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Abstract

Superpoints are formed by grouping similar points with

local geometric structures, which can effectively reduce

the number of primitives of point clouds for subsequent

point cloud processing. Existing superpoint methods mainly

focus on employing clustering or graph partition to gen-

erate superpoints with handcrafted or learned features.

Nonetheless, these methods cannot learn superpoints of

point clouds with an end-to-end network. In this paper, we

develop a new deep iterative clustering network to directly

generate superpoints from irregular 3D point clouds in

an end-to-end manner. Specifically, in our clustering

network, we first jointly learn a soft point-superpoint as-

sociation map from the coordinate and feature spaces of

point clouds, where each point is assigned to the superpoint

with a learned weight. Furthermore, we then iteratively

update the association map and superpoint centers so

that we can more accurately group the points into the

corresponding superpoints with locally similar geometric

structures. Finally, by predicting the pseudo labels of the

superpoint centers, we formulate a label consistency loss

on the points and superpoint centers to train the network.

Extensive experiments on various datasets indicate that our

method not only achieves the state-of-the-art on superpoint

generation but also improves the performance of point

cloud semantic segmentation. Code is available at https:

//github.com/fpthink/SPNet.

1. Introduction

Superpoints are an oversegmentation of point clouds,

which can semantically group points of similar geometric

features. They can capture redundancy of point clouds

and greatly reduce the computational cost of subsequent
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point cloud processing algorithms. Due to the represen-

tational and computational efficiency of superpoints, they

are becoming increasingly popular for use in point cloud

processing tasks such as 3D object modeling [4] and point

cloud semantic segmentation [26, 21]. Nonetheless, due

to the complex geometric structures of point clouds, how

to group geometrically similar points to form accurate

superpoints is still a challenging problem.

In the past few years, research efforts have been ded-

icated to superpoint generation of point clouds. Most of

superpoint generation methods rely on the hand-crafted

features of point clouds to group similar points by em-

ploying the clustering or graph partition methods. For

example, in the voxel cloud connectivity segmentation

(VCCS) method [33], the spatial connectivity and fast point

feature histograms (FPFHs) of point clouds are used as

the local features to cluster superpoints. Lin et al. [29]

proposed a subset selection method to generate superpoints,

where the FPFHs of point clouds are also used to char-

acterize the local structures of point clouds. Guinard et

al. [14] extracted the local linearity, planarity, scattering and

verticality features of point clouds to generate superpoints

with a greedy graph-cut algorithm [24]. However, the

performance of these methods is limited by the handcrafted

features of point clouds. Lately, the supervised superpoint

(SSP) method [21] uses a deep network to obtain deep

embeddings of point clouds and combines them with a

graph-structured deep metric learning to oversegment point

clouds. Nonetheless, it still uses the optimization-based

method in [14] to generate superpoints. Therefore, SSP is

not an end-to-end superpoint generation method. Recently,

in [18], the differentiable SLIC superpixel method on 2D

images is proposed for end-to-end training by constructing

a soft association map. We build upon the idea for end-to-

end superpoint generation on 3D point clouds, which can

be integrated into other trainable deep neural networks for

point cloud processing tasks.

In this paper, we propose a simple yet effective end-to-

end framework to generate superpoints on 3D point clouds.

In our framework, we develop a deep iterative clustering

network to learn the association map between the points
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and superpoint centers. Specifically, we first use a deep

neural network to extract local geometric features of point

clouds. Before clustering, we employ the farthest point

sampling (FPS) algorithm in the coordinate space of point

clouds to obtain the initial superpoint centers. Then, we

adaptively learn the bilateral weights between the points and

superpoint centers from the coordinate and feature spaces of

point clouds simultaneously. For each point, by assigning

different weights to the superpoint centers with different

geometric structures, it is expected to selectively focus on

the most similar superpoint centers. Based on the learned

bilateral weights, we can construct a soft association map

between the points and superpoint centers. Consequently,

we update the features and coordinates of the superpoint

centers by weighting the embeddings of the corresponding

points with the constructed association map. By iteratively

updating the learned bilateral weights and superpoint cen-

ters, we can gradually learn an accurate point-superpoint

association map. Finally, by voting to predict the pseudo

labels of superpoint centers with the point-superpoint as-

sociation map, we formulate a label consistency loss on

the points and corresponding superpoint centers to train the

deep iterative clustering network. Experimental results on

indoor and outdoor datasets including S3DIS [1], Scan-

Net v1 [8], vKITTI [10] demonstrate that the proposed

superpoint network (dubbed ªSPNetº) outperforms other

superpoint generation algorithms. Thanks to the end-to-end

manner, the inference speed of our method is also faster

than SSP [21]. Moreover, with the learned superpoints,

we can further improve the performance of point cloud

semantic segmentation while reducing the inference time.

