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Abstract
Visual localization is the problem of estimating the po-

sition and orientation from which a given image (or a se-
quence of images) is taken in a known scene. It is an impor-
tant part of a wide range of computer vision and robotics
applications, from self-driving cars to augmented/virtual
reality systems. Visual localization techniques should work
reliably and robustly under a wide range of conditions,
including seasonal, weather, illumination and man-made
changes. Recent benchmarking efforts model this by pro-
viding images under different conditions, and the commu-
nity has made rapid progress on these datasets since their
inception. However, they are limited to a few geographical
regions and often recorded with a single device. We propose
a new benchmark for visual localization in outdoor scenes,
using crowd-sourced data to cover a wide range of geo-
graphical regions and camera devices with a focus on the
failure cases of current algorithms. Experiments with state-
of-the-art localization approaches show that our dataset is
very challenging, with all evaluated methods failing on its
hardest parts. As part of the dataset release, we provide the
tooling used to generate it, enabling efficient and effective
2D correspondence annotation to obtain reference poses.

1. Introduction
Visual localization is the problem of estimating the po-

sition and orientation from which an image was taken, i.e.,
its camera pose, with respect to the scene. Visual localiza-
tion is a vital part of many computer vision and robotics
applications such as self-driving cars, service robots such
as gardening robots, and augmented/mixed/virtual reality.

Most visual localization methods rely heavily on local
descriptors for pose estimation, and finding 2D-3D matches
between images is a fundamental part of it. However,
the trade-off between the local descriptors’ discriminative
power and their invariance limits their performance un-
der changing conditions. On the other hand, in practice,
changes in the scene are unavoidable, and there is a need for
visual localization methods to be robust to them. Tradition-
ally, ground truth poses for localization have been obtained
via Structure-from-Motion (SfM) [35, 62, 66]. Yet, SfM it-

self relies on local descriptors and matching. This makes
it extremely difficult to generate localization benchmarks
where feature matching using traditional feature descriptors
does not work, e.g., in the presence of day/night and strong
viewpoint changes. Benchmark datasets for localization un-
der changing conditions such as Aachen, CMU Seasons,
and Robotcar [58] rely on manual annotations to be able
to provide ground truth poses. While these datasets provide
interesting challenges, they have mostly been captured in
controlled conditions. However, there is little control over
the capture in many applications such as Autonomous Driv-
ing, collaborative AR/MR, or crowd-sourced mapping.

In this paper, we have constructed a dataset revisiting the
common challenges that could be seen in different environ-
ments. We first actively mined a crowd-sourced database
for image sequences where classic SfM approaches fail. To
generate reliable poses, we have relied on human annota-
tions and have created 40 sets of image sequences with di-
verse visual changes. The dataset and tools used for its cre-
ation are available at mapillary.com.

This paper makes the following contributions: (1) a
workflow to mine and annotate challenging image se-
quences for benchmarking visual localization. Our ap-
proach explicitly takes pose uncertainty into account dur-
ing the annotation process. (2) the CrowdDriven dataset,
a geographically diverse and challenging dataset with re-
liable poses that covers various scenarios in illumination,
weather, seasonal, and viewpoint changes. (3) experi-
ments with state-of-the-art baselines showing CrowdDriven
presents challenges that existing methods cannot handle.

2. Related Work
Visual localization methods aim to estimate the full cam-
era pose and can be categorized based on their map repre-
sentation: (1) Image-based representations encode each
image as a feature vector [3, 17, 29, 54, 72, 73]. Using
image retrieval and the known poses of the database im-
ages, the pose of a test image can either be approximated
via the poses of the top-retrieved database images [61, 83]
or computed precisely based on relative poses [59, 85].
(2) Local feature-based representations rely on classical
or learned local feature descriptors and multiple view ge-
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Figure 1. Easy (top), Medium (left) and Hard (right) subsets of our CrowdDriven dataset. Our dataset includes reference poses derived
from hand-annotated control points, enabling the benchmarking of localization algorithms in new scenarios such as extreme viewpoint
(180◦) changes. CrowdDriven includes sequences from over the globe captured with a diversity of cameras.

ometry [43, 44, 55–57, 64, 68, 84]. These approaches build
a 3D model of the scene and then estimate the camera pose
based on 2D-3D matches between local features in a test
image and the 3D model [23, 32, 41]. Such approaches, es-
pecially using learned features, constitute the current state-
of-the-art in terms of visual localization in changing condi-
tions [22, 30, 51, 52, 63] and we evaluate and analyze their
performance on our benchmark. (3) Learning-based rep-
resentations typically represent the scene using convolu-
tional neural networks (CNNs). Pose regression techniques
directly regress the camera pose for a given input image [10,
38,39,79]. These methods have been shown not to perform
better than image retrieval methods [61]. Learning-based
approaches that do not learn the full localization pipeline
but only the 2D-3D matching part [6–9, 14, 15, 21, 53, 65]
achieve state-of-the-art performance in small scenes [5,80].
While most of these approaches struggle to handle condi-
tions not seen during training, [53] generalizes well.

While localization approaches use metric maps, visual
place recognition methods typically rely on topological
scene representations [19, 20, 27, 28, 49, 50, 78], and thus
do not directly provide a camera pose estimate. Using im-
age retrieval and related techniques, they identify the places
depicted in test images, where places are defined as sets of
database images. Place recognition can be used to guide vi-
sual localization by identifying which parts of a scene are
visible in a test image [37, 51, 60]. For an overview over
place recognition techniques, we refer the reader to [26,47].

