This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.

Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

Fusion Moves for Graph Matching

Lisa Hutschenreiter™,
Carsten Rother*,

Stefan Haller*,
Dagmar KainmiillerT,

Lorenz Feineis®,
Bogdan Savchynskyy*

* Heidelberg University, T Max Delbriick Center for Molecular Medicine, Berlin

Abstract

We contribute to approximate algorithms for the
quadratic assignment problem also known as graph match-
ing. Inspired by the success of the fusion moves technique
developed for multilabel discrete Markov random fields, we
investigate its applicability to graph matching. In particu-
lar, we show how fusion moves can be efficiently combined
with the dedicated state-of-the-art dual methods that have
recently shown superior results in computer vision and bio-
imaging applications. As our empirical evaluation on a wide
variety of graph matching datasets suggests, fusion moves
significantly improve performance of these methods in terms
of speed and quality of the obtained solutions. Our method
sets a new state-of-the-art with a notable margin with respect
to its competitors.

1. Introduction

The quadratic assignment problem also known as graph
matching is one of the most prominent combinatorial prob-
lems having numerous applications. In computer vision
it is predominantly used for feature matching [47]. The
modern approach to this application is deep graph match-
ing, see e.g. [40, 42, 55], which enjoys constantly growing
attention in the community. As follows from the name,
deep graph matching combines neural networks with combi-
natorial matching techniques for inference and joint learn-
ing. Whereas most of earlier deep graph matching ap-
proaches [17, 24,51, 52, 53] employed a linear assignment
problem (LAP) solver' to obtain matchings in their pipeline,
the most promising state-of-the-art method [40] uses a fully
featured graph matching solver. Being called in a loop on

Acknowledgements. This work was supported by the European Re-
search Council (ERC European Unions Horizon 2020 research and in-
novation program, grant 647769), the German Research Foundation (Ex-
act Relaxation-Based Inference in Graphical Models, DFG SA 2640/1-
1), and the Helmholtz Information & Data Science School for Health
(HIDSS4Health). The computations were performed on an HPC Cluster
at the Center for Information Services and High Performance Computing
(ZIH) at TU Dresden.

' A polynomial subclass of graph matching without quadratic costs.

Fan W BA T SR

*

S~ L g sy
S 501 dd-1s0
X — + fusion
£ —60 1
CHE
5]
0 100 200 300
time (s)

Figure 1. (Top) Scalable graph matching is especially important for
bio-imaging, where hundreds or even thousands of cells on different
images must be matched to each other. An instance from the pairs
dataset (see Sec. 60), only each 5th matching is shown. (bottom)
Convergence of the state-of-the-art method dd-1s0 [47] (see Sec. 6)
without and with fusion moves. Note that fusion moves attain much
better energy in notably shorter time.

each training iteration, this solver must provide high-quality
solutions within a very restricted time budget, typically less
than a second. Modern state-of-the-art methods [46, 47, 56]
satisfy this requirement only if applied to relatively small
problems, with a few dozen feature points at most. Hence,
scalability of deep graph matching critically depends on the
existence of highly-efficient graph matching solvers.

In this work we address this problem by introducing a

new graph matching technique, which notably improves the
state-of-the-art in terms of speed and attained accuracy. In
particular, it provides highly accurate solutions for problems
with more than 500 features in less than a second.
Related work. First formulated in 1957 [6], the graph
matching problem plays a central role in combinatorial op-
timization. Due to its importance, nearly all possible op-
timization techniques were put to the test for it, see the
surveys [10, 12, 38] and references therein.

As usual for NP-hard problems, no single method can
efficiently address all graph matching instances. Different
applications require different methods, and we concentrate

6270

here on problem instances specific to computer vision. Tradi-
tionally, within this community primal heuristics® [1, 14, 19,

, 35,36, 50, 54, 57, 58] were used predominantly, since
demand for low computation times usually dominates the
need for optimality guarantees. These also include meth-
ods that build upon spectral relaxations [35, 36, 50, 57], or
convex-to-concave path-following procedures [7, 15, 58].
However, recent works [46, 47, 56] have shown that La-
grange duality-based methods attain significantly better ac-
curacy, especially as problem size and complexity grow. It
is important to note that in operations research such La-
grange dual methods for graph matching are known at least
since the 90s [2, 22, 30], and are widely used in branch-
and-bound solvers. Although they address similar relax-
ations as [46, 56], their iteration complexity is an order of
magnitude higher than those of [46, 56]. This makes them
prohibitively expensive for use in typical computer vision
applications.

While branch-and-bound remains the main tool to obtain
exact solutions, it has an exponential worst-case complexity
and is often too expensive. Hence, dual methods like [46, 47]
use simple primal heuristics with low computational cost
that can be called after each dual iteration. Improving such
heuristics to obtain high-quality primal solutions already af-
ter few dual iterations would allow to outperform the purely
primal methods not only in accuracy but also in runtime.
Fusion moves, as introduced by [34], is a primal heuristic
proposed for maximum a posteriori inference in Markov
random fields, known also as discrete labeling or energy
minimization problem, see e.g. [43]. For brevity we will
refer to it as the MRF problem.

In its most common setting the fusion moves method
tries to improve a current approximate primal assignment by
merging it with another assignment proposal. The merging
constitutes a comparatively small two-label MRF problem,
for which efficient exact and approximate techniques exist.
As noted in [34], success of the method significantly depends
on the quality and diversity of proposals. A number of
ways of generating generic proposals for MRF problems
and (approximate) solvers for the corresponding auxiliary
problem have been evaluated by [29]. They also considered
several instances of the graph matching problem treated as
MREF. However, they found fusion moves with their, typically
infeasible, proposals to be inferior to other methods. A
similar negative result was reported by [47] with a simple
but low quality local search-based proposal generator.

In operations research fusion moves is known since 1997
as optimized crossover or recombination, when it was pro-
posed to address the independent set problem [3]. However,
for the quadratic assignment problem it was reported as being
inefficient, when used as a building block of a greedy genetic
algorithm [4]. This was attributed to the lack of diversity of

2 A common name for algorithms missing optimality guarantees.

the solution population resulting from this method.
Contribution. We show how to use fusion moves to effi-
ciently solve graph matching problems, and provide a the-
oretical rationale that efficient proposals for fusion moves
must be feasible, i.e. satisfy the uniqueness constraints of
the graph matching problem. We ensure quality of our pro-
posals by generating them based on reparametrized costs
improved in the course of dual optimization, and enforce
diversity of proposals by making use of either oscillat-
ing dual updates, as in the dual subgradient method, or
our proposed efficient randomized greedy algorithm. Al-
together, our method combines the accuracy of dual solvers
with the speed of dedicated primal heuristics. We demon-
strate the superior performance of our technique on multiple
datasets. Our code and datasets we used are available at
https://vislearn.github.io/libmpopt/iccv2021.

