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Abstract

Factorization methods are frequently used for structure
from motion problems (SfM). In the presence of noise they
are able to jointly estimate camera matrices and scene
points in overdetermined settings, without the need for ac-
curate initial solutions. While the early formulations were
restricted to affine models, recent approaches have been
show to work with pinhole cameras by minimizing object
space errors.

In this paper we propose a factorization approach us-
ing the so called radial camera, which is invariant to ra-
dial distortion and changes in focal length. Assuming a
known principal point our approach can reconstruct the 3D
scene in settings with unknown and varying radial distor-
tion and focal length. We show on both real and synthetic
data that our approach outperforms state-of-the-art factor-
ization methods under these conditions. '

1. Introduction

Factorization methods have been employed for SfM
problems since the seminal work [30]. Suppose that M is a
measurement matrix where each pair of rows correspond to
the x- and y- coordinates of the observed 2D points in one
image. The approach relies on the fact that the observed
projections should form a rank 3 matrix. To remove noise
they therefore solve

: . 2
min [[M — PX||p, (1

with matrices P having 3 columns and X having 3 rows,
using the singular value decomposition (SVD). The inter-
pretation of the result is that a pair of rows P; in P cor-
respond to an (affine) camera matrix projecting the 3D
points in X into image . The solution is ambiguous since
PX = PHH'X for any invertible H. In [30] a met-
ric upgrade is found by selecting H so that PH consists
of pairwise orthonormal rows giving an orthographic pro-

I'This work has been supported by the Swedish Research Council (grant
2018-05375), the Swedish Foundation for Strategic Research (Semantic
Mapping and Visual Navigation for Smart Robots), the Wallenberg Al,
Autonomous Systems and Software Program (WASP)

Carl Olsson!»?
2Centre for Mathematical Sciences
Lund University

jection model. To allow scale changes [
approach to weak perspective cameras.

] generalizes the

Since then a number of variations of the SfM problem
has been tackled with factorization approaches. Strum and
Triggs [28] used a measurement matrix consisting of ho-
mogeneous coordinates, scaled with (known) point depths,
to extract 3 X 4 cameras matrices. Iterative approaches al-
ternating estimation of the depths A with factorization was
proposed in [10, 31]. To avoid solutions where many of the
elements of A are zero, [22] derives linear constraints that
permits a projectively correct reconstruction. Margerand et
al. [21] eliminate the projective depths and show that the
linear constraints can be transferred to the remaining pa-
rameters. A very recent method [16], factorizes a block ma-
trix consisting of estimated pairwise fundamental matrices
to solve StM.

One reason for the popularity of the original (affine) fac-
torization approaches was the availability of a closed form
solution using the SVD. This is however only possible if all
scene point are visible in all images. If this is not the case
we are limited to iterative methods. For this purpose split-
ting methods have become popular because of their sim-
plicity [3, 5, 18]. These allow regularization of the singular
values when a proximal operator can be computed. On the
other hand recent results [15, 23] have shown that they can
give relatively inaccurate results due to slow convergence
near the optimum. Convex formulations with the nuclear
norm have also been considered [5, 4] but are in general too
weak for SfM problems with noise [23, 15]. We note that a
number of papers that give conditions which ensure that di-
rect bilinear optimization has no local minimum (other than
the global one) [1, 24, 8, 7]. The assumptions these pa-
pers make are however too restrictive for the SfM problem,
where local minima are known to exist e.g. [2].

A recent series of papers by Hong et al. [11, 14, 13, 12]
show that when the rank is known direct bilinear estimation
of P and X can be made remarkably robust to local minima,
when using the VarPro method. In [12] the pOSE formula-
tion is introduced. This method uses a pinhole model and
optimizes a trade-off between an object space error (OSE)
and an affine term (which fixes the scale). It is shown to
converge to the global minimum from random starting so-
lution in the vast majority of cases.
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One shortcoming of factorization methods is that they
cannot handle radial distortion since this introduces a non-
linear transformation of the measurements. In this paper
we address this by optimizing over 1D radial camera pro-
jections [32] which are invariant to radial distortion and
changes in focal length. We propose RpOSE, which opti-
mizes a trade-off between a radial OSE and an affine term.
The result is a formulation that enables simultaneous esti-
mation of cameras and structure in over-determined settings
with unknown and varying focal length and radial distor-
tion. We further show that the pOSE and RpOSE models
can be seen as local approximations of reprojection error,
which opens up the possibility of iterative refinement.