Tab. 1 provides an overview over datasets commonly
used to measure localization and place recognition per-
formance under changing conditions. Coarse-scale lo-
cation information for place recognition datasets such as
Nordland [67], Pittsburgh [74], Tokyo 24/7 [72], and Mapil-
lary Street-Level Sequences [81] can be obtained relatively
easily via GPS measurements. In contrast, obtaining 6DOF
poses for localization requires considerable manual effort

as the classical approaches used to automatically obtain
ground truth fail under challenging conditions. RIO10 [80]
focuses on changes in indoor scenes. Long-term outdoor
localization datasets such as Aachen Day-Night [58, 60],
CMU Seasons [4, 58], and RobotCar Seasons [48, 58] only
cover a few geographical locations and using a small num-
ber of cameras. In contrast, even though our new bench-
mark dataset is not the largest, it has much more geograph-
ical diversity. While the other datasets were captured using
only a few cameras, our image sequences are taken by a
large number of different camera types and photographers.

Other localization datasets include the indoor 7
Scenes [65], 12 Scenes [76], and InLoc [70] datasets and
the outdoor Dubrovnik [43], Rome [25], Vienna [37], San
Francisco [16,44], and Cambridge Landmarks [39] datasets.
None of these datasets is designed to measure the impact of
changing conditions on localization performance [58].

The focus of recent datasets from self-driving car com-
panies such as Lyft [40], Waymo [2], Aptiv (nuScenes) [11],
and Baidu (Apolloscape) [36] is benchmarking 2D/3D ob-
ject detection based on multimodal sensor data in limited
geographical areas, semantic segmentation, and depth esti-
mation. An exception is Baidu’s Apolloscape which pro-
vides a localization benchmark track in small urban areas.

Another shortcoming of the datasets mentioned above is
that the changes in viewpoints are limited. The query im-
ages are typically taken from similar vantage points as the
reference images. Our dataset contains image sequences
that are, for instance, taken in opposite directions with dif-
ferent cameras. This case commonly happens during multi-
session or collaborative capture of man-made environments,
where paths can be traversed in two directions.

Based on the shortcomings of current localization
datasets, we generate a diverse dataset for long-term visual
localization (1) containing different challenging scenarios
such as day-night, seasonal, daylight illumination, strong
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Dataset Scene Type #images condition changes sequential 6DOF query poses # locationsurban suburban natural country road indoors reference query weather seasonal strong viewpoint day/night intrinsics snow rain
Nordland [67] ✓ ✓ ✓ 14k 16k ✓ ✓ 1
Pittsburgh [74] ✓ 254k 24k ✓ 1
Tokyo 24/7 [72] ✓ 174k 1k ✓ ✓ ✓ 1

NCLT [13] ✓ ✓ ✓ 3.8M ✓ ✓ ✓ ✓ 1
Extended CMU Seasons [4, 58] ✓ ✓ ✓ ✓ 61k 57k ✓ ✓ ✓ ✓ ✓ ✓ 1

RobotCar Seasons [48, 58] ✓ ✓ 20k 12k ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 1
Aachen Day-Night [58, 60] ✓ 3k 922 ✓ ✓ ✓ 1

RIO10 [80] ✓ 53k 200k ✓ ✓ 1
7-scenes [31] ✓ 26k 17k ✓ ✓ 7

12-scenes [34] ✓ 17k 5.8k ✓ ✓ 12
Cambridge [39] ✓ 8.4k 4.8k ✓ ✓ 3
Dubrovnik [43] ✓ 6k 0.8k ✓ 1

San Francisco [16] ✓ 610k 0.4k ✓ 1
Rome [43] ✓ 15k 1k 1
Vienna [37] ✓ 1k 0.2k 1

InLoc [70, 82] ✓ 9.9k 0.3k ✓ ✓ 5

CrowdDriven ✓ ✓ ✓ ✓ 1.3k 1.7k ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 26

Table 1. Comparing localization datasets: CrowdDriven is the most diverse in term of scene types and changes in viewing conditions.

viewpoint and man-made changes, (2) with reliable 6DOF
camera poses based on human annotations, (3) using crowd-
sourced data to imitate real driving situations, (4) with reli-
able camera calibration and geographical information.

3. CrowdDriven: Dataset Creation
Historically, visual localization algorithms have been

evaluated on crowd-sourced datasets collected from in-
ternet photo collection websites such as Flickr, e.g., the
Dubrovnik [43], Rome [43], and Landmarks 1k [44]
datasets. This way to acquire datasets scales very well to the
use of different camera types and geographical locations.
However, since the images have been taken by handheld
cameras around famous landmarks, these datasets are not
suitable for measuring visual localization performance in an
autonomous driving scenario, which is our main focus (even
though a small part of our dataset was captured by pedes-
trians and bicycles). In contrast, recently released datasets
tailored for this task, e.g., the RobotCar Seasons [48,58] and
the (extended) CMU Seasons [4, 58] datasets, contain only
one or a few larger locations, use only a few cameras, and
have been taken by experts. Our new dataset, CrowdDriven,
is designed to cover a wide range of locations, visual con-
ditions (e.g., seasonal, day-night changes or changes in fa-
cades, presence/absence of humans (man-made changes) ),
and camera types by tapping into a large database of crowd-
sourced images.

3.1. Data Source
To maximize the diversity and geographical coverage,

we use Mapillary, a collaborative street-level imagery plat-
form that hosts more than 1 billion images collected by
members of their community while driving or walking on
public spaces and roads. It covers most countries with hun-
dreds of camera models in varying times of day and weather
conditions. Its data is thus well-suited to evaluate problems
in conditions similar to those faced in self-driving scenarios,
since most images are captured with consumer-grade de-
vices such as smartphones, action cameras, and dashcams.

3.2. Sequence Selection
Images in Mapillary are grouped into ordered sequences

based on the photographer ID and the capture time. Each

image’s GPS position and compass are available, and the
database can be queried to find images near a particular po-
sition. To generate a dataset that is challenging for current
state-of-the-art localization algorithms, we attempt to find
pairs of neighboring sequences to be localized with respect
to each other. We categorize each sequence pair into a pre-
liminary difficulty level based on the success of traditional
SfM algorithms on jointly reconstructing the pair.