The supplement, referred to as §A1-§A7 contains detailed
proofs, dataset, experiment and algorithm descriptions.

2. Preliminaries

Graph matching problem. Let G = (V,£) be an
undirected graph, where V is the finite set of nodes and
E C (‘2}) the set of edges. For convenience we denote
edges {u,v} € & simply by uv. Let £ be a finite set of
labels. We associate with each node v € V a subset of labels
L. C L, and a unary cost function 0,,: L7 — R, where
L# := L, U{#]}. Here, # denotes a dummy label distinct
from all labels in £ to encode that no label is selected. Like-
wise, for each edge uv € & let 0,,,: LI x L — Rbea
pairwise cost function.

Then the problem of finding an optimal assignment of
labels to nodes, known as graph matching or quadratic as-
signment problem, can be stated as

min [E(x) = Z Ou(xy) + Z am;(l’u,xv)] (1)

zeX
uey uv€eE
S.t. Vu,v EV,UF#V: Ty F# Xy OF Ty = F,

where X stands for the Cartesian product X _,, L#. The
objective F is referred to as energy, and the constraints in (1)
are known as uniqueness constraints. They allow each non-
dummy label to be selected at most once. The number of
selected dummy labels is not limited. Elements x € X are
called assignments. An assignment is feasible if it satisfies
all uniqueness constraints. So, essentially, (1) corresponds to
an MRF problem with uniqueness constraints for the labels.

Note that this formulation generalizes the classical
quadratic assignment problem, see e.g. [10], by allowing
for incomplete assignments, i.e. not every label in £ has
to be assigned to a node, and not necessarily every node is
assigned a label in £. Instead, nodes can be assigned the
dummy label. Choosing a large constant as unary cost for the
dummy label in each node enforces a complete assignment.

6271

Without pairwise costs 6, the quadratic assignment prob-

lem (1) reduces to the well-known linear assignment prob-
lem (LAP). While the quadratic assignment problem is in
general NP-hard, the LAP can be solved in polynomial time
by e.g. the Hungarian method.
Fusion moves [34] address the, compared to (1) uncon-
strained, MRF problem min,c x E(x). In the simplest, but
most widely used scenario, on each iteration of the algorithm
the currently best assignment ' € X is fused with another
candidate assignment 2" € X by solving the auxiliary mini-
mization problem

2, Bo), @

where X,x = {z € X | z,, € {x],2'},u € V}. Due to
the considerably smaller size of the restricted label space
Xaux the auxiliary problem (2) can often be efficiently solved
approximately, or even exactly. The solver only has to guar-
antee monotone improvement of the best assignment by as-
suring

E(z*) <min(E(z), E(z")) 3)

for its output =*, which is then further considered as the best
assignment, i.e. in the next iteration 2’ := z*. Note that the
monotonicity condition (3) automatically holds for any x*
that is an exact solution of (2). For approximate methods
the inequality (3) can be enforced by assigning z* to the
proposal with lower energy if needed. Each fusion operation
is also referred to as a fusion move.

We adopt this method to the graph matching problem (1)
by extending the auxiliary problem (2):

Jin E(@) “

S.t. Yu,v €EV,u#V: Ty F# Xy OF Ty = H.

That is, compared to (2), the uniqueness constraints are taken
into account during fusion, which guarantees feasibility of
the current best assignment.

There are two main questions that have to be answered
to apply fusion moves: (i) How to generate proposals? (ii)
How to solve the auxiliary problem (4)? Starting with the
second, we address these questions below.

3. Solving the auxiliary problem

ILP formulation. The auxiliary problem (4) can be formu-
lated as an integer linear program (ILP) as follows. For all
we Vet £, := {z/,,z!'} be the restricted set of labels.?
We introduce binary variables p,, s € {0, 1} for each node
uw € V and label s € £, and Huwv,st € {0,1} for each
edge uv € & and each label pair (s,t) € L, % L,. Set-

ting fly,s = fo,t = Huv,st = 1 corresponds to assigning

3Without loss of generality we assume the non-trivial case xl, # !
forallu € V.

coordinates z,, = s and x,, = t of the solution labeling x.
Together these variables form a vector x € {0, 1}?V, where
N = 2|V| + 4|€|. Then the ILP

min Zuuseu(8)+ Z Muv,steuv(s7t) (5)

0,1}V
nef0.1} uey UDISTC
s€EL, (8, t)ELY XLy

S.LVu €V phygr + fluzr =1
Vuv €&, (s,t) € Ly X Loy:
Huwv,st < Hu,sy Huwv,st < Mot
Mow,st = Pu,s + pot — 1,
Vu,v e Viu#£v,s € (Ly NL)\{#}: (6)
Paws + pho,s <1

is equivalent to (4). In particular, the inequalities in (6)
enforce the uniqueness constraints. Clearly, problem (5)
without the uniqueness constraints (6) constitutes an ILP
representation of the MRF auxiliary problem (2).

The ILP problem (5)-(6) can be addressed by off-the-

shelf ILP solvers like Gurobi [21]. However, with growing
problem size, such solvers become prohibitively slow, as
they have exponential worst-case complexity. Therefore,
one has to resort to other exact or approximate optimization
techniques, which we review now.
Elimination of uniqueness constraints. The uniqueness
constraints (6) between nodes v and v can be eliminated by
assigning a very large cost C, to the pairwise cost function
on the corresponding edge, i.e.

Oun(8,8) i=Coo, Vs € (/ju N ﬁv)\{#} . @)

If uv ¢ &, the edge wv is added to £ together with pairwise
costs Oy, (8,t) := Coo - [s = t #], where [A] is equal to
1 if A holds, and 0 otherwise.

This way the graph matching auxiliary problem (4) is

reduced to the MRF auxiliary problem (2), on a, possibly
different, graph. This allows considering dedicated methods
addressing the MRF auxiliary problem (2). Efficiency of
these methods is very much dependent on the submodularity
of the pairwise costs 6,,,. We review this property and the
corresponding optimization methods below.
Submodular case. In general, two-label MRF problems
like (2) are NP-hard [8]. However, they become efficiently
solvable, if for all © € V there exists a bijective mapping
6. {0,1} — L, called ordering, such that all pairwise
costs 0y, uv € &, in problem (2) are submodular, i.e.

