embedding for
samples of different categories in the ModelNet10 test set.
t-SNE [41] is adopted for dimension reduction. We observe
that both pre-trained models well separate most samples
based on categories, except dressers and night stands; they
usually look similar and are difficult to distinguish.

5.2.2 Indoor Scene Understanding

Our proposed STRL learns representations based on view
transformation, suitable for both synthetic shapes and nat-
ural scenes. Consequently, unlike prior work that primar-
ily performs transfer learning to shape understanding, our
method can also boost the indoor/outdoor scene understand-
ing tasks. We start with the indoor scene understanding in
this section. We first pre-train our STRL self-supervisedly
on the ScanNet dataset as described in Sect. 5.1. Next, we
evaluate the performance of 3D object detection and seman-
tic segmentation through fine-tuning with labels.

3D Object Detection 3D object detection requires the
model to predict the 3D bounding boxes with their object
categories based on the input 3D point cloud. After pre-
training, we fine-tune and evaluate the model on the SUN
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RGB-D [58] dataset. It contains 10,335 single-view RGB-
D images, split into 5,285 training samples and 5,050 val-
idation samples. Objects are annotated with 3D bounding
boxes and category labels. We conduct this experiment with
VoteNet [47], which is a widely-used model with 3D point
clouds as input. During pre-training, we slightly modify its
PointNet++ [49] backbone by adding a max-pooling layer
at the end to obtain the global features. Table 3 summarizes
the results. The pre-training improves the detection perfor-
mance by 1.2 mAP compared against training VoteNet from
scratch, demonstrating that the representation learned from
a large dataset, i.e., ScanNet, can be successfully transferred
to a different dataset and improve the performances of high-
level tasks via fine-tuning. It also outperforms the state-of-
the-art self-supervised learning method [73] by 0.7 mAP.1

Table 3: 3D object detection fine-tuned on SUN RGB-D

Model Method Input mAP@0.25 IoU

VoteNet from scratch Geo+Height 57.7
Geo 57.0

SR-UNet [9] PointContrast [73] Geo 57.5
VoteNet STRL (ours) Geo 58.2

3D Semantic Segmentation We transfer the pre-
trained model to the 3D semantic segmentation task on
the Stanford Large-Scale 3D Indoor Spaces (S3DIS) [2]
dataset. This dataset contains 3D point clouds scanned from
272 rooms in 6 indoor areas, with each point annotated into
13 categories. We follow the setting in Qi et al. [48] and
Wang et al. [67] and split each room into 1m ˆ 1m blocks.
Different from them, we use 4,096 points with only geo-
metric features (XYZ coordinates) as the model input. In
this experiment, the DGCNN network is firstly pre-trained
on ScanNet with STRL. Here, we focus on semi-supervised
learning with only limited labeled data. As such, we fine-
tune the pre-trained model on one area in Area 1-5 each
time and test the model on Area 6. As shown in Table 4,
the pre-trained models consistently outperform the models
trained from scratch, especially with a small training set.

5.2.3 Outdoor Scene Understanding

Compared with indoor scenes, point clouds captured in out-
door environments are much sparser due to the long-range
nature of Lidar sensors, posing additional challenges. In this
section, we evaluate the performance of the proposed STRL
by transferring the learned visual representations to the 3D
object detection task for outdoor scenes.

As described in Sect. 5.1, we pre-train the model on
the KITTI dataset with PV-RCNN [56]—the state-of-the-art
model for 3D object detection. Similar to VoteNet, we mod-
ify the backbone network of PV-RCNN for pre-training by
adding a max-pooling layer to obtain the global features.

1The model pre-trained on ShapeNet achieves better results as 59.2
mAP, which is analyzed and explained in Sect. 5.3

Table 4: 3D semantic segmentation fine-tuned on S3DIS.
We train the pre-trained or initialized models in a semi-
supervised manner on one of the Areas 1-5. Performances
below are evaluated on Area 6 of the S3DIS dataset.

Fine-tuning Area Method Acc. mIoU

Area 1 (3687 samples) from scratch 84.57% 57.85
STRL 85.28% 59.15

Area 2 (4440 samples) from scratch 70.56% 38.86
STRL 72.37% 39.21

Area 3 (1650 samples) from scratch 77.68% 49.49
STRL 79.12% 51.88

Area 4 (3662 samples) from scratch 73.55% 38.50
STRL 73.81% 39.28

Area 5 (6852 samples) from scratch 76.85% 48.63
STRL 77.28% 49.53

We fine-tune the pre-trained model on KITTI 3D object
detection benchmark [16], a subset of the KITTI raw data.
In this benchmark, each point cloud is annotated with 3D
object bounding boxes. The subset includes 3,712 training
samples, 3,769 validation samples, and 7,518 test samples.
Table 5 tabulates results. On all three categories, models
pre-trained with STRL outperform the model trained from
scratch. In particular, for the cyclist category where the least
training samples are available, the proposed STRL gener-
ates a marked performance elevation. We further freeze the
backbone model while fine-tuning; the results reveal that
models with the pre-trained backbone reach a comparable
performance compared with training models from scratch.

Table 5: 3D object detection fine-tuned on KITTI. We
report 3D detection performance with moderate difficulty
on the val set of KITTI dataset. Performances below are
evaluated by mAP with 40 recall positions.