Radial cameras have previously mostly been studied for
minimal solvers. The radial constraint was first proposed
in [32]. The multiple view geometry for these cameras
was studied in [29]. Solvers for the absolute pose problem
were presented in [19]. In a recent work [20] Larsson et
al. present a sequential reconstruction pipeline using radial
cameras. They show that accurate metric solutions can be
constructed from unordered image collections with varying
and unknown distortion parameters and focal lengths. The
most closely related work to ours is [ 7] where a factoriza-
tion approach was proposed. It is based on a convex relax-
ation using the nuclear norm and as such it is sensitive to
noise. In addition it uses a splitting scheme which can con-
verge slowly [15, 23]. Furthermore the formulation does
not take into account that noisy point projections that end
up near the principal point result in directional vectors that
are very uncertain. Hence without a proper weighting these
points can degrade the quality of the reconstruction.

In summary the main contributions of this paper are:

e A new pOSE formulation, named RpOSE, that can
handle radially distorted images.

e We show that the new formulation can be robustly op-
timized using VarPro converging to the globally opti-
mal solution in the vast majority of cases from random
starting solutions.

e We show that the pOSE formulations can be seen as
local approximations of reprojection error opening up
the possibility of robustly solving the maximum likeli-
hood formulation.

2. The 1D-radial Camera Model
2.1. Distortion Models

A common way of modeling radial distortion is through
the so called division model [6]. If we assume that the co-
ordinate system in the image has its origin in the distortion
center we can write the projection model as

Ay L + “(;nij)} = HKilf { A ' @

Here m;; represents the observed image point (in reg-
ular 2D Cartesian coordinates) X; is the 3D point and
K; [R; t;] is the camera matrix. Throughout this paper
we will assume that the distortion center is the principal
point, that the skew is 0 and that the aspect ratio is 1. There-
fore K is of the form diag( f, f, 1). The main difference to a
pure pinhole camera is the polynomial x(m;;) that distorts
the point locations by rescaling the coordinates (through di-
vision) based on the distance to a distortion center (0,0).
The polynomial is usually of the form r(m;;) = >, kir?!,
where r? = ||m;; 2.

Under no radial distortion, we have that x(m;;) = 0 and
(2) simplifies to the perspective projection of a 3D point into
an image. Note that in an uncalibrated SfM problem, only
the image measurements 1;; in (2) are known, and all other
variables/parameters are unknown.

2.2. The 1D Radial Camera Model

The main benefit of the division model presented in the
previous section is that it makes it possible to estimate radial
distortion using linear methods for a class of minimal abso-
lute [19] and relative pose problems [6]. On the other hand,
it introduces additional non-linearities to the projection that
are difficult to handle in over-determined settings. In this
paper we circumvent these issues by using the 1D radial
camera model [29]. This model uses a weaker projection
where each 3D point gives an image line going through the
projection center. The interpretation is that this line con-
tains the true point projection. Under the model described
in the previous section it is easy to see that radial distortion
moves points along such lines thereby making the radial
camera invariant. While the projection becomes weaker, ba-
sically dropping location information in one direction, the
non-linear effects of the distortion also disappear.

When the distortion center and principal point are both
in the origin, the 1D-radial projection is given by the two
first coordinates of (2) and therefore becomes

X.
)\ijmij =P [ f} , (3)

141
where P; = diag(f;, fi) B}Q ?2] only depends on the first
7 3
two rows of [R t]. Note that, under these assumptions,
the explicit dependence of the distortion parameters disap-
pear, and radial distortion is now implicitly modeled by A;;.
Furthermore, the camera matrix P; is of size 2 X 4, giving
a significant reduction of the number of parameters to be

estimated.
. . X; . .
We will write z;; = P [ 11 } and interpret this as a
directional vector of the reprojected line that contains the

measured point m;;. By Z we mean the block matrix
formed by putting the vector z;; in block (¢, j). This matrix
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can be factorized to estimate P € R2F*4 and X € R3*¥,
where

Pp=[pPr ... PH" and X=[X; ... Xn]

“)

2.3. The ML-estimate
We now suppose that our measurement m;; is a noisy
observation of a point from the line with directional vector
2;j. Under the Gaussian noise assumption the maximum

likelihood estimation is to minimize the distance between
the line and the measured point leading to the problem

2
mlnz I— 5 | mas|| -
— 1235 (5)

s.t. 4 =PX.