0uv(0,0) + 0 (1,1) < 040 (0,1) + 640 (1,0), (8)

where we abbreviate 6,,,(5,(0),0,(1)) by 6,,(0,1). Tt is
known that in this case the natural linear program (LP) relax-
ation of (5) is tight, and, moreover, reducible to the efficiently
solvable min-cut/max-flow problem [14

4The orderings &, can also be found explicitly [44], allowing for a
more efficient min-cut/max-flow reduction [32].

6272

Non-submodular case. The pairwise costs not fulfilling
the submodularity condition (8) for a given mapping J,, are
called supermodular. Inequality (8) implies that swapping
the “labels” 1 and O turns submodular pairwise costs into
supermodular ones and vice versa. However, since a swap in
one node changes sub-/supermodularity of all incident pair-
wise costs, we cannot always turn all supermodular pairwise
costs into submodular ones. This is already impossible if the
graph contains a triangular subgraph with all pairwise costs
being supermodular.

In these cases the mentioned LP relaxation is in general
not tight. However, it has the important persistency property,
i.e. all integer coordinates of a relaxed solution belong to
an optimal integer solution [31]. This allows for building
efficient approximate methods for (2) applicable also to the
non-submodular case [41]. These methods are known in the
literature as quadratic pseudo-boolean optimization (QPBO)
or roof duality. As an alternative, trust region-based approx-
imate optimization algorithms for (2) have been suggested
by [20]. They are based on an iterative approximation of
the problem by submodular problems. To this end the super-
modular pairwise costs are approximated with unary costs.
Similar to the QPBO techniques, performance of trust-region
methods drops as the number of supermodular pairwise costs
increases. Contrary to the QPBO techniques they require an
explicit ordering of the label sets.

4. Feasibility of proposals

Before we address the generation of proposals, we the-

oretically substantiate the main property of fusion move
proposals for graph matching problems: feasibility. In other
words, proposals should satisfy the uniqueness constraints
to allow the method to perform well.
Size of the search space. In a nutshell, fusion moves is
a local search method, with the search space defined by
proposals. Performance of such methods critically depends
on the size of the search space. Assuming that a better,
or even the best, solution within this space can be found
efficiently, this search space should be as large as possible to
allow for better approximations. The following proposition
sets the bounds on the size of the search space:

Proposition 1. Let x’ be a feasible, and x"" a possibly
infeasible assignment for the graph matching problem (1).
Let m be the number of dummy, and n the number of different
non-dummy labels in x". Then the auxiliary problem (4) has
at most 2™ (% + 1)" feasible solutions.

In other words, for a fixed number of dummy labels in
x' the size of the search space exponentially increases with
the number of different labels in 2”’. Feasible assignments
maximize this number, see §A1 for a proof of Prop. 1.

The need for feasible assignments distinguishes graph
matching from the MRF problem, where the space of possi-

ble solutions always grows as 2", where n is the total number
of nodes where the proposals differ. Therefore, a popular
and quite efficient way to generate MRF proposals known as
a-expansion [9], where z!) = « for all u € V, is completely
ineffective for graph matching: According to Proposition 1
the search space reduces to |V| + 1 solutions. Another pop-
ular method [29, 34] suggests constructing proposals from
locally best labels returned by, e.g., loopy belief propagation.
As empirically observed by [29], for the graph matching
problem such proposals typically do not satisfy the unique-
ness constraints and, therefore, lead to a non-competitive
performance of fusion moves.

Efficiency of approximate solvers. As noted in Section 3,
performance of approximate solvers for the auxiliary prob-
lem (2) drops with an increasing proportion of supermodular
pairwise costs. Since the uniqueness constraints for the aux-
iliary problem (4) are translated into large pairwise costs, it
is important to find an ordering where these large costs do
not lead to a violation of the submodularity constraint (8).

Let the proposal ”’ be infeasible, i.e. there exist u, v € V,
u # v, with 2!/ = 2!/ # #. Consider now the ordering
where labels !/ are mapped to 0 for all u € V, and all z/,
to 1. Then, according to (7), 0,,(0,0) = Cw, which would
lead to a supermodular pairwise cost 6,,,. Should there be
multiple nodes with equal labels, i.e. 2!/ = z!/ = x!/_ this
would lead to a fully connected subgraph with supermodular
costs. As discussed in Section 3, these costs cannot all
be turned into submodular ones by swapping the labels 0
and 1. As a consequence, this leads to a deterioration in
performance of approximate methods for the graph matching
auxiliary problem (4). This case can be avoided by requiring
2" to be feasible.

Conversely, consider the practically inevitable case of
equal labels in different proposals, i.e.], = x!, for some
u,v € V, u # v. According to (7), with the same initial
ordering as above, 6,,,,(1,0) := C. This, however, renders
the corresponding pairwise cost submodular, c.f. (8), which
simplifies optimization.

To summarize, the feasibility of proposals increases the
search space for each fusion, while at the same time allowing
for efficient approximate solvers for the auxiliary problem.

5. Proposal generation

As mentioned in Section 1 fusion moves work best if the
proposals are of high quality and diverse. Essentially, high
quality means low corresponding energy E, and diversity
can be quantified by counting the number of nodes where
two proposals differ.

How to obtain high quality proposals? The natural idea
to get high quality proposals is to employ some iterative op-
timization process which outputs solutions on each iteration.
As discussed in Section 4, in the case of graph matching,
these proposals should be feasible. Dual methods equipped

6273

Algorithm 1: Randomized greedy heuristic.

Input: graph G = (V, £), labels £ and costs ¢

initialize V' :=(and £ :=0

while V' #£ V do
randomly select u e N'(V') or ue V\V' if N(V') =0
set

Ty = argmin [0,(s)+ D Ouu(s,)
SELN\L'U{#} veN (u)NV’

update V' :=V' U{u} and L' := L' U{z,}
Output: feasible assignment & = (24,)yey

with efficiently computable primal heuristics are therefore
natural candidates for proposal generators. In Section 5.2 we
briefly describe two types of such methods, block-coordinate
ascent- and subgradient-based ones.

How to obtain diverse proposals? Diversity of proposals
based on dual optimization can either be induced by noisy
dual updates, or must be an intrinsic property of the primal
heuristic. We utilize both strategies.