The contributions of this paper are as follows:

• To the best of our knowledge, our deep iterative

clustering network is the first end-to-end network for

superpoint generation.

• We jointly learn the adaptive bilateral weights from

the coordinate and feature spaces of point clouds to

construct the point-superpoint association map.

• We formulate a label consistency loss to train our

network for superpoint generation.

• We demonstrate that the end-to-end learned super-

points can further improve the performance of point

cloud semantic segmentation.

2. Related Work

Deep learning on point clouds. Recent efforts have

been made on deep representation learning on point clouds.

Deep learning methods on point clouds can be roughly

categorized into four classes: point based [44, 52, 15, 16],

graph based [40, 3, 22, 25], multi-view based [42, 27] and

voxelization based methods [7, 31]. As a pioneer work,

PointNet [35] uses the multi-layer perceptron (MLP) and

max pooling operation to extract features of point clouds.

In order to characterize the local geometric structures of

point clouds, Qi et al. [37] proposed a hierarchical fea-

ture learning framework called PointNet++, which applies

MLP to the local neighborhoods to learn local features

of point clouds. In PointCNN [28], X -transformation

is proposed to simultaneously weight and permute the

input features so that the convolution operation can be

applied to the transformed features. The graph based

methods [39, 6, 5, 50] represent point clouds as a graph

by constructing the spatial neighborhoods of point clouds

for local feature extraction. For example, in dynamic

graph CNN (DGCNN) [46], an EdgeConv operation is

proposed, which acts on the graph to dynamically aggregate

local geometric features of point clouds. Wang et al. [45]

proposed graph attention convolution (GACNet), which

uses a graph attention module to adaptively learn structured

features of point clouds.

The voxelization based 3D deep learning methods [32,

36, 48] represent irregular and unordered point clouds with

regularly volumetric occupancy grids so that 3D convolu-

tion neural networks (3D CNNs) can be used to extract

features. However, volumetric representation usually leads

to the burden of computational resources due to large

amount of voxels. In order to reduce the consuming

resource of 3D CNNs, Kd-Net [20] and OctNet [38] are

proposed to focus on the informative voxels of point clouds

instead of the empty voxels. Also, sparse 3D CNN [12]

is proposed to speed up the standard 3D CNN, which

applies 3D convolution to the set of informative 3D voxels

rather than empty voxels. In addition to voxelization

based 3D deep learning methods, multi-view based 3D

deep learning methods [42, 47] project point clouds into

a set of 2D images rendered from multiple views and

use the 2D convolution operation to extract features of

point clouds. Nonetheless, it is difficult to discriminatively

characterize the local geometric structures of 3D objects

with the rendered images across multiple views.

Point Cloud Oversegmentation. The goal of point

cloud oversegmentation is to segment point clouds into su-

perpoints. Similar to superpixels in 2D images, superpoints

are a set of 3D points, which are compactly distributed in

the 3D space with geometrically similar structures. In [33],

voxel cloud connectivity segmentation (VCCS) is proposed

for superpoint generation with a variant of k-means clus-

tering, where the spatial connectivity and geometric fea-

tures of point clouds are used so that superpoints can

accurately conform to object boundaries. However, it

is sensitive to the seeding initialization. To solve this

problem, Gao et al. [11] proposed a new saliency-guided

method for generating superpoints, which applies saliency-

guided seeding rather seeding such initialization. Besides,

Lin et al. [29] formulated superpoint oversegmentation as a
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Figure 1: Left: Overview of the proposed deep iterative clustering network (SPNet). Given point clouds, we first use a

PointNet-like structure to extract deep features. Then we use the farthest point sampling (FPS) algorithm to sample initial

superpoint centers. After that, we learn the point-superpoint association from both the coordinate and feature spaces. Next,

we update the superpoint center by weighting point coordinates and features, respectively. By iteratively updating the point-

superpoint association map and superpoint centers, the network can gradually learn an accurate point-superpoint association

map. Right: The architecture of the point-superpoint association module. The association map is jointly learned from the

coordinate and feature spaces.