The objective function was observed to work well for large
scale reconstruction in [20]. This work did however use
minimal solvers for sequentially building a good starting
solution to be refined with bundle adjustment. Here we are
aiming to directly optimize in an over-determined setting
from random starting solutions.

Zij
- [

Hz

The matrix P :=

represents projection

onto the plane orthogonal to the line with directional vec-
tor z;;. This matrix is a symmetric projection which makes
it possible to simplify the terms of the objective function in
(5) to

T 2651121 — 252 21;

pm..2: L
[P | A

T
miijij =m ije
(6)
Because of symmetry it is not difficult to see that we
can swap places between z;; and m,; in the expres-
sion mJ; (||2i;|°T — zi;2;) mi;. Furthermore, the matrix

m; qu;- is of rank 1 and can be written as an

outer product m”m i where m;; is a vector that is perpen-
dicular to m;; and has ||/m;;|| = ||m;||. Therefore we can
write the terms of the ML estimate as

||mt]H I

2
T Zij

e

Since this projection is independent of which directional
vector is used it is clear that the objective is scale invari-
ant with respect to Z. Indeed the inner residual /. ”Z s
non-linear in the unknown Z. While non-linear factorlza—
tion methods based on the VarPro algorithm have been pro-
posed [27, 13] it has been observed in the context of SfM
that linear residuals give formulations that are far more re-
silient to local minima [12]. In the following section we
present such a formulation.

(7

KM Hm

2.4. A pOSE model

In [12] the non-linear residuals where avoided by switch-
ing from an image error to an object space error (OSE) by
effectively multiplying the residual with its denominator.
The same applies in our setting. Removing the dependence
on z;; from the denominator of 1 H -y clearly makes the
inner residual linear and turns (7) into a linear least squares
problem (albeit with a trivial solution).

One way to achieve linearity is to simply replace the term
|lzi;] in the denominator by 1. However since the length of
z;; and m;; have some correlation for typical scenes we
the radial object space error

(ROSE)
mZTj 2
lrosE = Zij|| - 3

[l |

Figure 1 shows level-sets of the {rosg (green dashed lines)
and the /y (blue dashed lines). For the ML estimate the
coordinates of directional vector z;; should be in the cone
(spanned by the blue dashed lines) to achieve an error less
than e. Approximating with a constant denominator re-
moves the dependence on the distance to the principal point
(middle of the image). The frosg term therefore measures
the perpendicular distance between z;; and the line contain-
ing my;.

Note, that with this the approximation it appears as if z;;
is a (theoretical) point projection that should be optimized
to be close to a measured line with directional vector m;;.
This is however not the case since z;; is not a proper pinhole
projection, but only the result of multiplying a 3D point with
a 2 x 4 matrix. It therefore still represents the directional
vector of a line known to contain the true projection.

Figure 1. Level-sets of the frosk (green dashed lines) and the /i
(blue dashed lines) and the £rpose, with the point m;; marked with
a Cross.

It is clear that resulting term frosg is not scale invariant.
To prevent the solution from collapsing to zero we therefore
add the affine term

Latfine = ||mij — Zij||2 )

and use a convex combination of the two terms giving the
objective function {rposr = (1 — 1)lrose + Nlasine- The
affine term penalizes deviations from m;; in all directions.

5908



It is not difficult to see that it can be divided into a term that
measures deviations from the line containing m;; and a per-
pendicular term that measures deviations from m;; along
the same line. The exact expression becomes

T, .
My %ij

lrposE = LRosSE + 1 ||Mi; — (10

g2

The level-sets of this function are ellipses with half axes that
are parallel and perpendicular to to the line containing 1.
Figure 1 shows one such ellipse (red dashed curve). When
7 is reduced this ellipse is extended in the direction of the
line containing m;.

The resulting objective function is a least squares prob-
lem in the unknowns z;;. We can therefore write it in matrix
form as || LAZ — b||?, where A is some linear operator on Z.