The subgradient method is a representative of the first
type. Due to non-optimal step-sizes and update directions
it usually demonstrates a “zig-zag” progress of the dual
value that induces similar behavior in the assignment scores
obtained by a primal heuristic.

In contrast, block-coordinate ascent methods are based
on optimal updates and guarantee a monotone improvement
of the dual value. As a consequence, the corresponding
assignments computed by deterministic primal heuristics
often lack diversity.

To address this issue, we suggest to use the randomized
greedy heuristic described in Section 5.1 as a generic method
to generate diverse proposals. It combines diversity due to
randomization of the node selection order with high quality
due to taking locally optimal labels. Another important
advantage of this method is that it can profit from the dual
optimization, and provides qualitatively better proposals as
the dual optimization progresses. In particular, it returns a
globally optimal assignment if the latter is unique and the
dual bound is tight. We describe its use in connection with a
dual BCA solver in Section 5.2.

5.1. Randomized greedy heuristic

Let V(u) := {v € V | uv € £} be the neighborhood of
u, and N' (V') := (U, N (1)) \V' the neighborhood of
V' C V. Note, N () = 0. The randomized greedy heuristic
is defined by Algorithm 1. In each step an unassigned node
is randomly selected from the neighborhood of the assigned
nodes, and a label is assigned to it such that the uniqueness
constraints are satisfied and the sum of its unary cost and all
pairwise costs on edges connecting it with assigned nodes
minimized.

5.2. Dual solvers

Dual problem. The graph matching problem (1) can be rep-
resented in an ILP form similar to that of the auxiliary prob-
lem (2). We define binary variables p,, s and fi,, s+ analo-
gously. The number of such variables is M =Y, , [C# |+
> wece [LEIILH|. By denoting the set of nodes containing a
particular non-dummy label s as V(s) :={u € V| s € L.},
problem (1) can be written as:

B 3 i+ T alalst) O

uvel
seﬁ# (s,t)eLF xc#
s.t. Vuv € 5, t e ﬁ# Z Huv,st = Mot (10)
sec
Yu€eV: Zsecﬁ”“’szl (11)
: u,s < 1 12
Vse Ll Zuev(s)u , (12)

By introducing &) (s) = &‘T(s) + Aus and EXM(s) := 0“2(5) -
Aus foru e V, s € L7, and arbitrary Au,s € R, we can
equivalently rewrite the objective in (9) as a sum of objec-
tives of MRF and LAP subproblems denoted as EMRF and
E™AP respectively:

Z Mu,sgi\(s) + Z Muv,steuv(sy t) + Z Mu,sézi\(s)

uey uveE uey
sec# (s,t)ELT x L sec#
=:EMRE (1,) =B (,\)

Let A be the set of all binary vectors p € {0,1}M satis-
fying constraints (10)-(11), and B the set of those satisfy-
ing (11)-(12). Then the sum

. EMRF A : ELAP 0.\ 13
min (1,)+ggg (f1,A) (13)

of independent minimizations of the MRF and LAP subprob-
lems constitutes a lower bound for (9)-(12).

While the second term can be minimized efficiently, e.g.
by the Hungarian method, the first term is an NP-hard prob-
lem by itself. By dualizing the constraints (10) one obtains
its Lagrange dual lower bound, c.f. [43, Ch.6],

Z mln £¢> A min 02 (s,t),

wocE (s,t)yect xc#

— > bunls), (14)

vEN (u)
05 (5,1) 1= Oun(5,1) + du,u () + dou(t),
are commonly referred to as reparametrized costs.

All in all, the dual problem of (9)-(12) consists in the
lower bound maximization

where

§(s) == €4(s)

in E"*P(i, \)| . 15
max | D(¢, A) + min (7, A) (15)

6274

Dual block-coordinate ascent, §A2. Based on the ideas
of [45, 56], and the recent progress in development of
dual solvers for MRFs [48, 49], we implemented a block-
coordinate ascent (BCA) solver that also allows to output
assignment proposals.

Our solver monotonically improves the dual bound (15)
by interleaving maximization w.r.t. ¢» and A. Each step on ¢
consists of maximizing the bound w.r.t. the block of variables
(Guw(8), pou(t)), (s,t) € LIF x L associated with one
edge uv € £. A sequence of these steps addressing all
edges is equivalent to one iteration of the MPLP++ algorithm
of [48], that notably outperforms the MPLP algorithm [18]
used by [56]. Each step on A consists of maximizing the
dual objective w.r.t. blocks (A, s), u € V(s), for each label
s € L similar to how it was done by [45].

For primal estimates we either use the exact solution of the
LAP term minge g E“*F(fi, A) in (15) for the current value
of A, or run our randomized greedy Algorithm 1 on the graph
matching problem with unary and pairwise costs £¢#** and
62, for current values of ¢ and . For the LAP heuristic we
use Gurobi [21] as a solver. While using e.g. the Hungarian
method for solving LAPs would be faster, we found that the
greedy heuristics combined with fusion moves consistently
outperforms its LAP counterpart in all our experiments in
terms of run time and quality.

Subgradient method. We use the code of [47] as a rep-
resentative of the dual subgradient methods. In its basic
version denoted as dd-Is0, which stands for dual decomposi-
tion with no local subproblems, it optimizes the same bound
as (15) with the difference that instead of the dual MRF-
term D(¢, A) it uses an equivalent tree-decomposition of the
problem min, cn EMRF (1, M), see e.g. [43, Ch.9] for details.
As the primal bound it uses a solution of the LAP problem
mingep EYAP(fi, \) for the current value of \.

Two other versions of the solver we use in our experi-

ments, denoted as dd-Is3 and dd-Is4, additionally consider
local subproblems on subgraphs of G consisting of 3 or 4
neighboring nodes of the original graph, respectively. These
modifications require more time per iteration, but optimize
tighter bounds than (15). Additionally, these variants esti-
mate primal solutions based on solutions of the local sub-
problems. We refer to [47] for further details.
Dual BCA algorithm complexity per iteration is
O(Xvee ILH#||LF]), e.g. linear in the size of the prob-
lem. For a fully connected graph with £# = £ U {#]},
Vu € V, this turns to O(|V|[*). This is one degree of power
less than the iteration complexity O(]V|?) of the dual ascent
algorithms [2, 22, 30] known in operations research.

6. Experiments and analysis

Experimental setup. We evaluate the performance of all
tested algorithms by measuring their total run time and the
obtained solution quality. Our experiments were run on a

compute cluster equipped with AMD EPYC 7702 2.0 GHz
processors and 512 GB main memory. For a fair compari-
son we used efficient implementations of all discussed algo-
rithms, and report the minimal runtime of 5 independently
scheduled trials.