subset selection problem that can be solved with a heuristic

optimization method. Based on the graph structure, Song et

al. [41] proposed a graph-structured method, which first

detects boundaries by analyzing the consecutive points

and then clusters the remaining points after excluding the

boundary points. Likewise, Guinard et al. [14] casted

point cloud oversegmentation as a structured optimization

problem and used the greedy graph-cut algorithm [23]

to generate superpoints. In point cloud local variation

(PCLV) [2], the 2D local variation (LV) graph-based over-

segmentation algorithm is extended to 3D point clouds to

generate superpoints. Lately, the supervised superpoint

(SSP) [21] proposes a graph structure based deep metric

learning method to oversegment point clouds with the deep

embeddings of point clouds, where the optimization-based

method in [14] is used to generate superpoints.

3. Method

3.1. Deep Iterative Clustering Network

Given the point cloud P = {pi ∈ R
3 | i = 1, . . . , n}

with n points, the task of superpoint generation is to

assign each point to one of m superpoint centers with

the highest probability. Therefore, we can construct a

point-superpoint association map H ∈ Z
n×m between the

points and superpoint centers to obtain the matching scores.

Nonetheless, in practice, in order to make the construction

of the association map efficient in terms of computation

and memory, we only compute the association between

each point and its k-nearest superpoints in the coordinate

space. In this way, we reformulate the association map as

H ∈ Z
n×k.

In order to obtain an accurate association map between

the points and its k-nearest superpoint centers, we develop

a deep iterative clustering network to iteratively update the

association map and superpoint centers. As shown in Fig. 1,

we first adopt a PointNet-like network proposed in [21] to

encode the local geometric features of the original point

clouds into the feature space, denoted by F = {fi ∈
R

c | i = 1, . . . , n}, where c is the feature dimension.

Before clustering, we employ the farthest point sampling

(FPS) algorithm in the coordinate space of point clouds to

obtain the initial superpoint coordinates X
0 ∈ R

m×3 of

the superpoint centers. In addition, the initial superpoint

feature S
0 ∈ R

m×c of the superpoint center is computed

by averaging the corresponding point features surrounding

the superpoint in the coordinate space. It is noted that

different sampling methods such as inverse density impor-

tant sampling (IDIS) [13] and minimum density sampling

(MDS) [30] can also be used. Nonetheless, in order to

balance the speed and uniformity of the sampled superpoint

centers, we adopt the FPS algorithm to generate initial

superpoint centers from point clouds.

After initialization, we alternately update point-

superpoint association map and superpoint centers by

adaptively learning the bilateral weights between the points

and superpoint centers from the coordinate and feature

spaces. After v iterations, we obtain the final association

map Gv ∈ R
n×k, which can more accurately group the

points into the corresponding superpoints. Finally, to obtain

superpoints from the point clouds, we can convert the soft

association map Gv ∈ R
n×k to the hard association map

Hv ∈ R
n×1 by assigning each point to one of the k-nearest

superpoints with the highest probability.
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Point-Superpoint association. For the i-th point, we first

compute its k-nearest superpoint centers in the coordinate

space, denoted by Ni = {C1, . . . ,Ck}, where Ck ∈ R
3

indicates the spatial coordinate of the superpoint center.

We then adaptively learn the bilateral weights to construct

the association map between the points and superpoint

centers. For each point, by assigning different weights to

the different superpoint centers, we can discriminatively

capture the difference of the geometric structures between

the point and superpoint centers. Furthermore, due to the

complex geometric structures of point clouds, the fact that

the points are close in the feature space does not mean that

they are close in the coordinate space. Therefore, in order

to keep the spatial connectivity of the superpoint across the

points, we learn the bilateral weights from the coordinate

and feature spaces of point clouds simultaneously.

Formally, at the t-th iteration, the association between

the i-th point and the j-th superpoint center is given by:

Gt
ij = φ⊤(pi,xj)g(pi) · ϕ

⊤(fi, sj)h(fi) (1)

where xj ∈ R
3 is the spatial coordinate of the superpoint

center and sj ∈ R
c is the feature of the superpoint center.