We begin by querying the Mapillary database to find
pairs of sequences covering a wide range of geographical
locations and appearances. The pairs are selected to satisfy
the following criteria: 1. Sequence length between 40 and
60 images. 2. Minimum sequence density of 0.2 images/m.
3. Maximum sequence-to-sequence distance of 3m. 4. Each
sequence can be reconstructed individually using SfM.

Note that we deliberately chose to focus on small scenes
rather than attempting to collect data for a larger spatial
area. In practice, pose priors such as GPS are used to
limit the search space during localization. Rather than ar-
tificially making the problem harder by ignoring such pri-
ors, we are interested in finding realistic hard examples with
small scenes. Our dataset might not be as large as previous
benchmarks. However, a large fraction of test images in
previous benchmarks can be localized accurately. In con-
trast, our dataset contains many very challenging scenarios
that current state-of-the-art methods cannot handle.

After collecting the sequence pairs, we run SfM on each
of them. We assign a difficulty rating to each pair depend-
ing on the result of SfM and the relative orientation of the
sequences: Sequence pairs whose joint reconstruction suc-
ceeds1 are categorized as easy and are shown in Fig. 1
(top). If the joint reconstruction fails, we look at the av-
erage view direction of the sequences to categorize them
into medium (Fig. 1 - left) if they have similar orientations
(less than a 45◦ difference), or hard (Fig. 1 - right) if they
have different orientations (more than a 45◦ difference).

This preliminary categorization is based on the following
observations: sequences with similar orientations are diffi-
cult to match mostly due to changes in appearance (e.g. il-
lumination or seasonal change) and state-of-the-art methods

1All images are included in the reconstruction with a sufficiently large
number of well-distributed inliers
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such as [51–53] are able to handle such changes quite well.
In contrast, sequence pairs with different view directions are
harder to match due to the addition of dramatic appearance
changes of scene parts due the large viewpoint change and
low visual overlap [63]. As our experiments in Sec. 5 show,
this preliminary classification aligns well with how current
state-of-the-art methods perform on our dataset.

Tab. 2 shows statistics over the sequence pairs in Crowd-
Driven. Many capture conditions that are challenging
for current localization algorithms are included in Crowd-
Driven. The medium category consists of different scene
types shown under conditions such as day-night changes,
rain, snow and other seasonal variations that impact the
scene geometry. The main focus of the hard category is the
combination of large viewpoint changes with less extreme
variations in illumination, seasons, and weather conditions.
On the dataset size. Similar to existing datasets [58,70,80],
CrowdDriven only provides reference images taken under
a single condition for each scene with test images.2 As
shown in Tab. 1, CrowdDriven contains fewer images than
most such datasets, e.g., the CMU and RobotCar Seasons
datasets from [58]. However, this does not imply that our
dataset is too small for learning-based methods such as cam-
era pose [10,38,39,79] or scene coordinate [6–9,14,15,65]
regression. These approaches regress the camera pose from
a given image and a 3D point coordinate from an image
patch, respectively. Both regression tasks are instance-level
problems. As such, the number of images in local scene
parts is more important for their performance in these parts
than the absolute number of images in a dataset. Extend-
ing CrowdDriven in terms of the absolute number of im-
ages by adding additional scenes is easy. However, do-
ing so is unlikely to improve the performance in existing
scenes. Extending CrowdDriven by adding more images to
existing scenes is hard as such images are simply not avail-
able: while crowd-sourced image capture allows us to ob-
tain images from a diverse set of scenes from multiple con-
tinents, there is no control over how much data is acquired
per scene. Still, the number of reference images per scene
should be sufficient for learning-based techniques.

3.3. Reference Pose Generation
To use the sequences for benchmarking visual localiza-

tion algorithms, two processing steps are required: 1. es-
timating intrinsic camera calibrations and reference poses
for all images in a common coordinate system, such that
distances can be measured in meters. 2. subdividing the
datasets into reference (training) images and test images.
For (2), we use a simple strategy: for each pair of sequences,
the larger sequence defines the reference images, and the
images from the smaller sequence are used for testing.

2The extended CMU and RobotCar Seasons provide training images
taken under multiple conditions for a set of locations that does not overlap
with the scene parts depicted in the test images.

Easy Datasets are those where both sequences can be re-
constructed in a common coordinate frame by off-the-shelf
SfM using SIFT [46] features. We follow common prac-
tice [25, 39, 44, 58] and use the camera poses and intrin-
sics estimated during the reconstruction process to define
our reference poses. After running SfM on the sequences,
we visually inspect the 3D models. If the two sequences
are aligned, i.e., there are no duplicate 3D points, and the
camera poses look visually correct, we scale the SfM poses
based on available GPS data to (approximately) recover the
scale of the scene. For this category, we expect state-of-the-
art localization approaches to perform well given that SIFT
features are sufficiently powerful to register the sequences.

We used OpenSfM [1] as our SfM pipeline. Experiments
with COLMAP [62] on our data showed similar results.

Tab. 2 provides statistics over the 13 sequence pairs in
the easy category. As can be seen, diversity in scenes such
as weather and illumination changes is covered in differ-
ent environments such as roads, suburban and urban areas.
Fig. 1 (top) shows sample images from this category.
Medium and Hard Datasets are those where SfM fails to
register the sequence pairs due to large changes in appear-
ance (medium) and/or viewpoint (hard). Both medium and
hard datasets are thus significantly more challenging for ex-
isting visual localization algorithms. Thus, these datasets
will be most interesting to the community.

To obtain reference poses, we first reconstruct each se-
quence individually using SfM and recover the scale of the
models using known GPS data from Mapillary. Next, we
manually annotate corresponding pixel positions between
images from the two sequences (Figs. 2 & 3). These anno-
tations define manual tracks within each sequence and be-
tween sequences, which we will call control points (CPs).
On average, 12 different control points have been annotated
for each dataset (sequence pair), where each such point has
been observed on average in 10 images.