Since our goal is a factorization of Z into cameras P and
3D points X we solve the problem

e [A(7[3]) -

2

(1)

minimize

For this purpose we employ the VarPro formulation [11].
This method uses the fact that linearity of .A makes it pos-
sible to marginalize over one of the matrices X and P and
express its optimum as a function of the other. In contrast
to Levenberg-Marquart this enables us to avoid the use of a
dampening term for the eliminated variable which empiri-
cally has been shown to greatly reduce its sensitivity to local
minima. As shown by Hong et al. [12], the use of VarPro
combined with the affine term in the loss results in method
with a very wide convergence basin. Algorithm 1 outlines
the method that we use for solving (11), see [1 1] for more
details.

The affine term restricts the z;; to a neighborhood around
the point m;;. To limit this influence and allow solutions
where z;; and m;; are roughly parallel but have different
scales the 7 should typically be selected low. Figure 2
shows the shape of the level curves for different 1 as well
as the resulting reconstructions obtained from factorization
with this model. (Note that the obtained reconstruction is
uncalibrated. Therefore we have registered the resulting
point cloud to a ground truth point cloud to resolve the in-
herent projective ambiguity).

2.5. Evaluation

Next we empirically evaluate our RpOSE model. We
first compare to a standard uncalibrated 1D-radial bundle
adjustment implementation for the purpose of illustrating
the increased convergence basin of our method. We then
compare to the state-of-the-art factorization method in [17].
This method is based on a convex relaxation of the prob-
lem and therefore independent of initialization. While our

Algorithm 1: VarPro for solving (11)

Select the inputs 7, and randomly initialize P(0);

Set up A and b;

Compute x(0) by minimizing (11) with P = PO fixed;
while rrue do

Compute the Jacobians

Jp=AXTQI 1T ®I];Jx = A(Z® P);

and the residuals r = Avec (P Fﬂ) —b;

Compute Phew and Xpew from Jp, Jx, and r as
Phew = P+ AP and Xew = P + AX, with
AP = (JE(T - IxJ\)Jp +AT) "1 JEr, and
AX = —Jl(r+ JpAP);

5% 2
Evaluate the 10ss £pew = HA (Pnew [ r{ew}) — bH :

if gnew < ébest then
Loest = Lnew 3
P <+ Phew; and X <+ Xyew;
end
if stopping criterion then
‘ break;
end

end

VarPro formulation will be part of a larger stratified recon-
struction pipeline here we only consider properties of the
RpOSE model. Note that this is an uncalibrated formu-
lation. For qualitative visual evaluation of the results we
therefore register the obtained reconstructions to a ground
truth point cloud to remove the unknown projective ambi-
guity. In this way we can fairly evaluate the uncalibrated
models without the results being affected by subsequent up-
grade steps that are often sub-optimal. For evaluation of the
whole pipeline we refer the reader to Section 4.

Basin of convergence In [12] it is shown that pOSE has
a wide basin of convergence when solved with VarPro, and
can be initialized with random camera matrices. Here we
show that this property is retained in the proposed bilin-
ear factorization for 1D radial cameras. For this purpose,
we use 3 datasets [20] that aim to represent different cam-
era models, motions, scenes, and percentages of available
measurements. Each dataset is run several times for differ-
ent values of 1 and the average 3D reconstruction error is
used as evaluation metric, after projective registration to the
3D ground-truth. In each instance, the starting solution is
constructed by sampling the elements of the camera matri-
ces from a Gaussian distribution with mean 0 and variance
€. An example of the obtained reconstruction for the Door
dataset is in Figure 2. The trade-off between the quality of
the reconstruction and the sensitivity to local minima intro-
duced by the choice of 7 is shown in Figure 3. In Section 3
we address a strategy to reduce the sensitivity of the method
to the initial choice of 7).
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Figure 2. (Left) Level curves of the pOSE for 1-D radial cameras. (Right) Top view of Door datset.
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Figure 3. (Left) Examples of the 3 datasets (Door: 2500points, 12 viewpoints, 66% of available data; Grossmunster: 1874points, 19 view-
points, 59% available data; and Kirchenge: 2985 points, 50 viewpoints, 22% available data) used for evaluating the basin of convergence
of RpOSE solved with VarPro. (Right) Plots of the best errors (blue) and standard deviation of the error of the solutions (red) obtained in
all instances for each value of 77 when initializing RpOSE with random camera matrices. The values are normalized by their maximum for
better visualization. There is a clear trade-off between stability and accuracy of the algorithm, defined by the parameter 7. A strategy to

reduce the sensibility of the algorithm to the choice of 7 is proposed in Section 3.