Datasets, §A3. Our experimental evaluation was con-
ducted on 8 datasets with overall 316 problem instances
from computer vision and bio-imaging described in detail
below. To demonstrate the scalability of our approach, along
with the standard small-scale datasets for computer vision
hotel, house, car, motor and opengm with [V| < 52, we
consider the middle-sized ones flow, |V| < 126, and the
large-scaled worms and pairs datasets with [V| < 565. The
latter are, to our knowledge, the largest graph matching
problem instances ever considered in computer vision.

Wide baseline matching (hotel, house) is based on a
series of images of the same object from different view
angles. We use the same image pairs, landmarks, and cost
structure as in [47] based on the work by [11].

Keypoint matching (car, motor) contains car and mo-
torbike instances from the PASCAL VOC 2007 Chal-
lenge [16] with the features and costs from [37]. We prepro-
cessed the models by removing edges with zero cost, thereby
reducing graph density substantially.

Large displacement flow (flow) was introduced by [5] for
key point matching on scenes with large displacement flow.
We use the keypoints and costs from [46].

OpenGM matching (opengm) is a set of non-rigid point
matching problems by [33], now part of the OpenGM Bench-
mark [28].

Worm atlas matching (worms) has the goal to annotate
nuclei of C. elegans, a famous model organism used in devel-
opmental biology, by assigning nuclei names from a precom-
puted atlas of the organism. We use the models from [26, 27].

Worm-to-worm matching (pairs), see Fig. 1 for illustra-
tion, in contrast to the worms dataset, directly matches the
cell nuclei of individual C. elegans worms to each other.
This alleviates the need to precompute an atlas based on
manual annotations. Unary and pairwise costs of the re-
spective graph matching problems are derived by averaging
the nucleus-(pair-)specific covariance matrices captured by
the atlas over all nuclei. This coarsens the model to a level
achievable without manual annotations. For our experiments
we randomly chose 16 instances out of the 30 - 29 = 870
non-trivial pairs of worms based on the same data as worms.
Algorithms. As proposal generators we evaluate the three
dual subgradient-based algorithms dd-1s0, dd-1s3, dd-1s4
and our BCA solver bca described in Section 5.2. The
latter is used with either the primal heuristics based on the
LAP solution or on the greedy Algorithm 1, denoted as bca-
lap and bca-greedy, respectively. We also use the greedy
Algorithm 1 as a standalone baseline.

As proposal fusing methods we evaluate Gurobi [21] as

6275

car b flow 2

-20 0

—40 1

energy

—60 1

—80 T T T T T
0 500 1000 1500 0 200 400
iterations iterations

(a) (b)

pairs 5
=501 — generation
—_ (lower and
S upper bound)
% _ss — dd-1s0
g bca-lap
0 — bca-greedy
:é — greedy
—60 1 == + ilp fusion
600 0 200 400 600
iterations
(©)

Figure 2. (a-b) Influence of fusion. The plots show the energy of assignments generated by dd-1s0 (blue), bea-lap (orange) and greedy
(green) algorithms together with the dual bound where applicable. The thick line in matching color shows for each algorithm the achieved
energy when using an ilp solver for fusion on top. Notably, fusion achieves very good quality with much less iterations. For some datasets,
even greedily generated proposals suffice to obtain (almost) optimal solutions when fused. (c) LAP vs. greedy heuristic. The plot shows
the quality of proposals generated by bca-lap (orange) and beca-greedy (red) for an exemplary instance of pairs. The fused solutions on
top of these generators are shown in the same color as a thick line. Fusion moves applied to bca-greedy yield significantly better results
than when applied to bca-lap, even though the bca-greedy proposals are visibly worse than those of bca-lap.

an exact ILP solver for the auxiliary problem (5) denoted
as ilp, the frust region-based method of [20] denoted as
Isatr, as well as different QPBO variants denoted as gpbo-
XX. For the description of these variants see [4 1], and the
corresponding source code.

Additionally, in Section 6.2 we compare our method to a
number of state-of-the-art algorithms.

6.1. Influence of different components

Influence of fusion on solution quality, Fig. 2(a-b),
§A4,A6. For our first experiment we ran three methods
to generate proposals: bca-lap, dd-1sO and greedy. The
algorithms bca-lap and dd-1s0 represent standard dual tech-
niques with a LAP-based primal heuristic, and greedy con-
stitutes a baseline. We fuse the generated proposals with the
ilp method.

Fig. 2 (a-b) shows the results for these three proposal gen-
erators before and after fusion for two exemplary instances
from the considered datasets. Although the energy of dd-1s0
proposals is far from optimal, their fusion immediately leads
to much better results.

Although the energy of bca-lap proposals is often much
lower than that of dd-1s0, the energy of the fused solutions is
not necessarily lower. We explain this by lacking diversity in
the bca-lap proposals. This explanation is confirmed by the
performance of the fused greedy proposals. Even though
the proposal quality for greedy is very dataset dependent, in
combination with fusion it often leads to good results. While
they are still worse than those obtained by dual methods in
Fig. 2 (a), they can be very competitive as seen in Fig. 2 (b).

This experiment clearly shows that the overall solution
quality can be substantially improved by fusing generated
proposals. Since fusion provides already very good results
with relatively few proposals, it promises a significant speed-
up compared to fusion-free methods as this can significantly
reduce the number of necessary iterations to achieve a certain

solution quality.

Exact vs. approximate fusion, §A4,A6. To estimate the
speed-up in runtime obtained by fusion we compared the ex-
act ilp solver with the approximate gpbo-i, gpbo-p, gpbo-
pi and Isatr solvers. Among them we found gpbo-i to be
best performing in terms of consistent quality and speed. De-
spite a worst-case computational complexity of O(|V||€),
gpbo-i was 10-50 times faster than the dual updates.

LAP vs. greedy heuristic for BCA, Fig. 2(c). As noted
above, fusion moves only marginally improve performance
of bca-lap because of the low diversity of proposals gen-
erated by this method. This is easy to see if we compare it
to bca-greedy, where the LAP heuristic is replaced by the
greedy Algorithm 1. Indeed, for all datasets we observed that
fusion of bca-greedy proposals produced results at least as
good as fusion of bca-lap proposals, even when the bca-
greedy proposals themselves had higher energies than those
of bca-lap.