To align the sequences, we first obtain the 3D position
of the CPs in the reference frame of each reconstruction
by triangulating the 2D annotations. The corresponding
3D points (as per the annotation) provide us with 3D-3D
matches that we use to compute an initial registration as
a similarity transformation, bringing both reconstructions
into a common reference frame. Given this initial align-
ment, we perform bundle adjustment [75] over all camera
poses and intrinsics, the 3D points triangulated from SIFT
features, and the 3D points triangulated from annotations.

Fig. 2 shows the quality of the alignment when using
only GPS constraints (middle) and when using manual an-
notations (right). For clarity of visualization, we show the
scenes as dense Multi-View Stereo point clouds, although
the registration is performed using only sparse points.

We do not use dense point clouds for alignment as they
cannot always be obtained solely from images, e.g., due to
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scene type identifier CP reproj. err. pos. STD (m) # test images # ref. images. ref. conditions test conditions considerable changes foliage

road Sydney - - 14 28 day, partly cloudy day, rain, illumination
Massachusetts1 - - 25 49 day, partly cloudy day, overcast, illumination ✓

Poing - - 20 56 day, clear sky day, overcast illumination ✓
Washington - - 10 29 day, clear sky day, cloudy illumination
Melbourne - - 12 36 day, cloudy day, overcast illumination
Burgundy2 0.03% (0.21 px) 0.07 50 50 day, sunny day, rain illumination, rain
Thuringia 0.07% (0.46 px) 0.13 11 17 day, sunny day, clear sky illumination ✓

Massachusetts2 0.07% (0.45 px) 0.07 24 35 day, overcast night day-night
Besançon2 0.01% (0.07 px) 0.06 50 50 day, overcast day, cloudy illumination, strong viewpoint ✓
Besançon4 0.02% (0.13 px) 0.06 50 50 day, cloudy day, overcast strong viewpoint, illumination ✓
Besançon3 0.04% (0.24 px) 0.04 50 50 day, overcast day, vegetated, strong viewpoint illumination ✓

Brittany 0.11% (0.69 px) 0.19 31 53 day, sunny day, partly cloudy strong viewpoint ✓

suburban Portland - - 21 41 day, clear sky day, overcast illumination
Curitiba - - 19 20 day, cloudy day, overcast illumination
Tsuru - - 9 26 day, cloudy day, overcast illumination

Clermont-Ferrand - - 15 21 day, sunny day, overcast illumination
Savannah - - 18 56 day, clear sky day, cloudy illumination

Subcarpathia - - 17 32 day, cloudy day, overcast snow, seasonal
Massachusetts3 0.03% (0.17 px) 0.04 44 56 day, clear sky night day-night ✓

Skåne 0.02% (0.10 px) 0.03 20 24 day, cloudy day small viewpoint, illumination
Angers2 0.04% (0.26 px) 0.05 46 47 day, cloudy day, clear sky strong viewpoint, illumination

Ile-de-France 0.02% (0.13 px) 0.04 50 50 day, sunny day, cloudy strong viewpoint, illumination
Orleans2 0.04% (0.22 px) 0.05 31 31 day, clear sky day, sunny strong viewpoint, illumination

Pays de la Loire 0.05% (0.32 px) 0.03 42 58 day, cloudy day, overcast strong viewpoint ✓
Brourges 0.05% (0.34 px) 0.06 22 23 day, partly cloudy day, clear sky, illumination strong viewpoint ✓

Nouvelle-Aquitaine2 0.05% (0.34 px) 0.05 45 46 day, sunny day, sunny strong viewpoint

urban Muehlhausen - - 10 22 day, cloudy day, overcast slight illumination
Bayern - - 26 26 day, cloudy day, overcast illumination
Boston5 0.04% (0.27 px) 0.08 34 47 day, sunny night day-night
Boston1 0.04% (0.27 px) 0.05 47 53 day, sunny night day-night
Boston3 0.12% (0.78 px) 0.52 31 40 day, clear sky day,clear sky small viewpoint

Massachusetts4 0.06% (0.40 px) 0.06 39 45 day, clear sky night day-night
Boston2 0.03% (0.19 px) 0.03 49 51 day, clear sky night day-night
Boston4 0.04% (0.27 px) 0.05 34 41 night day, sunny day-night

Cambridge 0.11% (0.69 px) 0.05 33 35 night day, sunny day-night
Le-Mans 0.04% (0.28 px) 0.04 49 51 day, overcast day, overcast illumination, strong viewpoint

Nouvelle-Aquitaine1 0.06% (0.40 px) 0.05 50 50 day, overcast day, overcast strong viewpoint, seasonal, snow
Angers1 0.08% (0.51 px) 0.08 47 49 day, cloudy day, clear sky strong viewpoint
Orleans1 0.05% (0.29 px) 0.11 33 34 day, sunny day, clear sky strong viewpoint, illumination
Leuven 0.08% (0.50 px) 0.04 20 21 day, cloudy day, overcast strong viewpoint

Table 2. Statistics of CrowdDriven: scene type, identifier, median reprojection error of control points (CPs), number of test and reference
images, reference and test conditions and changes. Preliminary categorization: easy: light gray; medium: gray; hard: dark gray.

Figure 2. Left: Annotated correspondences; Middle: Initial dense reconstruction of the scene; Right: Dense reconstruction with refinement
after registration. The edge of the road surface is highlighted to indicate misalignment.

Figure 3. Our annotation UI integrates annotation metrics to enable
efficient annotation and QA: (1) Reprojection error of annotated
CPs (yellow line) (2) Positional std. deviation derived from bundle
adjustment, highlighted in green (17 cm for this example).

over- (bright sun) or underexposure (night) or lack of tex-
ture. Moreover, they are expensive to compute and intro-
duce some drawbacks, e.g., registration failures due to miss-
ing or changed geometry (foliage, snow, etc.).

3.4. Quality Control
To verify the reference poses, we use the following crite-

ria and workflow. If SfM succeeds and there are no notice-

able artefacts and errors, then it typically produces highly
accurate estimates for the camera poses and the 3D struc-
ture of the scene. Thus, we directly trust the reference poses
we obtained for the easy datasets.