Comparison with state-of-the-art factorization Factor-
ization with a 1D-radial camera model has previously only
been addressed by Kim et al. [17]. In this section we com-
pare our proposed method to their approach. The inputs to
the two methods are the same - image measurements and
assumed principal point. For this experiment we generate a
synthetic dataset using the 1000 ground-truth 3D points and
12 camera matrices from the Door dataset and around 66%
of the measurements are available. The 3D points are pro-
jected to the normalized image plane, from which 3 datasets
with different levels of radial distortion are generated. The
three levels correspond three different distortion models. 1)
Regular pinhole camera with no distortion using the intrin-
sic camera parameters from the original door dataset. 2)
Polynomial model where a point x in the normalized image
plane are distorted by multiplication with 1 + >, k;||z||*,
using the parameters k; described in [20]. 3) Fisheye model,
using the parameters from the cameras of the low-resolution
datasets in [26]. Noise sampled from a Gaussian distribu-
tion with mean O and standard deviation w is added to the
image measurements over several problem instances, and

we evaluate the performance of the methods by computing
[ X — Xl

the normalized average 3D error =il the average 2D
gt
mT
angle error ) .. acos | ————: | and runtime. Figure 4
g 2.5 s T g

shows the results. To illustrate the effect of the radial dis-
tortion when no measures are taken to compensate for it we
also show the results obtained when using the pOSE method
for regular pinhole cameras, with n = 0.05. Both RpOSE

and pOSE are initialized with random camera matrices with
zeros translations, while ALM is initialized as proposed by
the authors. A stopping criteria of 5 x 1075 is defined for
ALM to avoid high runtimes.

3. Connection between pOSE and ML

In this section we observe that the OSE errors (both ours
and that of [12]) are closely connected to the ML in the
sense that the OSE residuals can be seen as a linearization
of the non-linear reprojection errors at a certain point z;;.
This offers some explanation as to why pOSE error works
so well as a starting solution for bundle adjustment in [12].

Here we restrict ourselves to linearization of the 1D-
radial projection. In the supplementary material we show
that the same holds for regular pinhole model of [12]. Tak-
ing the first order Taylor expansion of the inner term at an
arbitrary point v we see that (7) can be approximated by
2

EROSE = H (mZHU’UH> —+ J(U)T (Zij — ’U) s (12)

_ =T
where the Jacobian is given by J(v) = m—ﬁ - %v The

connection to the OSE becomes clear when noting that lin-
2

m;;
2y
[zl =+

earization around v = m;; results in frosg =

The affine term can be seen as a dampening term, restricting
the unknown z;; to a neighborhood around v. When adding
it we get a more general approximation

Lrpose = (1 — n)lrose + Nattine, (13)
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Figure 4. (Left) Examples of the synthetic datasets used in the experiments. (Right) Plots of 3D reconstruction error, 2D angle error and

runtime of RpOSE vs ALM [17] and pOSE [12], as a function of the

noise level added to the image points.
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Figure 5. (Left) Reconstruction and angle errors obtained with RpOSE after 2 refinement steps, compared with the results from ALM and
pOSE. The relevance of the initial choice of 7 is significantly reduced by refining the solution from the previous linearization, given that
the methods initialized with different values of 7 achieved similar performance. (Right) Example of the effect of the refinement on the

reconstruction itself.

where luine = |25 — v||?, that could be refined to better
approximate the ML estimate.

Note that when v is not parallel to m;; the constant term
of (12) will not vanish. Therefore the weight of the affine
term can be reduced when better estimates of v become

available. Besides preventing the solution from collaps-
ing to zero, the affine term also compensates for the mea-
surement normalization in frosg When linearized around
v = my;. This avoids a degradation of the reconstruction
caused by noisy measurements closer to the center of distor-
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tion. Linearizing (7) around points v # m;; has a similar
effect, and either of them can be used to achieve more ac-
curate reconstructions.