Effect of relaxation tightening, §A4,A6. In general,
tighter relaxations provide better bounds in the long run.
However, one pays with a higher runtime per iteration for
this. Interestingly, due to fusion all three subgradient meth-
ods, dd-1s0, dd-1s3 and dd-1s4, get close or even attain the
global optimum in most of the datasets. Therefore, due to
lower iteration time the method dd-1s0 corresponding to the
weakest relaxation converges first, and, hence, is preferable.
Since fusion notably improves the energy of the found solu-
tions, we claim that without fusion one would have to use
tighter relaxations to attain the same result quality.
Summary. Table | summarizes our performance study. We
include dd-1s0 and bca-greedy as the best representatives
of their algorithm classes. We observed gpbo-i-based fusion
to achieve solutions with the same or lower energy as the
underlying proposal generator, while also on average con-
verging faster than the proposal generator without fusion. In
other words, it is always sensible to use fusion moves.

6276

Table 1. Summary of fusion moves performance. Averaged energy of the best proposals for each dataset (best gen.), and time needed on
average to generate it (fgen) are shown. Furthermore, it shows for the gpbo-i fusion algorithm how long it took on average to beat the dd-1s0
or bca-greedy proposals when fusing (fueat), the average energy of the best proposal generated by fusion (best fused), and the average time
after which this was obtained (suse). All times are in seconds. The small numbers in front of the energies represent the number of instances
solved to optimality by the respective method. Methods with fusion attain better energy values and are faster on average.

dd-1s0 + gpbo-i bca-greedy + gqpbo-i
dataset

(number of instances) best gen. tgen. theat best fused ttuse best gen. tgen. theat best fused ttuse
hotel (105 105 -4293.00 0.07 0.04 105 -4293.00 0.04 103 -4291.21 0.81 0.03 105 -4293.00 0.03
house (105 105 -3778.13 0.02 0.02 105 -3778.13 0.02 105 -3778.13 0.94 0.09 105 -3778.13 0.09
car (30 29 -69.34 0.17 0.17 29 -69.37 0.17 27 -69.19 1.28 0.12 29 -69.37 0.17
motor (0 20 -62.95 0.06 0.03 20 -62.95 0.03 19 -62.93 0.80 0.02 20 -62.95 0.02
flow () 3 -2818.83 2.79 1.12 5 -2835.84 1.91 4 -2837.82 9.65 0.65 5 -2840.00 0.66
opengm 3 31.42 0.94 0.77 3 26.18 0.87 4 21.22 1.29 0.04 4 21.22 0.04
worms (30) 0 -43824.08 492.00 41.57 1 -48347.09 428.79 9 -48454.89 5453 15.72 27 -48465.28 17.77
pairs (6 0 -63453.77 348.33 7.87 0 -65936.89 343.49 0 -62696.28 783.83 1.96 0 -66005.55 953.09

Table 2. Comparison table. our denotes the proposed bca-greedy—+qpbo-i method. For each method we state opt/t denoting the number
of optimally solved instances together with the average time in seconds to attain the optimal solutions ("-" if no instance was solved to
optimality), the average solution energy F (lower is better), and the average solution accuracy acc in percent. The sign "—" in the F or acc
column means that at least for one problem instance the respective method yielded no assignment. For datasets indicated by { no ground
truth is known and, therefore, no accuracy reported. The best accuracy is not highlighted in bold, since algorithms do not have access to
the ground truth and hence do not maximize accuracy explicitly. The relatively low accuracy of 86% attained for worms is explained by
model misspecification. The original work [27] reports 83% accuracy achieved by dd-1s4 without time restrictions. Since our method is
randomized, we report ranges where appropriate.

datasel time dd-1s0 [47] dd-1s3 [47] HBP [56] AMP [46] AMP-tight [46] our
\“;T;Zi;f,‘ budget opt/t E acc opt/t E acc opt/t E acc opt/t E acc opt/t E acc opt/t E acc
hotel (105 1s 105/0.01 -4293 100 105/0.04 -4293 100 102/0.11 — — 98/0.11 -4280 99 104/0.13 -4292 100 100-105/0.01 -4291+2 100
house 05y 1s 105/0.03 -3778 100 105/0.13 -3778 100 104/020 — — 102/0.30 -3773 100 105/0.19 -3778 100 105/0.01 -3778 100
car (3o 1s 28/0.13 -69 92 14/0.55 -57 74 23/0.12 — — 24/0.11 -69 92 26/0.12 -69 91 27-28/0.01 -69 91+1
motor 20 1s 20/0.07 -63 97 13/0.25 -57 87 19/0.14 — — 18/0.04 -63 96 17/0.08 -63 97 19-20/0.01 -63 98+1
openngm) 1s 1/0.81 -151 0/— -118 0/— — 0/— -57 0/— -150 4/0.004 -171

10s 3/1.08 -161 4/2.61 -171 212771 -164 0/— -57 0/— -150 4/0.004 -171
AowT @) Is 2/0.79 -2089 1/0.90 -1962 0/— — 1/0.13 -2628 3/0.16 — 4-5/0.06 -2837+1

10s 3/1.66 -2819 5/2.81 -2821 0/— — 1/0.13 -2674 3/0.16 -2838 5/0.06 -2838
worms 30y 1S 0/— 60597 26 0/— 64158 23 0f— — — 0/— —- — 0/— — — 10-22/0.23 -48461+3 86

10s 0/— 50578 24 0/— 49610 24 0/— — — 1/6.45 -48389 86 0/— — — 16-25/0.39 -48464+1 86
pairsT(lé) 10s 0/— -61482 0/— -61638 0/— — 0/— -64130 0/— — 0/— -65259+133

30s 0/— -61482 0/— -61638 0/— — 0/— -64319 0/— — 0/— -65594+120

Although bca-greedy+qpbo-i outperforms dd- within a deep graph matching approach [40].
1s0+qgpbo-i, the latter one is very competitive and notably

:) 5 We distinguish between easy problem instances (hotel,
outperforms its basic variant dd-1s0.

house, motor, car), mid-difficult problems (opengm, flow,
worms) and difficult ones (pairs). For the easy datasets we
provide results in 1 second, for mid-difficult in 1 and 10 and
Table 2 compares our bca-greedy+qpbo-i method to for difficult in 10 and 30 seconds respectively, see also §AS

6.2. Comparisons and conclusions

several state-of-the-art techniques, see also §A5. We omit- for other run-time settings and a comparison of memory
ted a detailed comparison to [11, 13, 19, 35, 36, 58], since consumption.

the accuracy they attain is notably lower than that of the

dual methods [47, 56] as is shown in the latter papers. This Conclusions. As Table 2 shows our method notably out-
conclusion is also supported by our own experiments. The performs its competitors in terms of speed and accuracy.
more recent works [25, 54] unfortunately compare only to Since it practically solves all easy and mid-difficult prob-
the weak baselines above, and do not make their code pub- lem instances in significantly less than a second, it can be
licly available. Therefore, we restrict our comparison to efficiently used in deep graph matching pipelines. The easy
the duality-based techniques, as they have been shown to datasets hotel, house, motor, car are largely solved by all
perform best on the computer vision datasets. Note that the state-of-the-art methods and cannot be used to show progress

AMP method [46] recently pushed up the state-of-the-art of the solvers anymore.