φ(·, ·) : R3 × R
3 → R

c and ϕ(·, ·) : Rc × R
c → R

c are

two mapping functions in the coordinate and feature spaces,

respectively. Besides, g(·) : R3 → R
c and h(·) : Rc → R

c

are unary mapping functions implemented by the MLP. The

mapping functions φ(pi,xj) and ϕ(fi, sj) are defined as:

φ(pi,xj) = ReLU(W⊤
φ (pi − xj)),

ϕ(fi, sj) = ReLU(W⊤
ϕ (fi − sj))

(2)

where Wφ ∈ R
3×c and Wϕ ∈ R

c×c are the weights to

be learned, and ReLU is the activation function. Vectors

pi − xj and fi − sj can encode the differences between

the i-th point and the j-th superpoint center in the coor-

dinate and feature spaces, respectively. It is noted that in

Eq. (1), the dot-product similarity is adopted to compute

the association. To obtain the probability to assign the i-th

point to the j-th superpoint, we employ the softmax funtion

to obtain the normalized point-superpoint association map

Ĝt ∈ R
n×k across the neighborhood Ni as follows:

Ĝt
ij =

exp(Gt
ij)∑k

l=1 exp(G
t
il)

. (3)

Superpoint center updating. After computing the point-

superpoint association map Ĝt ∈ R
n×k at the iteration t,

we in turn update the superpoint centers for the iteration

t+1. Specifically, we update the coordinates and feature

of the superpoint center by weighting the coordinates and

features of the corresponding points with the learned asso-

ciation map Ĝt, respectively. Given the feature F = {fi ∈
R

c | i = 1, . . . , n} of point clouds, the new feature of the

j-th superpoint center is defined as follows:

S
t+1
j =

1

G

∑n

i=1
[j ∈ Ni]Ĝ

t
ijfi (4)

where the indicator function [j ∈ Ni] indicates whether the

Algorithm 1 Deep Iterative Clustering Network

Input: Point cloud P
n×3

.

Output: Point-Superpoint association G
n×k

.

1: Point features, F
n×c

= Network(P ).

2: Initial superpoint centers with farthest point sampling,

S
0

m×c
, X 0

m×3
= J (FPS(P )).

3: for each iteration t from 1 to v do

4: Compute association between the point i and the k-

nearest superpoint j:

Gt
ij = φ⊤(pi,xj)f(pi) · ϕ

⊤(fi, sj)g(fi).
5: Compute soft association:

Ĝt
ij =

exp(Gt
ij)∑

k
l=1

exp(Gt
il
)
.

6: Compute new superpoint centers:

S
t+1
j = 1

G

n∑
i=1

[j ∈ Ni]Ĝ
t
ijfi,

X
t+1
j = 1

G

n∑
i=1

[j ∈ Ni]Ĝ
t
ijpi,

G =
n∑

i=1

[j ∈ Ni]Ĝ
t
ij .

7: end for

8: Compute the hard association Hv

n×1
:

Hv
i = argmax

j∈[1,2,...,k]

Ĝv
ij

j-th superpoint is located in the k-nearest superpoint set Ni

of the i-th point. Here, [j ∈ Ni] equals to 1 if the j-th

superpoint belongs to Ni, and 0, otherwise. Note that since

the updated superpoint center is used for the t+1 iteration, it

is denoted by S
t+1
j ∈ R

c. Besides, G =
∑n

j=i[j ∈ Ni]Ĝ
t
ij

is the normalization factor.

Similarly, given the coordinates P = {pi ∈ R
3 |

i = 1, . . . , n} of point clouds, we can obtain the new

coordinates of the j-th superpoint center as follows:

X
t+1
j =

1

G

∑n

i=1
[j ∈ Ni]Ĝ

t
ijpi (5)

where X t+1
j ∈ R

3 and pi ∈ R
3 is the spatial coordinates of

the point. Finally, we can obtain the new superpoint centers

with X
t+1 ∈ R

m×3 and S
t+1 ∈ R

m×c at the iteration

t+1. The scheme of our deep iterative clustering network is

outlined in Algorithm 1.

3.2. Loss Function

In order to train our deep iterative clustering network

to generate high-quality superpoints, we formulate a label

consistency loss and a compactness loss on the points and

the superpoint centers.