3.1. Algorithm with Refinement

Algorithm 2: Iterated VarPro for solving (5)

Select the inputs 7;
Linearize around v = m;; and set up A and b;
Find X and P using VarPro (Alg. 1);
while 7rue do
Linearize around v = z;; and set up A and b;
Find X and P using VarPro (Alg. 1);
if stopping criterion then
| break;
end
end

Using the linearization above we can extend Algorithm |
to a method for optimizing the ML estimate by adding an
outer loop iteratively refining the pOSE estimate. In each
iteration we solve a VarPro formulation minimizing the lin-
earized objective. Note that we do not update the lineariza-
tion until it has been full optimized. This way we are able to
benefit from VarPro’s large basin of convergence. In prac-
tice we observe that in many cases the solution estimated
is very close to the ML estimate already after the first cou-
ple of iterations. Algorithm 2 outlines the approach with
refinement. One of the benefits of refinement is that the
resulting framework becomes less dependent on 7. As il-
lustrated in [12] this parameter should be small, decreasing
the influence of the affine term, in order to give visually ap-
pealing reconstructions. On the other hand problems with
a larger n are more well conditioned. The interpretation
of a dampening instead of a model parameter enables us
to some extent to compensate for an imperfectly selected n
though updated linearizations. Empirical results show that
reducing the value of 7 in each iteration of the outer loop of
Algorithm 2 leads to better reconstructions.

3.2. Evaluation

Increased accuracy through refinement In order to
show that the update of the affine term in (13) can be used to
increase the accuracy of the reconstructions, we repeat the
experiments with synthetic data in Section 2.5 with 2 up-
dates of the affine term a described in Algorithm 2. In each
update, the weight 7 is decreased by a factor of 10. The re-
sults, plotted in Figure 5, show that performing consecutive
linearizations allows us to keep a wide basin of convergence
without compromising the accuracy of the algorithm.

Refinement versus Local Optimization Our RpOSE for-
mulation can be combined with local optimization of (7).

To show the advantages of doing so, we compared the per-
formance of the proposed method, as described in Algo-
rithm 2, with local optimization initialized with RpOSE so-
lution. Additionally, we also measure the accuracy when lo-
cal optimization is initialized with a refined solution, ALM
or pOSE. In these experiments we select n = 0.05, and in
each linearization its value its decreased by a factor of 10.
For pOSE, n = 0.05 is used, as suggested by the authors,
and both RpOSE and pOSE are initialized with random
camera matrices and zero translations. Table 1 shows the
normalized 3D reconstruction error % after pro-
jective registration to ground-truth 3D points from multiple
datasets. The results show that there is a clear benefit of
initializing local optimization with RpOSE when compared
to state-of-the-art methods. Furthermore, performing 2 lin-
earization steps followed by local optimization achieved the
best overall performance, and therefore this is the combina-
tion chosen for future experiments. It is also important to
note that initializing local optimization directly with ran-
dom camera matrices and 3D points yield no reasonable re-
sults, and that the proposed refinement process often pro-
vides faster convergence than local optimization.

4. Full System Outline

In order to achieve a complete reconstruction, the pro-
posed method is incorporated into a SfM pipeline that al-
lows the recovery of the full model as described in (2). The
StM pipeline used has the following structure:

1. RpOSE factorization with 2 refinement steps and
local optimization. Given a set of image points tracked
along several images, we use Algorithm 2 with two refine-
ment steps followed by local optimization of (7) to obtain
estimations of the first two rows of the uncalibrated camera
matrix, and the 3D points, up to projective ambiguity.

2. Camera matrix completion and radial distortion es-
timation. From the solution of the local optimization of
(7), the distortion parameters and third row of the uncali-
brated camera matrix are estimated from the equations in
(2). Note that by assuming a distortion model with k(m) =
>k |m||?’, for each camera a system of equations of the
form

A [P 4
i|:k:|—bi (14)

can be obtained, where pl(-g) is the third row of the ith
camera matrix, and k is a vector of the distortion parame-
ters. Here we use a distortion model with three parameters,
kj,7 =1,...,3. Assuming that the distortion model is con-
stant along all views, the overall system of equations can be
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Table 1. Average 3D reconstruction errors obtained with the different combination of methods over 5 datasets. Door(S) represents a smaller
version of Door with 0% of missing data. The details of Door, Grossmunster and Kirchenge are shown in Figure 3, while Munsterhof
contains 2821 points, 50 viewpoints and 24% of available data.