For the medium and hard datasets, we rely on manually-
annotated matches, which are susceptible to human er-
ror and might be distributed in a sub-optimal way in the
scene, under-constraining the alignment. Previous work on
building benchmark datasets that also uses manual annota-
tions [58, 70] often relied on visual inspection and did not
rigorously measure the uncertainty of their generated poses.
In the case of the Aachen Day-Night dataset [58, 60], [86]
recently showed that inaccurate poses passed visual inspec-
tion. We thus made a conscious effort to quantitatively mea-
sure the accuracy of our poses.

We use two metrics to verify that the annotations are cor-
rect and sufficient. After a few control points have been an-
notated, an alignment is generated by estimating a similar-
ity transform followed by bundle adjustment (as described
above). To detect potential issues, we begin by estimating
the reprojection error of every annotation. This metric
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identifies wrongly annotated points such as wrong corre-
spondences between different objects with similar appear-
ance or simply misclicks during annotation. All annotations
with an error of more than one pixel (at VGA resolution) are
flagged as incorrect and must be refined.

After all the reprojection errors are sufficiently small, we
compute the camera position covariance for each image
using bundle adjustment [24]. To fix the gauge ambiguity,
we fix the poses of one of the sequences, run the bundle ad-
justment problem, and compute the covariance of the poses
of the other sequence. We repeat this while fixing the poses
of the other sequence. From the covariances, we compute
the standard deviation of the camera positions3 in meters
and seek for small values when annotating. This metric is
used to understand if the calculated position of an image is
under-constrained: all annotations can be correct with very
small reprojection errors, but the poses might still be under-
constrained, e.g., if the annotations were only performed on
far-away points, resulting in large standard deviations.
Annotation Tools. These two metrics are integrated with
the annotation UI that we have developed and will release
as part of this work (c.f . Fig. 3). Annotators can run bun-
dle adjustment and get feedback directly in the UI, visualize
wrongly annotated points and focus their efforts on annotat-
ing those frames with higher positional uncertainty, simpli-
fying and accelerating the annotation process. Using our
tool, the manual annotation (and QA) of a sequence pair
reconstruction takes, on average, only 30 minutes.

After all positional std. deviations are confirmed to be
under 30 cm, we perform a final check by visually in-
specting the combined point cloud for the aligned models
(Fig. 2). Tab. 2 shows some statistics about the annotation
process, including the number of annotated points, the me-
dian reprojection error and median positional std. deviation
for each dataset. For the whole set of Medium and Hard
datasets, the median annotation reprojection error is 0.28 px
and the median positional std. deviation is 5.4 cm.

4. Baselines
In order to show that our benchmark introduces new

challenges for localization algorithms, we use a set of state-
of-the-art localization methods as baselines. We focus on
methods that have been shown to work well under changing
conditions (based on their performance on the benchmark
from [58]) and provide source code and trained models:
HLoc [51,52] uses learned SuperPoint [18] features and Su-
perGlue [52] to establish 2D-3D matches with a SfM model,
which are then used for camera pose estimation.
D2-Net [22] uses a single CNN for feature detection
and description. Pose estimation is implemented in

3We focus on the positional covariance and not the full pose covariance
as (1) it is easier to understand and (2) the positions are less certain than the
orientation estimates (which can be constrained by points at infinity) [24].

COLMAP [62]. In contrast to HLoc, which runs (close to)
real-time, D2-Net requires multiple seconds per test image.
Rectified SIFT [71] uses a depth estimation network [45]
to detect planar regions in the image. Warping them to re-
move perspective foreshortening leads to features that can
be matched under strong viewpoint changes.
S2DHM [30] uses an asymmetric matching approach: ref-
erence images are represented by sparse features corre-
sponding to the 3D points in the SfM model, while the test
image is represented by densely extracted descriptors.
The above-mentioned baselines are based on matching local
features to establish 2D-3D matches between the test image
and an SfM model of the scene. In contrast, PixLoc [53]
does not rely on feature matching but refines an initial pose
estimate by minimizing a feature-metric cost function.

We do not evaluate camera pose and scene coordinate
regression methods. Pose regressors have been shown to
be significantly less accurate than other localization ap-
proaches [61], even on scenes without changing conditions.
We thus see no reason why they should perform well on our
more challenging benchmark. Current scene coordinate re-
gressors seem to struggle with strong condition changes be-
tween the training and test sets: on the Aachen Day-Night
dataset [58, 60], where all training images are taken at day,
ESAC [8] performs significantly worse for nighttime test
images compared to daytime queries and is less accurate
than HLoc by a wide margin. CrowdDriven only provides
references images taken under a single condition for each
scene. Given the strong condition changes between train-
ing and test images, current scene coordinate regressors are
unlikely to perform well on our dataset.

In our experiments, for a given test image, we consider
only reference images from the same scene, e.g., Boston1,
and not from different scenes. Since our scenes are rather
small (c.f . Tab. 2), using place recognition / image retrieval
is not necessary. Instead, we exhaustively match the test
image against all reference images in the scene.

The supp. material shows results for sequence-based lo-
calization methods that simultaneously estimate the poses
of all images in a sequence [12, 41, 42, 69, 77]. While this
improves performance, it is still not sufficient to obtain rea-
sonable performance on our more challenging scenes.