Label consistency loss. It is expected that the points in

the same superpoint should have the same label. Given the

label vector E = {ei ∈ R
l | i = 1, . . . , n} of the point

clouds, where ei is the one-hot vector, we can generate
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Figure 2: The overview of the label consistency loss. The

circle represents the point label and the square represents

the superpoint label. SP1 and SP2 are two superpoints.

the label vectors W = {wj ∈ R
l | j = 1, . . . ,m}

of m superpoint centers by weighting the label vectors of

the points with the point-association map Ĝv ∈ R
n×k as

follows:

wj =
1

G

∑n

i=1
[j ∈ Ni]Ĝ

v
ijei (6)

where Ni is the k-nearest superpoints set, and [j ∈ Ni]
is the indicator function that indicates whether the j-th

superpoint is located in Ni, G =
∑n

j=i[j ∈ Ni]Ĝ
v
ij is the

normalization factor.

Then, the generated label vectors W of the superpoint

centers are mapped back onto point clouds through the

association map Ĝv . In other words, we reconstruct the

label vectors of the points Ẽ = {ẽi ∈ R
l | i = 1, . . . , n}

by weighting the label vectors of the k-nearest superpoints

with the corresponding probability in Ĝv , defined as fol-

lows:

ẽi =
∑k

j=1
Ĝv

ijwj (7)

Furthermore, we generate the pseudo label vectors of

the superpoint centers by directly taking votes on the label

vectors of the points in the same superpoint, denoted by

U = {uj ∈ R
l | j = 1, . . . ,m}. Based on the

pseudo label vectors of the superpoint centers, we propose

a label consistency loss to train our deep iterative clustering

network. Fig. 2 illustrates the label consistency loss. The

label consistency loss encourages the pseudo label vectors

of the superpoints (U ) to be consistent to the generated label

vectors of the superpoints (W ). Also, the reconstructed

label vectors of the points (Ẽ) should be consistent with the

original label vectors of the points (E). Mathematically, the

label consistency loss is defined as:

Lcons =
1

n

n∑

i=1

Lloss(ei, ẽi) +
1

m

m∑

j=1

Lloss(wj ,uj) (8)

where Lloss is the loss function and we choose the cross-

entropy loss in the experiment.

Compactness loss. We define the compactness loss to

encourage the superpoints to be spatially compact. It is

expected that the points belonging to the same superpoint

should be close to the superpoint center in the coordinate

space. We encourage the compactness of the superpoints

by minimizing the distances between the points and the

superpoint centers. Specifically, given point clouds P ∈
R

n×3, we can obtain the coordinates of the superpoint

centers Q ∈ R
3. The compactness loss of our superpoint

generation network is defined as:

Lcompact = ∥P −Q∥F (9)

where || · ||F indicates the Frobenius distance.

In this paper, the final loss is a combination of the label

consistency loss and the compactness loss, L = Lcons +
λLcompact, where we empirically set λ = 10−3 in all

experiments.

4. Experiments

4.1. Datasets

We evaluate our method on both indoor and outdoor

datasets. The indoor datasets include S3DIS [1] and Scan-

Net v1 [8]. S3DIS is a dense large-scale dataset, which

contains 3D RGB point clouds (about 273 million points)

with 13 categories from six indoor areas. For a fair com-

parison, we follow [35, 26] to choose Area 5 of the S3DIS

dataset as our testing set and the remaining as our training

set. Compared with S3DIS, ScanNet v1 is a sparser large-

scale dataset, which contains 3D RGB point clouds (about

242 million points) with 21 categories. Following [37],

we evaluate our method on the offline test dataset. For

the outdoor dataset, we conduct experiments on the sparse

large-scale vKITTI [10] dataset, which contains RGB point

clouds (about 15 million points) with 13 categories from

six sequences. Following [26, 21], we report the evaluation

results of 6-fold cross validation on the vKITTI dataset.

4.2. Implementation Details

Our model is implemented with the PyTorch [34] deep

learning platform. For all experiments, we use Adam [19]

with β1 = 0.9 and β2 = 0.999. We train our model for 1000

epochs. The initial learning rate is 0.001 and is divided by

10 for every 300 epochs.

For a fair comparison, we adopt the same strategy as in

SSP [21] to process the indoor and outdoor point clouds.