Door(S) Door Grossmunster Kirchenge Munsterhof
RpOSE 0.72% 0.63% 4.00% 21.77% 29.01%
pOSE 0.09% 0.05% > 100% > 100% > 100%
ALM 0.22% > 100% > 100% 79.21% 47.74%
RpOSE+LO 0.41% 0.41% 2.55% 10.12% 17.24%
ALM+LO 0.12% 33.94% > 100% 80.98% 40.08%
RpOSE+1up 0.12% 0.39% 2.41% 6.94% 10.69%
RpOSE+1up+LO 0.13% 0.39% 1.59% 2.02% 7.74%
RpOSE+2up 0.12% 0.38% 1.80% 2.47% 6.67%
RpOSE+2up+LO 0.13% 0.39% 1.62% 0.80% 4.89%
written as Table 2. Evaluation metrics for the performance of the proposed
p(S) pipeline for SfM when initilized from RpOSE and ALM, for the
M |: k ] =b (15) Door (D), Fountain-pl1 (F), Kirchenge (K), and Grossmunster

with p being a 4x #views vector with all third rows of the
camera matrices.

3. Bundle adjustment. We perform local optimization of

2

X.
E Wiy || M5 — (1 + H(mij)) II (Pz l: 1J:|> (16)
ij
where II(z) = [Z, %]T, starting from the estimations of

P, X, and k found with the previous steps.

4. Euclidean update. The bundle adjustment allow us to
obtain a refined estimation of the uncalibrated case, so in
order to achieve an Euclidean reconstruction, an additional
update step needs to be done. The update consists of esti-
mating the projective transformation H € R*** such that
the factorization { PH, H ' X} is a Euclidean reconstruc-
tion. Given a valid H, we have that the first three columns
of P;H,.3 = K;R,;, and consequently PiHLngT:gPiT =
K; K} = w, which corresponds to the dual absolute conic
(DAC) [9]. Here we assume that K; = diag(f;, f;,1), and
by defining the symmetric matrix Q = Hy.3H{; we get
that (PZQPZ-T)L1 - (PiQPl-T)Z2 = 0 and all off-diagonal
elements of PiQPiT are zero. We refer the reader to [9] for
further details.

4.1. Experiments

The whole pipeline is applied to several datasets in or-
der to obtain a complete reconstruction. We compare the
accuracy of the pipeline when initialized with RpOSE ver-
sus ALM and pOSE. As evaluation metrics, we use cam-
era rotation errors, camera positions (normalized by path
length), normalized 3D reconstruction error, reprojection
errors (which also depends on the distortion parameters),
and focal length estimation error. Since the output of the

(G) datasets. Note that the high level of missing data and scene
complexity makes other factorization methods basically unusable,
while RpOSE allow high-accuracy reconstructions to be achieved.
With "N/A’ we mark the metrics which were not provided by the
corresponding dataset.

Method D F K G
Rot. [deg]RpOSE 2.74 2.060 0.589 0.113
ALM | 90.171 103.7 122.4 2.097
Pos. [%] RpOSE | 119 0.970 1.538 N/A
ALM 795.1 291.3 241.7 N/A
3D [%] RpOSE | 2.905 N/A 0.558 1.586
ALM 11.275 N/A  1034.9 13.742
2D [pix] RpOSE | 0.101 0.264 0.582 0.742
ALM 7.708 11.50 3.386 0.754
Focal [%] RpOSE | 23.6 4.928 N/A N/A
ALM | 90.677 96.7 N/A N/A

pipeline is an Euclidean reconstruction, we compared to
ground-truth through a similarity transformation. A sum-
mary of the results in presented in Table 2. We refer the
reader to the supplementary material for visualizations of
the reconstructions.

5. Conclusions

This paper presents a factorization methods invariant to
radial distortion and changes in focal length. The factor-
ization is based on 1-D radial cameras, and combined with
VarPro provides a stable method that can be initialized with
random camera matrices, making it it a reliable starting so-
lution for more complete SfM pipelines. The results show
that the proposed solution outperforms state-of-the-art fac-
torization methods. The proposed approach can potentially
be extended to Non-rigid SfM problems, for which we refer
the readers to the supplementary material for some prelimi-
nary results.
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