Method Car (IoU=0.7) Pedestrian Cyclist
3D BEV 3D BEV 3D BEV

PV-RCNN
(from scratch) 84.50 90.53 57.06 59.84 70.14 75.04

STRL + PV-RCNN
(frozen backbone) 81.63 87.84 39.62 42.41 69.65 74.20

STRL + PV-RCNN 84.70 90.75 57.80 60.83 71.88 76.65

5.3. Analytic Experiments and Discussions

Generalizability: ScanNet vs ShapeNet Pre-training
What kind of data would endow the learned model with bet-
ter generalizability to other data domains remains an open
problem in 3D computer vision. To elucidate this prob-
lem, we pre-train the model on the existing largest natural
dataset ScanNet and synthetic data ShapeNet, and test their
generalizability to different domains. Table 6 tabulates our
cross-domain experimental settings and results, demonstrat-
ing the successful transfer from models pre-trained on natu-
ral scenes to synthetic shape domain, achieving comparable
shape classification performance under linear evaluation.
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Table 6: Ablation study: cross-domain generalizability
(a) Linear evaluation for shape classification on ModelNet40.

Method Pre-train Dataset Accuracy

STRL + DGCNN (linear) ScanNet 90.4%
ShapeNet 90.9%

STRL + DGCNN (fine-tune) ScanNet 92.9%
ShapeNet 93.1%

(b) Fine-tuned 3D object detection on SUN RGB-D.

Method Pre-train Dataset mAP@0.25 IoU

STRL + VoteNet ScanNet 58.2
ShapeNet 59.2

Additionally, we report an opposite observation in con-
trast to a recent study [73]. Specifically, the VoteNet model
pre-trained on the ShapeNet dataset achieves better perfor-
mance than ScanNet pre-training in SUN RGB-D object de-
tection, demonstrating better generalizability of ShapeNet
data. We believe three potential reasons lead to such con-
flicting results: (i) The encoder adapted to learn the point
cloud features in Xie et al. [73] is too simple such that it
fails to capture sufficient information from the pre-trained
ShapeNet dataset. (ii) The ShapeNet dataset provides point
clouds with clean spatial structures and fewer noises, which
benefits the pre-trained model to learn effective representa-
tions. (iii) Although the amount of sequence data in Scan-
Net is large, the modality might still be limited as it only
has 707 scenes. This last hypothesis is further backed by
our experiments in Data Efficiency below.

Temporal Transformation As described in Sect. 3.1
and 5.1, we learn from synthetic view transformation on
object shapes and natural view transformation on physi-
cal scenes. To study their effects, we disentangle the com-
binations by removing certain transformations to generate
training data of synthetic shapes when pre-training on the
ShapeNet dataset; Table 7a summarizes results. For phys-
ical scenes, we pre-train PV-RCNN on the KITTI dataset
and compare the models trained with and without sampling
input data from natural sequences; Table 7b summarizes the
results. Temporal transformation introduces substantial per-
formance gains in both cases.

Spatial Data Augmentation We investigate the effects
of spatial data augmentations by turning off certain types of
augmentation; see Table 8. By augmenting the point clouds
into different shapes and dimensions, random crop boosts
the performance, whereas random cutout hurts the perfor-
mance as it breaks the point cloud’s structural continuity,
crucial for point-wise feature aggregation from neighbors.

Data Efficiency To further analyze how the size of
training data affects our model, we pre-train the DGCNN
model with a subset of ScanNet dataset by sampling 25,000
frames depth images from the entire 1,513 sequences. Eval-
uated on ModelNet40, the model’s performance only drops
about 0.5% for both linear evaluation and fine-tuning com-

Table 7: Ablation study: temporal transformation
(a) Synthetic Shapes. We evaluate the pre-trained PointNet model on
ModelNet40 by linear evaluation under different temporal transformations.

Synthetic View Transformations Accuracy

Full 88.3%
Remove rotation 87.8%
Remove scaling 87.9%

Remove translation 87.2%
Remove rot. + sca. + trans. 85.5%

(b) Physical Scenes. We freeze the PV-RCNN backbone and fine-tune the
3D object detector on KITTI. It shows the mAP results (under 40 recall po-
sitions) of car detection w./w.o. sampling input data from natural sequence.

Natural Sequence Car
Easy Moderate Hard

✓ 91.08 81.63 79.39
✗ 90.17 81.21 79.05

Table 8: Ablation study: spatial data augmentation. We
pre-train the PointNet model on ShapeNet with different
spatial transformations. Performances below reflect the lin-
ear evaluation results on ModelNet40.

Spatial Transformation Accuracy

Full 88.3%
Remove Cutout 88.1%
Remove Crop 87.5%

Remove Crop and Cutout 87.4%
Down-sample only 86.1%

pared with training on the whole set with 0.4 million frames;
such results are similar to 2D image pre-training [22].
We hypothesize that increasing the data diversity, but not
sampling density, would improve performances in self-
supervised 3D representation learning.

Robustness We observe that the proposed STRL can
learn the self-supervised representations by simple augmen-
tations; it robustly achieves a satisfying accuracy (about
85%) on ModelNet40 linear classification. Nevertheless, it
differs from the results shown in 2D image pre-training [6,
19], where data augmentations affect the ImageNet linear
evaluation by up to 10%. We hypothesize that this differ-
ence might be ascribed to the general down-sampling pro-
cess performed on the point clouds, which introduces struc-
tural noises and helps the invariant feature learning.

6. Conclusion
In this paper, we devise a spatio-temporal self-supervised

learning framework for learning 3D point cloud representa-
tions. Our method has a simple structure and demonstrates
promising results on transferring the learned representations
to various downstream 3D scene understanding tasks. In the
future, we hope to explore how to extend current methods to
holistic 3D scene understanding [28, 27, 26, 8, 30, 50, 31]
and how to bridge the domain gap by joint training of unla-
beled data from various domains.
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