For all datasets, we subsample point clouds using a regular

grid of voxels (voxel width of 3cm for S3DIS and ScanNet

v1, 5cm for vKITTI). In each voxel, we average the position

and color of the contained points. For training, we randomly

select a subregion (15,000 voxels for S3DIS and vKITTI,

8,000 voxels for ScanNet v1) of each room or scene. We

generate subregions by using breadth-first search (BFS) on

the voxels’ adjacency graph. In practice, we observe that

when selecting 0.8% of the voxels in the subregion as the

initial seed points (superpoint centers), the model reaches
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Method
S3DIS Area 5 ScanNet v1 vKITTI 6-fold

OOA BR BP F1 OOA BR BP F1 OOA BR BP F1

w/ RGB

VCCS [33] 95.22 62.06 10.86 18.48 74.59 45.65 7.09 12.27 50.05 64.75 13.19 21.91

SPG [26] 95.84 52.06 13.11 20.94 95.02 42.38 10.73 17.12 91.92 75.13 24.66 37.13

SSP [21] 97.04 80.73 13.02 22.42 96.39 78.53 14.07 23.86 92.85 90.37 26.18 40.59

SPNet (ours) 96.50 82.11 13.14 22.65 96.47 79.10 13.58 23.18 94.37 94.15 24.88 39.36

w/o RGB

VCCS [33] 94.23 50.09 10.34 17.14 74.53 44.62 7.01 12.11 86.23 69.12 10.44 18.14

Lin et al. [29] 95.24 56.12 11.63 19.26 96.56 65.31 12.25 20.63 91.90 80.86 15.39 25.85

SPG [26] 93.86 40.98 12.25 18.86 95.10 42.55 10.76 17.17 90.12 72.34 27.40 39.74

SSP [21] 96.47 74.64 13.09 22.27 96.42 78.14 14.16 23.97 85.17 70.16 20.71 31.98

SPNet (ours) 96.55 78.77 13.06 22.40 96.52 78.42 13.43 22.93 92.16 86.34 26.29 40.30

Table 1: Comparison results of generated superpoints on the S3DIS, ScanNet v1, and vKITTI datasets.
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Figure 3: Metric results of different methods in the cases of different numbers of superpoints on Area 5 of the S3DIS dataset.

the best performance. Note that superpoint evaluation

results are obtained at the voxel level, while all results on

the semantic segmentation are obtained at the point level.

4.3. Learned Superpoints

Evaluation metrics. We adopt the same metrics as in

SSP [21] to evaluate the proposed method. Specifically, we

use the Oracle Overall Accuracy (OOA), Boundary Recall

(BR), Boundary Precision (BP) to evaluate the quality

of the superpoints. OOA measures the highest accuracy

achievable for semantic segmentation that utilizes the su-

perpoints as units, whereas BR and BP measure how

well the superpoint boundaries align with the ground truth

boundaries. Note that for the definition of point clouds

boundaries and the calculation of OOA, BR, and BP, please

refer to [21]. In addition, we also report the F1 score: F1 =

2BP·BR/(BP+BR).

Quantitative results. We evaluate our method on three

popular datasets including S3DIS [1], ScanNet v1 [8], and

vKITTI [10]. The quantitative results are shown in Tab. 1.

For a fair comparison, the number of superpoints generated

by different methods on the same dataset is almost the same.

For example, the number of superpoints on Area 5 of the

S3DIS dataset is 1042 (VCCS), 1059 (Lin et al.), 1053

(SPG), 1048 (SSP), and 1050 (ours), respectively. From

the table, it can be observed that our method can achieve

better performance than the other methods with or without

color information. Compared with the handcrafted features

in the traditional methods [33, 29], the deep features in our

method learned from the specifically designed network can

better characterize the complex local geometric structures

of point clouds. Therefore, the performance of our method

surpasses the performance of these traditional methods [33,

29]. Different from SSP, we use the label consistency

loss to optimize the network during training, so that the

generated superpoints adhere to the boundaries of objects.

Thus, on the metric of BR, our method can achieve better

performance than SSP. From experimental results, one can

see that our method tends to cluster multiple superpoints

inside an object. The boundaries of those superpoints

are regarded as false boundaries when calculating the BP.