5. Experimental Evaluation
This section shows how our dataset introduces new chal-

lenging scenarios that most baselines cannot cope with. Af-
ter introducing our evaluation measures, we analyze the im-
pact of different types of changes on the performance.
Evaluation Measures. We follow common evaluation pro-
tocols [25,39,58,70] and report median position (in meters)
and orientation errors (in degrees), as well as the percent-
age of test images with poses that differ within certain error
bounds from their reference poses. The position error is
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D2-Net S2DHM HLoc Rectified SIFT PixLoc

name pos. err rot. err
% of localized

0.5/1.0/5.0/10.0 (m)
2/5/10/20 (°)

pos. err rot. err
% of localized

0.5/1.0/5.0/10.0 (m)
2/5/10/20 (°)

pos. err rot. err
% of localized

0.5/1.0/5.0/10.0 (m)
2/5/10/20 (°)

pos. err rot. err
% of localized

0.5/1.0/5.0/10.0 (m)
2/5/10/20 (°)

pos. err rot. err
% of localized

0.5/1.0/5.0/10.0 (m)
2/5/10/20 (°)

Changes

Angers1 28.02 177.43 F 97.81 171.26 F 46.39 161.65 F 191.62 148.27 F 21.03 175.11 F

Angers2 35.51 165.56 F 174.61 153.78 F 68.34 122.82 0/ 0/ 0/ 6.52 437.63 132.38 F 45.26 173.18 F

Bayern 0.03 0.06 96.15/ 96.15/ 96.15/ 96.15 0.09 0.30 80.77/ 80.77/ 80.77/ 80.77 0.02 0.07 80.77/ 80.77/ 80.77/ 80.77 0.04 0.11 80.77/ 84.62/ 84.62/ 84.62 0.09 0.12 61.54/ 61.54/ 65.38/ 73.08

Besançon2 81.45 160.22 F - - - 59.02 152.43 F 128.70 121.79 F 34.30 169.03 F

Besançon3 48.16 162.30 F 258.71 148.52 F 71.61 162.18 F 107.51 148.63 F 36.86 168.47 F

Besançon4 117.25 151.57 F - - - 108.59 141.24 F 287.57 134.02 F 69.80 172.84 F

Boston1 28.78 4.99 0/ 0/ 4.26/ 23.40 239.57 140.05 F 31.75 8.47 0/ 0/ 0/ 10.64 125.13 129.79 F 27.09 15.55 0/ 0/ 0/ 2.13

Boston2 6.46 0.96 0/ 0/ 24.49/ 97.96 496.16 86.71 0/ 0/ 8.16/ 16.33 4.68 0.82 0/ 0/ 63.27/ 95.92 87.21 150.42 F 13.26 7.22 0/ 0/ 6.12/ 38.78

Boston3 6.66 4.20 0/ 0/ 29.03/ 51.61 196.98 114.24 F 27.57 32.83 0/ 0/ 12.90/ 19.35 111.70 155.53 F 20.72 16.12 0/ 0/ 0/ 19.35

Boston4 12.94 2.51 0/ 0/ 20.83/ 41.67 - - - 15.57 6.19 0/ 0/ 26.47/ 38.24 - - - 18.90 5.81 0/ 0/ 11.76/ 26.47

Boston5 18.08 2.26 0/ 0/ 11.76/ 17.65 97.70 74.40 0/ 0/ 0/ 5.88 16.59 4.35 0/ 0/ 26.47/ 26.47 91.74 157.72 F 13.36 12.36 0/ 0/ 0/ 26.47

Brittany 14.74 147.24 F 177.38 143.03 F 36.44 137.46 0/ 3.23/ 3.23/ 3.23 305.68 121.02 F 14.96 162.08 F

Brourges 31.84 153.74 F - - - 22.24 153.54 F 57.10 97.23 F 14.64 177.38 F

Burgundy2 4.41 3.72 0/ 4.00/ 60/ 76.00 57.78 34.59 F 7.32 5.36 0/ 4.00/ 40/ 58.00 554.19 166.83 F 20.97 14.82 0/ 0/ 0/ 26.00

Cambridge 0.50 0.87 51.52/ 90.91/ 93.94/ 96.97 94.58 82.57 9.09/ 12.12/ 12.12/ 12.12 0.37 0.43 69.70/ 100/ 100/ 100 58.58 135.56 3.03/ 6.06/ 18.18/ 21.21 30.06 15.24 0/ 0/ 3.03/ 6.06

Clermont-Ferrand 0.22 0.24 100/ 100/ 100/ 100 0.25 0.47 100/ 100/ 100/ 100 0.15 0.27 100/ 100/ 100/ 100 0.21 0.33 80/ 93.33/ 93.33/ 93.33 0.19 0.20 93.33/ 93.33/ 93.33/ 93.33

Curitiba 0.03 0.07 100/ 100/ 100/ 100 0.21 0.36 84.21/ 89.47/ 100/ 100 0.04 0.06 100/ 100/ 100/ 100 0.06 0.08 89.47/ 89.47/ 89.47/ 89.47 0.06 0.09 84.21/ 84.21/ 84.21/ 84.21

Ile-de-France 58.17 159.89 F - - - 121.89 120.76 F 325.41 159.15 F 24.99 175.11 F

Le-Mans 53.53 160.64 F 63.90 165.43 F 52.82 163.53 F 249.61 138.46 F 40.68 176.24 F

Leuven 10.85 164.76 F 48.83 154.03 F 12.54 173.48 F 69.29 132.33 F 8.42 140.80 F

Massachusetts1 0.08 0.06 100/ 100/ 100/ 100 0.59 0.36 40/ 72.00/ 96.00/ 96.00 0.12 0.07 100/ 100/ 100/ 100 0.16 0.06 96.00/ 96.00/ 100/ 100 0.20 0.10 76.00/ 84.00/ 84.00/ 84.00

Massachusetts2 5.80 0.24 0/ 0/ 0/ 100 - - - 18.34 9.47 0/ 0/ 0/ 8.33 111.63 168.17 F 6.70 10.76 0/ 0/ 0/ 66.67

Massachusetts3 23.95 25.32 0/ 10.53/ 36.84/ 42.11 498.52 123.61 F 3.91 5.85 0/ 25.00/ 52.27/ 59.09 680.80 104.46 F 18.02 10.24 0/ 0/ 4.55/ 22.73

Massachusetts4 1.57 1.01 0/ 0/ 97.44/ 100 69.55 24.08 0/ 8.11/ 32.43/ 32.43 2.23 1.14 0/ 0/ 100/ 100 40.25 115.17 0/ 0/ 0/ 4.00 10.38 5.70 0/ 0/ 30.77/ 46.15