6277

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

(13]

(14]

[15]

(16]

(17]

Kamil Adamczewski and Yumin Suh Kyoung Mu Lee. Dis-
crete tabu search for graph matching. In Proceedings of the
IEEE International Conference on Computer Vision, 2015. 2
Warren P. Adams and Terri A. Johnson. Improved linear
programming-based lower bounds for the quadratic assign-
ment problem. Discrete Mathematics and Theoretical Com-
puter Science, 1994. 2, 6

Charu C. Aggarwal, James B. Orlin, and Ray P. Tai. Opti-
mized crossover for the independent set problem. Operations
research, 1997. 2

Ravindra K. Ahuja, James B. Orlin, and Ashish Tiwari. A
greedy genetic algorithm for the quadratic assignment prob-
lem. Computers & Operations Research, 2000. 2

Hassan Abu Alhaija, Anita Sellent, Daniel Kondermann, and
Carsten Rother. GraphFlow — 6D large displacement scene
flow via graph matching. In Proceedings of the DAGM Ger-
man Conference on Pattern Recognition, 2015. 6, 13

Martin Beckman and Tjalling C. Koopmans. Assignment
problems and the location of economic activities. Economet-
rica, 1957. 1

Florian Bernard, Christian Theobalt, and Michael Moeller.
DS*: Tighter lifting-free convex relaxations for quadratic
matching problems. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2018. 2

Endre Boros and Peter L. Hammer. Pseudo-boolean optimiza-
tion. Discrete Applied Mathematics, 2002. 3

Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast approxi-
mate energy minimization via graph cuts. I[EEE Transactions
on Pattern Analysis and Machine Intelligence, 2001. 4
Rainer E. Burkard, Eranda Cela, Panos M. Pardalos, and
Leonidas S. Pitsoulis. The quadratic assignment problem.
1998. 1,2

Tibério S. Caetano, Julian J. McAuley, Li Cheng, Quoc V. Le,
and Alexander J. Smola. Learning graph matching. /EEE
Transactions on Pattern Analysis and Machine Intelligence,
2009. 6, 8, 13

Eranda Cela. The quadratic assignment problem: theory and
algorithms, volume 1. Springer Science & Business Media,
2013. 1

Minsu Cho, Jungmin Lee, and Kyoung Mu Lee. Reweighted
random walks for graph matching. In Proceedings of the
European Conference on Computer Vision, 2010. 8

Minsu Cho, Jian Sun, Olivier Duchenne, and Jean Ponce.
Finding matches in a haystack: A max-pooling strategy for
graph matching in the presence of outliers. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, 2014. 2

Nadav Dym, Haggai Maron, and Yaron Lipman. DS++: A
flexible, scalable and provably tight relaxation for matching
problems. ACM Transactions on Graphics (TOG), 2017. 2
Mark Everingham, Luc Van Gool, Christopher KI
Williams, John Winn, and Andrew Zisserman. The
PASCAL visual object classes challenge 2007 results,
2007. http://www.pascal-network.org/challenges/
VOC/voc2007/workshop/index.html. 6, 13

Matthias Fey, Jan E. Lenssen, Christopher Morris, Jonathan
Masci, and Nils M. Kriege. Deep graph matching consensus.
In Proceedings of the International Conference on Learning

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

[26]

[27]

(28]

(29]

(30]

(31]

(32]

(33]

6278

Representations, 2020. 1

Amir Globerson and Tommi S. Jaakkola. Fixing Max-
Product: Convergent message passing algorithms for MAP
LP-relaxations. In Advances in Neural Information Process-
ing Systems, 2008. 6

Steven Gold and Anand Rangarajan. A graduated assignment
algorithm for graph matching. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 1996. 2, 8

Lena Gorelick, Yuri Boykov, Olga Veksler, Ismail Ben Ayed,
and Andrew Delong. Local submodularization for binary
pairwise energies. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2017. 4,7

Gurobi. Gurobi optimization, 2018. http://www.gurobi.
com. 3,6

Peter Hahn and Thomas Grant. Lower bounds for the
quadratic assignment problem based upon a dual formula-
tion. Operations Research, 1998. 2, 6

Stefan Haller, Paul Swoboda, and Bogdan Savchynskyy. Ex-
act map-inference by confining combinatorial search with
LP relaxation. In Proceedings of the AAAI Conference on
Artificial Intelligence, 2018. 17

Bo Jiang, Pengfei Sun, Jin Tang, and Bin Luo. Glmnet: Graph
learning-matching networks for feature matching.
preprint arXiv:1911.07681, 2019. 1

Bo Jiang, Jin Tang, Chris Ding, Yihong Gong, and Bin Luo.
Graph matching via multiplicative update algorithm. In Ad-
vances in Neural Information Processing Systems, 2017. 2,
8

Dagmar Kainmueller, Florian Jug, Carsten Rother, and Gene
Meyers. Graph matching problems for annotating C. elegans,
2017. https://doi.org/10.156479/AT:ISTA:57. 6, 13
Dagmar Kainmueller, Florian Jug, Carsten Rother, and Gene
Myers. Active graph matching for automatic joint segmen-
tation and annotation of C. elegans. In Proceedings of the
International Conference on Medical Image Computing and
Computer Assisted Intervention, 2014. 6, 8, 13, 15

Jorg H. Kappes, Bjorn Andres, Fred A. Hamprecht, Christoph
Schnorr, Sebastian Nowozin, Dhruv Batra, Sungwoong Kim,
Bernhard X. Kausler, Thorben Kroger, Jan Lellmann, Nikos
Komodakis, Bogdan Savchynskyy, and Carsten Rother. A
comparative study of modern inference techniques for struc-
tured discrete energy minimization problems. International
Journal of Computer Vision, 2015. 6, 13, 17