Therefore, the BP of our method is a little bit low. Espe-

cially, in the outdoor vKITTI dataset, our method clusters

multiple superpoints on the road, while SPG and SSP divide

the road into large-scale superpoints through the graph-cut

algorithm. Therefore, the BP of our method is slightly lower

on the vKITTTI dataset. However, since false boundaries

of the superpoints inside an object do not generate new

labels to superpoints, the false boundaries inside the object

will not affect the segmentation results of the object (please

refer to the segmentation results in Section 4.4). We also

report the F1 scores in Tab. 1. It can be seen that our

method is comparable to SSP in terms of the F1 score.

As illustrated in Fig. 3, we plot the performance curves
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(a) Semantic Label (b) Lin et al. [29] (c) SSP [21] (d) SPNet (ours)

Figure 4: Visual results of different methods on Area 5 of the S3DIS dataset.
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Figure 5: Ablation study results of different hyper-parameters on Area 5 of the S3DIS dataset.

Method type training time inference time

VCCS [33]

CPU

- 92s

Lin et al. [29] - 187s

SPG [26] - 995s

SSP [21]
GPU

∼6h 2327s

SPNet (ours) ∼7h 646s

Table 2: Training time and inference time of different

methods on Area 5 of the S3DIS dataset.

of different methods in the cases of different numbers of

generated superpoints on Area 5 of the S3DIS dataset. From

the figure, it can be found that the performance of our

method is comparable with that of SSP. Moreover, with the

decrease of the number of superpoints, our SPNet can still

maintain the high performance for BR, while SSP drops

rapidly.

Visual results. As shown in Fig. 4, we visualize the

superpoints generated by different methods. From the

figure, one can see that Lin et al. [29] cannot segment

the whiteboard from the wall, while SSP [21] and our

method can segment it well with clearer boundaries. In

addition, the boundaries of the whiteboard generated by our

method are more accurate than SSP. Although the shape of

generated superpoints with the methods in [29, 21] seems

more regular, the object boundaries are not clear.

Time costs. To evaluate the time costs, we compare the

running time of different methods. For a fair comparison,

we use a single Core i5 CPU to evaluate VCCS [33], Lin et

al. [29], and SPG [26], respectively. For learning-based

methods, both SSP and our method are run on a single

NVIDIA TITAN RTX GPU using the PyTorch framework.

We evaluate the running time of generating superpoints

on Area 5 of S3DIS dataset. Besides, we also compute

the training time of our method and SSP. As shown in

Tab. 2, it can be seen that our method runs faster than SSP.

Since our method is an end-to-end method, we can generate

superpoints directly from the network without any post-

processing. However, SSP first uses the network to extract

the embedding of points and then uses the optimization-

based method to generate superpoints. Thus, SSP spends

more time than our method. Besides, our method and SSP

have similar training time. Although the time cost of our

method is higher than the traditional methods [33, 29], our

method can achieve better performance on all three datasets

as shown in Tab. 1.

Method OOA BR BP

only coordinate space 95.10 78.35 9.43

only feature space 95.43 82.03 12.01

both (SPNet) 96.50 82.11 13.14

Table 3: Ablation study results of different settings on Area

5 of S3DIS dataset.

Ablation studies. In Fig. 5 and Tab. 3, we show the ab-

lation study results to experimentally verify the rationality

of the settings in our experiments. Specifically, in Fig. 5,

we study the impact of the hyper-parameters λ, k, and v

on performance of our network. For a fair comparison,

we only adjust the corresponding parameters and fix the

remaining parameters unchanged during training. As shown

in Fig. 5, we display the curves of boundary recall (BR)

on Area 5 of the S3DIS dataset at different numbers of

superpoints. It can be observed that we can achieve the

best performance when setting k=6, λ=10−3, and v=4,

respectively. According to Fig. 5, hyper-parameters λ, v,

and k are insensitive to superpoint generation. Except for

k=1, the performance will not change greatly in the cases

of different values of k.
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Moreover, we also conduct experiments to verify the ef-

fectiveness of using both the coordinate and feature spaces

in the point-superpoint association learning. As shown in

Tab. 3, we report the performance of OOA, BR, and BP on

Area 5 of the S3DIS dataset. From the table, it can be found

that learning the bilateral weights from the coordinate and

feature spaces simultaneously can improve the performance

of superpoint generation.

4.4. Semantic Segmentation

Experimental settings. We present results on the se-

mantic segmentation benchmarks of S3DIS [1], ScanNet

v1 [8], and vKITTI [10]. For a fair comparison, we adopt

the same network as in [26, 21] to conduct experiments

with our generated superpoints. We use the same settings

as in [26, 21] to train the network. To evaluate the

segmentation results, we use the following metrics: mean

per-class intersection-over-union (mIoU), mean per-class

accuracy (mAcc), overall accuracy (OA).