Melbourne 0.07 0.07 100/ 100/ 100/ 100 0.21 0.22 83.33/ 100/ 100/ 100 0.09 0.16 100/ 100/ 100/ 100 0.16 0.16 100/ 100/ 100/ 100 14.07 0.93 16.67/ 16.67/ 16.67/ 41.67

Muehlhausen 0.03 0.07 100/ 100/ 100/ 100 0.32 0.53 80/ 100/ 100/ 100 0.04 0.07 100/ 100/ 100/ 100 0.04 0.11 100/ 100/ 100/ 100 0.04 0.10 100/ 100/ 100/ 100

Nouvelle-Aquitaine1 40.23 172.90 F 328.30 150.36 F 34.02 160.82 F 418.74 137.36 F 44.17 170.42 F

Nouvelle-Aquitaine2 81.48 126.82 F 35.89 161.41 F 67.65 147.96 F 90.10 150.32 F 28.51 169.94 F

Orleans1 17.42 178.86 F 256.48 149.29 F 33.42 175.46 F 87.40 157.44 0/ 0/ 3.03/ 3.03 25.87 178.74 F

Orleans2 175.99 127.58 F - - - 32.95 165.35 F 359.37 154.26 F 15.30 177.55 F

Pays de la Loire 25.32 159.23 F 52.74 156.08 F 34.11 166.72 F 131.31 135.25 0/ 0/ 0/ 4.76 17.56 175.95 F

Poing 0.05 0.07 100/ 100/ 100/ 100 0.45 0.61 60/ 85.00/ 100/ 100 0.06 0.07 100/ 100/ 100/ 100 183.46 85.13 20/ 20/ 20/ 20.00 0.08 0.04 85.00/ 85.00/ 85.00/ 85.00

Portland 0.13 0.16 100/ 100/ 100/ 100 0.40 0.46 66.67/ 95.24/ 100/ 100 0.11 0.14 100/ 100/ 100/ 100 0.16 0.12 95.24/ 100/ 100/ 100 0.13 0.16 85.71/ 85.71/ 85.71/ 85.71

Savannah 0.08 0.05 100/ 100/ 100/ 100 0.25 0.28 83.33/ 94.44/ 100/ 100 0.08 0.05 100/ 100/ 100/ 100 0.07 0.05 100/ 100/ 100/ 100 0.09 0.08 94.44/ 94.44/ 94.44/ 94.44

Skåne 5.14 2.97 0/ 0/ 50/ 85.00 392.36 120.41 0/ 0/ 0/ 5.00 4.26 3.70 0/ 5.00/ 55.00/ 90.00 609.69 154.13 F 35.93 25.73 F

Subcarpathia 0.54 0.46 47.06/ 70.59/ 88.24/ 94.12 6.39 4.09 0/ 0/ 41.18/ 58.82 0.35 0.26 70.59/ 76.47/ 100/ 100 116.17 80.70 11.76/ 11.76/ 29.41/ 35.29 66.44 9.84 5.88/ 5.88/ 11.76/ 11.76

Sydney 0.18 0.11 100/ 100/ 100/ 100 1.39 0.82 35.71/ 35.71/ 85.71/ 92.86 0.18 0.15 85.71/ 100/ 100/ 100 2.81 1.86 0/ 25.00/ 75.00/ 75.00 0.18 0.20 64.29/ 71.43/ 71.43/ 71.43

Thuringia 0.57 0.26 45.45/ 90.91/ 100/ 100 0.95 0.60 18.18/ 54.55/ 100/ 100 0.37 0.25 81.82/ 100/ 100/ 100 431.41 121.14 F 7.03 6.51 0/ 0/ 27.27/ 63.64

Tsuru 0.01 0.04 100/ 100/ 100/ 100 0.06 0.30 100/ 100/ 100/ 100 0.03 0.03 100/ 100/ 100/ 100 0.02 0.04 100/ 100/ 100/ 100 0.03 0.04 100/ 100/ 100/ 100

Washington 1.00 0.42 0/ 50/ 100/ 100 3.96 0.66 0/ 0/ 100/ 100 1.07 1.47 10/ 30/ 100/ 100 0.90 0.68 40/ 50/ 90/ 100 2.46 1.20 0/ 0/ 70.00/ 70.00

Table 3. Localization performance on our CrowdDriven benchmark. We report the median position (in meters) and orientation (in degrees)
errors, and the percentage of test images localized within certain error bounds on the position and orientation errors. Easy, medium, and
hard datasets are color-coded in light, standard, and dark gray, respectively. We also provide information about the type of change between
the training and test sequences: illumination: , overcast: , foliage: , snow: , seasonal: , day-night: , small viewpoint: , rain:

, strong viewpoint: , man-made changes: . ’F’ stands for failure to localize any image within the coarsest precision regime.

HLoc

D2-Net

S2DHM

Rectified
SIFT

Easy (100%) Easy (100%) Hard (0%) Medium (0%) Medium (4%) Medium (0%) Medium (0%)

Figure 4. Inlier plots for selected scenes. None of the evaluated methods is able to robustly localize the medium and hard datasets. This is
made apparent by the fraction of localized images under the medium-precision threshold for the best method, shown in below each column.

measured as the Euclidean distance between the reference
and estimated position. To measure the orientation error, we
compute the minimum rotation angle α that aligns the esti-
mated rotation matrix Rest with the reference rotation Rref
as 2cos(|α|) = trace(RTrefRest) − 1 [33]. Inspired by [58],

we use three error bounds: high precision (images localized
within 0.5m and 2° of their reference poses), medium pre-
cision (1m, 5°), and coarse precision (5m, 10°). In addition,
we introduce a very coarse precision regime (10m, 20°).