Jorg H. Kappes, Thorsten Beier, and Christoph Schnérr. MAP-
inference on large scale higher-order discrete graphical mod-
els by fusion moves. In Proceedings of the European Confer-
ence on Computer Vision, 2014. 2, 4

Stefan E. Karisch, Eranda Cela, Jens Clausen, and Torben
Espersen. A dual framework for lower bounds of the quadratic
assignment problem based on linearization. Computing, 1999.
2,6

Vladimir Kolmogorov and Carsten Rother. Minimizing non-
submodular functions with graph cuts-a review. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 2007.
3,4

Vladimir Kolmogorov and Ramin Zabih. What energy func-
tions can be minimized via graph cuts? IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2004. 3
Nikos Komodakis and Nikos Paragios. Beyond loose LP-

arXiv

(34]

[35]

(36]

[37]

(38]

(39]

[40]

(41]

[42]

[43]

[44]

[45]

[46]

[47]

relaxations: Optimizing MRFs by repairing cycles. In Pro-
ceedings of the European Conference on Computer Vision,
2008. 6, 13

Victor Lempitsky, Carsten Rother, Stefan Roth, and Andrew
Blake. Fusion moves for Markov random field optimiza-
tion. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2010. 2, 3, 4

Marius Leordeanu and Martial Hebert. A spectral technique
for correspondence problems using pairwise constraints. In
Proceedings of the IEEE International Conference on Com-
puter Vision, 2005. 2, 8

Marius Leordeanu, Martial Hebert, and Rahul Sukthankar.
An integer projected fixed point method for graph matching
and MAP inference. In Advances in Neural Information
Processing Systems, 2009. 2, 8

Marius Leordeanu, Rahul Sukthankar, and Martial Hebert.
Unsupervised learning for graph matching. International
Journal of Computer Vision, 2012. 6, 13

Eliane Maria Loiola, Nair Maria Maia de Abreu, Paulo Os-
waldo Boaventura-Netto, Peter Hahn, and Tania Querido. An
analytical survey for the quadratic assignment problem. Eu-
ropean Journal of Operational Research, 2007. 1

Fuhui Long, Hanchuan Peng, Xiao Liu, Stuart K Kim, and Eu-
gene Myers. A 3d digital atlas of c. elegans and its application
to single-cell analyses. Nature methods, 2009. 15

Michal Rolinek, Paul Swoboda, Dominik Zietlow, Anselm
Paulus, Vit Musil, and Georg Martius. Deep graph match-
ing via blackbox differentiation of combinatorial solvers. In
Proceedings of the European Conference on Computer Vision.
Springer, 2020. 1, 8

Carsten Rother, Vladimir Kolmogorov, Victor S. Lempitsky,
and Martin Szummer. Optimizing binary MRFs via extended
roof duality. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2007. 4,7
Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz,
and Andrew Rabinovich. Superglue: Learning feature match-
ing with graph neural networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
2020. 1

Bogdan Savchynskyy. Discrete graphical models — An opti-
mization perspective. Foundations and Trends in Computer
Graphics and Vision, 2019. 2,5, 6

Dmitrij Schlesinger. Exact solution of permuted submodular
minsum problems. In Proceedings of the International Work-
shop on Energy Minimization Methods in Computer Vision
and Pattern Recognition, 2007. 3

Paul Swoboda, Jan Kuske, and Bogdan Savchynskyy. A dual
ascent framework for Lagrangean decomposition of combina-
torial problems. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2017. 6, 13

Paul Swoboda, Carsten Rother, Hassan Abu Alhaija, Dag-
mar Kainmuller, and Bogdan Savchynskyy. A study of La-
grangean decompositions and dual ascent solvers for graph
matching. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 2017. 1,2, 6, 8, 13, 16,
17, 184, 185

Lorenzo Torresani, Vladimir Kolmogorov, and Carsten Rother.
A dual decomposition approach to feature correspondence.
1IEEE Transactions on Pattern Analysis and Machine Intelli-

(48]

[49]

[50]

[51]

(52]

(53]

[54]

(55]

[56]

(571

(58]

6279

gence,2013. 1,2,6,8, 13,15, 16, 184, 185

Siddharth Tourani, Alexander Shekhovtsov, Carsten Rother,
and Bogdan Savchynskyy. MPLP++: Fast, parallel dual block-
coordinate ascent for dense graphical models. In Proceedings
of the European Conference on Computer Vision, 2018. 6, 13
Siddharth Tourani, Alexander Shekhovtsov, Carsten Rother,
and Bogdan Savchynskyy. Taxonomy of dual block-
coordinate ascent methods for discrete energy minimization.
In Proceedings of the Conference on Artifical Intelligence and
Statistics, 2020. 6

Shinji Umeyama. An eigendecomposition approach to
weighted graph matching problems. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 1988. 2
Runzhong Wang, Junchi Yan, and Xiaokang Yang. Learning
combinatorial embedding networks for deep graph match-
ing. In Proceedings of the IEEE International Conference on
Computer Vision, 2019. 1

Runzhong Wang, Junchi Yan, and Xiaokang Yang. Neural
graph matching network: Learning lawler’s quadratic assign-
ment problem with extension to hypergraph and multiple-
graph matching. arXiv preprint arXiv:1911.11308, 2019. 1
Tianshu Yu, Runzhong Wang, Junchi Yan, and Baoxin Li.
Learning deep graph matching with channel-independent em-
bedding and hungarian attention. In Proceedings of the In-
ternational Conference on Learning Representations, 2019.
1

Tianshu Yu, Junchi Yan, and Baoxin Li. Determinant regular-
ization for gradient-efficient graph matching. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, 2020. 2, 8

Andrei Zanfir and Cristian Sminchisescu. Deep learning of
graph matching. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2018. 1

Zhen Zhang, Qinfeng Shi, Julian McAuley, Wei Wei, Yan-
ning Zhang, and Anton van den Hengel. Pairwise matching
through max-weight bipartite belief propagation. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2016. 1, 2,6, 8, 16, 17, 184

Guoxing Zhao, Bin Luo, Jin Tang, and Jinxin Ma. Using
eigen-decomposition method for weighted graph matching.
In Proceedings of the International Conference on Intelligent
Computing, 2007. 2

Feng Zhou and Fernando De la Torre. Factorized graph match-
ing. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2012. 2, 8