Experimental results. As shown in Tab. 4, we re-

port the segmentation results on the three datasets. In

the table, we divide the methods into two types: point-

based methods and superpoint-based methods. Note that

SPG [26], SSP [21], and our method are superpoint-based

methods and the rest are point-based methods. Moreover,

we adopt the same segmentation method and the same

experimental settings as those in SPG and SSP. It can be

seen that our method can obtain better performance than

SPG and SSP on all three dataset benefiting from the good

superpoint partition results. The quantitative results have

demonstrated that the generated superpoints can effectively

improve the performance of semantic segmentation. In

addition, compared to the point-based methods, our method

also outperforms most of them. It is noted that some point-

based methods [45, 44] have achieved the state-of-the-art

due to the advanced data processing and vote strategy. Since

our superpoint generation method does not employ this kind

of advanced data processing, our segmentation results are

slightly lower than KPConv [44].

In Tab. 4, we also report the inference time of different

methods during testing. Note that for superpoint-based

methods, we report the total time of superpoint generation

(colored in blue) and semantic segmentation (colored in

red). It can be found that our method runs faster than

other methods. In particular, based on the superpoints, our

method can even run faster than PointNet [35]. Specifi-

cally, in our method, a simplified PointNet (3-layer MLP

plus spatial transformer network (STN)) is used, while in

PointNet 5-layer MLP plus coordinate and feature STNs are

used for segmentation. Since our network is shallow and the

number of superpoints is far less than points, our method

is faster than PointNet. The time consumption of our

method on the S3DIS 6-fold is 2828s (superpoint generation

Method inference time mIoU mAcc OA

S3DIS 6-fold

PointNet [35] 6050 47.6 66.2 78.5

PointCNN [28] 12675 65.3 75.6 88.1

ShellNet [51] - 66.8 - 87.1

KPConv [44] 10136 70.6 79.1 -

PointWeb [52] 11982 66.7 76.2 87.3

RandLA-Net [15] - 70.0 82.0 88.0

SPG [26] 4243 (3999+244) 62.1 73.0 85.5

SSP [21] 9581 (9325+256) 68.4 78.3 87.9

SPNet (ours) 2828 (2588+240) 68.7 79.7 88.0

ScanNet v1

PointNet [35] 430 14.7 19.9 -

PointNet++ [37] 705 34.2 43.8 -

RSNet [17] - 39.3 48.3 -

TangConv [43] 452 40.9 55.1 80.1

SPG [26] 1873 (1733+140) 41.7 53.2 81.6

SSP [21] 2011 (1866+145) 41.8 52.3 82.6

SPNet (ours) 362 (220+142) 43.2 54.6 82.7

vKITTI 6-fold

PointNet [35] 3948 34.4 47.0 79.7

3P-RNN [49] - 41.6 54.1 87.8

G+RCU [9] - 35.6 57.6 79.7

SPG [26] 5054 (5004+50) 55.4 65.1 82.7

SSP [21] 6075 (6021+54) 52.0 67.3 84.3

SPNet (ours) 1411 (1359+52) 57.0 67.8 89.9

Table 4: Results of semantic segmentation on 6-fold of

S3DIS, ScanNet v1, and vKITTI datasets. Here, blue

numbers correspond to the time of superpoint generation,

and red numbers correspond to the time of semantic

segmentation.

2588s + simplified PointNet 132s + superpoint graph 108s),

which is lower than PointNet (6050s). Therefore, it further

demonstrates the advantages of our method on the semantic

segmentation task.

5. Conclusion

In this paper, we developed a novel deep iterative clus-

tering network for superpoint generation. In our network,

we jointly learned a soft point-superpoint association map

from both coordinate and feature spaces of point clouds.

In order to obtain a more accurate point-superpoint asso-

ciation map, we iteratively updated the association map

and superpoint centers. Finally, by predicting the pseudo

labels of the superpoint centers, we formulated a label

consistency loss on the points and superpoint centers to train

the network. Extensive experiments on indoor and outdoor

datasets demonstrate that the proposed method can not only

generate high-quality superpoints from point clouds but also

improve the performance of semantic segmentation.
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