We also report the changes in conditions between the test
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and training images: (slight) illumination changes (il.), e.g.,
between a cloudy and a sunny day, foliage / no foliage on
the vegetation (fo.), snow / no snow on the ground (sn.),
other seasonal changes (se.) (summer/autumn), day-night
changes (ng.), rain / no rain (rn.), small (sm. v.) and strong
viewpoint (st. v.), and man-made (e.g., appearance / disap-
pearance of cars) changes. Tab. 3 summarizes the results
obtained by evaluating the baselines. In the following, we
focus our analysis on three types of changes: slight illumi-
nation, day-night, and strong viewpoint changes, which
are the dominant types of changes.
Slight illumination changes. As shown in Tab. 3, datasets
such as Muehlhausen, Tsuru, Poing, Bayern, Savannah, Cu-
ritiba, Melbourne, Sydney, and Clermont-Ferrand are cat-
egorized as being affected solely by illumination changes
seen during the day. Almost all the test images are local-
ized with high precision by most of the methods. In this
scenario, SIFT is already robust enough to slight changes
in illumination. However, rectified SIFT struggles to deal
with the heavy vegetation present in Poing, Sydney, and
Subcarpathia. We observe that for some datasets, PixLoc
performs significantly worse than the other baselines. We
attribute this to different viewing condition between the
training set of PixLoc and our dataset, e.g., PixLoc was
not trained on images showing as much snow as the Sub-
carpathia dataset, and the challenges of identifying the best
pose from all available pose estimates (c.f . supp. mat.) and
of pose refinement in complex scenes such as Melbourne
and Sydney. Still, we conclude that slight illumination
changes are not challenging for current algorithms.
Day-night changes. The significant appearance changes
that occur between day and night have considerable effects
on the performance of most of the methods, leading to a
noticeable increase in the errors. D2-Net’s robustness to il-
lumination changes makes the model perform well in some
of the datasets such as Massachusetts4 and Boston4, allow-
ing localization with medium precision. On the other hand,
the effect of artificial lights during the night could cover the
previously-seen features or considerably change them, mak-
ing one part of the image sparser, and the pose estimation
less accurate. In Massachusetts2, Massachusetts3, Boston2,
and Boston5, the errors are larger than those of consumer-
grade GPS. HLoc and S2DHM, as seen in Tab. 3, produce
large errors in all of the night cases except for Cambridge,
with the median errors of these methods starting at more
than 30 meters. We can conclude that for night-time test
images, due to the considerable changes in feature appear-
ances, approaches such as S2DHM do not seem to improve
the results as long as the extracted Hypercolumn descriptors
themselves are not robust enough to the day-night changes
(c.f . Fig. 4). Rectified SIFT inherits the limitations of SIFT
features and also struggles significantly on these scenes.
Strong viewpoint changes. By far the most challenging

condition present in our dataset is strong viewpoint change,
as seen in Tab. 3. The rotation errors obtained for all the
methods are over 160°, indicating complete failures. Strong
viewpoint changes significantly alter the appearance of ob-
jects, resulting in substantially different feature descrip-
tors depending on the viewing angle. In theory, removing
perspective distortion via rectification should help to bet-
ter handle larger viewpoint changes [71]. Yet, the recti-
fied SIFT baseline still mostly fails under strong viewpoint
changes. This can be attributed to the limited visual overlap
as well as inaccurate depth predictions on the distant over-
lapping image regions (c.f . Fig. 4). Unsurprisingly, PixLoc
always fails under strong viewpoint changes: PixLoc refines
an initial pose estimate, which is obtained from the poses of
the database images. In the case of opposite viewpoints,
these initial estimates are simply too different from the test
poses for PixLoc to converge to a reasonable pose estimate.
Difficulty levels revisited. Sec. 3 provided a preliminary
classification based on our understanding of what is chal-
lenging for current localization algorithms. Based on the
measured performance of our baselines, we revisit this clas-
sification: a dataset should be considered as easy if (nearly)
all baselines perform well, as medium if some baselines
work well (at least for the coarsest threshold), and as hard
if all methods fail. We color-coded the datasets in Tab. 3
accordingly. Comparing the color-codings in Tabs. 2 and 3
shows that the classification based on performance is con-
sistent with our preliminary categorization for most scenes.

6. Conclusion
We have introduced the CrowdDriven dataset for visual

localization, with a focus on exposing the failure cases of
state-of-the-art pipelines. The dataset covers three difficulty
tiers: (1) slight illumination changes, (2) severe illumina-
tion changes, (3) severe viewpoint changes.

We have evaluated the performance of the best visual lo-
calization methods available on our dataset and analyzed the
failure modes for the different methods. We conclude that
there is a large performance gap to be covered by future
work and that can be evaluated with our dataset. Finally,
we release the annotation tool we developed to create this
dataset, enabling easy extension to more scenarios.

As shown concurrently to our work [5], using a feature-
based approach (SfM) to generate reference poses can cre-
ate a bias towards feature-based methods. We consider the
problem of eliminating such a bias from the evaluation as
an important direction for future work.
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Tsai, Ramakrishna Vedantham, Timo Pylvänäinen, Kimmo
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Antequera, Pau Gargallo, Yubin Kuang, and Javier
Civera. Mapillary street-level sequences: A dataset for
lifelong place recognition. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 2626–2635, 2020. 2

[82] Erik Wijmans and Yasutaka Furukawa. Exploiting 2d floor-
plan for building-scale panorama rgbd alignment. In Com-
puter Vision and Pattern Recognition, CVPR, 2017. 3

[83] Amir R. Zamir and Mubarak Shah. Accurate Image Local-
ization Based on Google Maps Street View. In ECCV, 2010.
1

[84] Bernhard Zeisl, Torsten Sattler, and Marc Pollefeys. Cam-
era pose voting for large-scale image-based localization. In
ICCV, 2015. 2

[85] Wei Zhang and Jana Kosecka. Image based Localization in
Urban Environments. In 3DPVT, 2006. 1

[86] Zichao Zhang, Torsten Sattler, and Davide Scaramuzza. Ref-
erence Pose Generation for Long-term Visual Localization
via Learned Features and View Synthesis. International
Journal of Computer Vision, pages 1–1, 2020. 5

9855


